Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
def sentiment(summary):
|
5 |
+
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
|
6 |
+
label = pipe(summary)[0]['label']
|
7 |
+
return label
|
8 |
+
|
9 |
+
|
10 |
+
def main():
|
11 |
+
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"}
|
12 |
+
#st.set_page_config(page_title="Your Finance news", page_icon="📰")
|
13 |
+
st.header("Summarize Your Finance News and Analyze Sentiment")
|
14 |
+
text=st.text_input('Input your Finance news(Max lenth<=3000): ',max_chars=3000)
|
15 |
+
if isinstance(text,str):
|
16 |
+
st.text('Your Finance news📰": ')
|
17 |
+
st.write(str(text))
|
18 |
+
|
19 |
+
#Stage 1: Text Summarization
|
20 |
+
st.text('Processing Finance News Summarization...')
|
21 |
+
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
|
22 |
+
summary=text_summarize(text)[0]['summary_text']
|
23 |
+
st.write(summary)
|
24 |
+
|
25 |
+
#Stage 2: Sentiment Analytics
|
26 |
+
st.text('Processing Sentiment Analytics...')
|
27 |
+
label = sentiment(summary)
|
28 |
+
label=dicts[label]
|
29 |
+
st.text('The sentiment of finance news is: ')
|
30 |
+
st.write(label)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
main()
|