File size: 6,351 Bytes
4596869 4083490 4596869 868658d d4177a4 4596869 e632772 d4177a4 e632772 4596869 d4177a4 4596869 d4177a4 4596869 837effe d4177a4 837effe d4177a4 837effe d4177a4 837effe d4177a4 837effe d4177a4 837effe 4596869 d4177a4 cf0645c d4177a4 cf0645c d4177a4 cf0645c 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 837effe 4596869 837effe d4177a4 1dc1dda d4177a4 4596869 d4177a4 4596869 cf0645c 4596869 d4177a4 4596869 faa8315 4596869 d4177a4 4596869 d4177a4 1dc1dda d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 d4177a4 4596869 4083490 d4177a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import logging
import os
import time
import gradio as gr
import pandas as pd
from pinecone import Pinecone
from utils import (
get_zotero_ids,
get_arxiv_papers,
get_hf_embeddings,
upload_to_pinecone,
get_new_papers,
recommend_papers,
)
from dotenv import load_dotenv
load_dotenv(".env")
HF_API_KEY = os.getenv("HF_API_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
INDEX_NAME = os.getenv("INDEX_NAME")
NAMESPACE_NAME = os.getenv("NAMESPACE_NAME")
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
def category_radio(cat):
if cat == "Computer Vision and Pattern Recognition":
return "cs.CV"
elif cat == "Computation and Language":
return "cs.CL"
elif cat == "Artificial Intelligence":
return "cs.AI"
elif cat == "Robotics":
return "cs.RO"
def comment_radio(com):
if com == "None":
return None
else:
return com
def reset_project():
file_path = "arxiv-scrape.csv"
if os.path.exists(file_path):
os.remove(file_path)
logging.info(
f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
)
api_key = os.getenv("PINECONE_API_KEY")
index = os.getenv("INDEX_NAME")
pc = Pinecone(api_key=api_key)
if index in pc.list_indexes().names():
pc.delete_index(index)
logging.info(
f"{index} index has been deleted from the vectordb. Delete reset_project() if you want to persist recommended papers."
)
return f"{file_path} has been deleted.<br />{index} index has been deleted from the vectordb.<br />"
def reset_csv():
file_path = "arxiv-scrape.csv"
if os.path.exists(file_path):
os.remove(file_path)
logging.info(
f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
)
with gr.Blocks() as demo:
zotero_api_key = gr.Textbox(
label="Zotero API Key", type="password", value=os.getenv("ZOTERO_API_KEY")
)
zotero_library_id = gr.Textbox(
label="Zotero Library ID", value=os.getenv("ZOTERO_LIBRARY_ID")
)
zotero_tag = gr.Textbox(label="Zotero Tag", value=os.getenv("ZOTERO_TAG"))
arxiv_category_name = gr.State([])
radio_arxiv_category_name = gr.Radio(
[
"Computer Vision and Pattern Recognition",
"Computation and Language",
"Artificial Intelligence",
"Robotics",
],
value=["Computer Vision and Pattern Recognition"],
label="ArXiv Category Query",
)
radio_arxiv_category_name.change(
fn=category_radio, inputs=radio_arxiv_category_name, outputs=arxiv_category_name
)
arxiv_comment_query = gr.State([])
radio_arxiv_comment_query = gr.Radio(
["CVPR", "ACL", "TACL", "JAIR", "IJRR", "None"],
value=["CVPR"],
label="ArXiv Comment Query",
)
radio_arxiv_comment_query.change(
fn=comment_radio, inputs=radio_arxiv_comment_query, outputs=arxiv_comment_query
)
threshold = gr.Slider(
minimum=0.70, maximum=0.99, value=0.80, label="Similarity Score Threshold"
)
init_output = gr.Textbox(label="Project Initialization Result")
rec_output = gr.Markdown(label="Recommended Papers")
reset_output = gr.Markdown(label="Reset Declaration")
init_btn = gr.Button("Initialize")
rec_btn = gr.Button("Recommend")
reset_btn = gr.Button("Reset")
reset_btn.click(fn=reset_project, inputs=[], outputs=[reset_output])
@init_btn.click(
inputs=[zotero_api_key, zotero_library_id, zotero_tag],
outputs=[init_output],
trigger_mode="once",
)
def init(
zotero_api_key,
zotero_library_id,
zotero_tag,
hf_api_key=HF_API_KEY,
pinecone_api_key=PINECONE_API_KEY,
index_name=INDEX_NAME,
namespace_name=NAMESPACE_NAME,
):
logging.basicConfig(
filename="logfile.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logging.info("Project Initialization Script Started (Serverless)")
ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag)
df = get_arxiv_papers(ids)
embeddings, dim = get_hf_embeddings(hf_api_key, df)
feedback = upload_to_pinecone(
pinecone_api_key, index_name, namespace_name, embeddings, dim, df
)
logging.info(feedback)
if isinstance(feedback, dict):
return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace."
else:
return feedback
@rec_btn.click(
inputs=[arxiv_category_name, arxiv_comment_query, threshold],
outputs=[rec_output],
trigger_mode="once",
)
def recs(
arxiv_category_name,
arxiv_comment_query,
threshold,
hf_api_key=HF_API_KEY,
pinecone_api_key=PINECONE_API_KEY,
index_name=INDEX_NAME,
namespace_name=NAMESPACE_NAME,
):
logging.info("Weekly Script Started (Serverless)")
df = get_arxiv_papers(category=arxiv_category_name, comment=arxiv_comment_query)
df = get_new_papers(df)
if not isinstance(df, pd.DataFrame):
return df
embeddings, _ = get_hf_embeddings(hf_api_key, df)
results = recommend_papers(
pinecone_api_key, index_name, namespace_name, embeddings, df, threshold * 3
)
return results
csv_display = gr.DataFrame(
label="ArXiv Scraped Papers", visible=True, show_label=False, interactive=False
)
def update_csv():
while True:
time.sleep(1)
try:
df = pd.read_csv("arxiv-scrape.csv")
except:
df = pd.DataFrame()
yield df
css = """
button:contains("Generate") {
display: none !important;
}
"""
gr.Interface(
fn=update_csv,
inputs=None,
outputs=csv_display,
clear_btn=None,
live=True,
allow_flagging="never",
theme="default",
css=css,
)
demo.launch(share=True)
|