add async and add default values
Browse files
app.py
CHANGED
@@ -3,75 +3,118 @@ import os
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from pinecone import Pinecone
|
6 |
-
from utils import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
14 |
-
os.chdir(script_dir)
|
|
|
15 |
|
16 |
def category_radio(cat):
|
17 |
-
if cat ==
|
18 |
-
return
|
19 |
-
elif cat ==
|
20 |
-
return
|
21 |
-
elif cat ==
|
22 |
-
return
|
23 |
-
elif cat ==
|
24 |
-
return
|
|
|
25 |
|
26 |
def comment_radio(com):
|
27 |
-
if com ==
|
28 |
return None
|
29 |
else:
|
30 |
return com
|
31 |
-
|
|
|
32 |
def reset_project():
|
33 |
-
file_path =
|
34 |
if os.path.exists(file_path):
|
35 |
os.remove(file_path)
|
36 |
-
logging.info(
|
|
|
|
|
37 |
|
38 |
-
api_key = os.getenv(
|
39 |
-
index = os.getenv(
|
40 |
-
pc = Pinecone(api_key
|
41 |
if index in pc.list_indexes().names():
|
42 |
pc.delete_index(index)
|
43 |
-
logging.info(
|
|
|
|
|
44 |
return f"{file_path} has been deleted.<br />{index} index has been deleted from the vectordb.<br />"
|
45 |
|
|
|
46 |
def reset_csv():
|
47 |
-
file_path =
|
48 |
if os.path.exists(file_path):
|
49 |
os.remove(file_path)
|
50 |
-
logging.info(
|
|
|
|
|
|
|
51 |
|
52 |
with gr.Blocks() as demo:
|
53 |
|
54 |
-
zotero_api_key = gr.Textbox(
|
|
|
|
|
55 |
|
56 |
-
zotero_library_id = gr.Textbox(
|
|
|
|
|
57 |
|
58 |
-
zotero_tag = gr.Textbox(label="Zotero Tag")
|
59 |
|
60 |
arxiv_category_name = gr.State([])
|
61 |
-
radio_arxiv_category_name = gr.Radio(
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
arxiv_comment_query = gr.State([])
|
65 |
-
radio_arxiv_comment_query = gr.Radio(
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
init_output = gr.Textbox(label="Project Initialization Result")
|
71 |
|
72 |
-
rec_output = gr.Markdown(label
|
73 |
|
74 |
-
reset_output = gr.Markdown(label
|
75 |
|
76 |
init_btn = gr.Button("Initialize")
|
77 |
|
@@ -79,46 +122,73 @@ with gr.Blocks() as demo:
|
|
79 |
|
80 |
reset_btn = gr.Button("Reset")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
logging.info("Project Initialization Script Started (Serverless)")
|
92 |
-
|
93 |
ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag)
|
94 |
|
95 |
df = get_arxiv_papers(ids)
|
96 |
|
97 |
embeddings, dim = get_hf_embeddings(hf_api_key, df)
|
98 |
|
99 |
-
feedback = upload_to_pinecone(
|
|
|
|
|
100 |
|
101 |
logging.info(feedback)
|
102 |
if isinstance(feedback, dict):
|
103 |
return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace."
|
104 |
-
else
|
105 |
return feedback
|
106 |
-
|
107 |
-
@rec_btn.click(
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
logging.info("Weekly Script Started (Serverless)")
|
110 |
|
111 |
-
df = get_arxiv_papers(category=
|
112 |
|
113 |
df = get_new_papers(df)
|
114 |
|
115 |
if not isinstance(df, pd.DataFrame):
|
116 |
return df
|
117 |
-
|
118 |
embeddings, _ = get_hf_embeddings(hf_api_key, df)
|
119 |
|
120 |
-
results = recommend_papers(
|
|
|
|
|
121 |
|
122 |
return results
|
123 |
|
124 |
-
|
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from pinecone import Pinecone
|
6 |
+
from utils import (
|
7 |
+
get_zotero_ids,
|
8 |
+
get_arxiv_papers,
|
9 |
+
get_hf_embeddings,
|
10 |
+
upload_to_pinecone,
|
11 |
+
get_new_papers,
|
12 |
+
recommend_papers,
|
13 |
+
)
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
load_dotenv(".env")
|
17 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
18 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
19 |
+
INDEX_NAME = os.getenv("INDEX_NAME")
|
20 |
+
NAMESPACE_NAME = os.getenv("NAMESPACE_NAME")
|
21 |
|
22 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
os.chdir(script_dir)
|
24 |
+
|
25 |
|
26 |
def category_radio(cat):
|
27 |
+
if cat == "Computer Vision and Pattern Recognition":
|
28 |
+
return "cs.CV"
|
29 |
+
elif cat == "Computation and Language":
|
30 |
+
return "cs.CL"
|
31 |
+
elif cat == "Artificial Intelligence":
|
32 |
+
return "cs.AI"
|
33 |
+
elif cat == "Robotics":
|
34 |
+
return "cs.RO"
|
35 |
+
|
36 |
|
37 |
def comment_radio(com):
|
38 |
+
if com == "None":
|
39 |
return None
|
40 |
else:
|
41 |
return com
|
42 |
+
|
43 |
+
|
44 |
def reset_project():
|
45 |
+
file_path = "arxiv-scrape.csv"
|
46 |
if os.path.exists(file_path):
|
47 |
os.remove(file_path)
|
48 |
+
logging.info(
|
49 |
+
f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
|
50 |
+
)
|
51 |
|
52 |
+
api_key = os.getenv("PINECONE_API_KEY")
|
53 |
+
index = os.getenv("INDEX_NAME")
|
54 |
+
pc = Pinecone(api_key=api_key)
|
55 |
if index in pc.list_indexes().names():
|
56 |
pc.delete_index(index)
|
57 |
+
logging.info(
|
58 |
+
f"{index} index has been deleted from the vectordb. Delete reset_project() if you want to persist recommended papers."
|
59 |
+
)
|
60 |
return f"{file_path} has been deleted.<br />{index} index has been deleted from the vectordb.<br />"
|
61 |
|
62 |
+
|
63 |
def reset_csv():
|
64 |
+
file_path = "arxiv-scrape.csv"
|
65 |
if os.path.exists(file_path):
|
66 |
os.remove(file_path)
|
67 |
+
logging.info(
|
68 |
+
f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
|
69 |
+
)
|
70 |
+
|
71 |
|
72 |
with gr.Blocks() as demo:
|
73 |
|
74 |
+
zotero_api_key = gr.Textbox(
|
75 |
+
label="Zotero API Key", type="password", value=os.getenv("ZOTERO_API_KEY")
|
76 |
+
)
|
77 |
|
78 |
+
zotero_library_id = gr.Textbox(
|
79 |
+
label="Zotero Library ID", value=os.getenv("ZOTERO_LIBRARY_ID")
|
80 |
+
)
|
81 |
|
82 |
+
zotero_tag = gr.Textbox(label="Zotero Tag", value=os.getenv("ZOTERO_TAG"))
|
83 |
|
84 |
arxiv_category_name = gr.State([])
|
85 |
+
radio_arxiv_category_name = gr.Radio(
|
86 |
+
[
|
87 |
+
"Computer Vision and Pattern Recognition",
|
88 |
+
"Computation and Language",
|
89 |
+
"Artificial Intelligence",
|
90 |
+
"Robotics",
|
91 |
+
],
|
92 |
+
value=["Computer Vision and Pattern Recognition"],
|
93 |
+
label="ArXiv Category Query",
|
94 |
+
)
|
95 |
+
radio_arxiv_category_name.change(
|
96 |
+
fn=category_radio, inputs=radio_arxiv_category_name, outputs=arxiv_category_name
|
97 |
+
)
|
98 |
|
99 |
arxiv_comment_query = gr.State([])
|
100 |
+
radio_arxiv_comment_query = gr.Radio(
|
101 |
+
["CVPR", "ACL", "TACL", "JAIR", "IJRR", "None"],
|
102 |
+
value=["CVPR"],
|
103 |
+
label="ArXiv Comment Query",
|
104 |
+
)
|
105 |
+
radio_arxiv_comment_query.change(
|
106 |
+
fn=comment_radio, inputs=radio_arxiv_comment_query, outputs=arxiv_comment_query
|
107 |
+
)
|
108 |
+
|
109 |
+
threshold = gr.Slider(
|
110 |
+
minimum=0.70, maximum=0.99, value=0.80, label="Similarity Score Threshold"
|
111 |
+
)
|
112 |
|
113 |
init_output = gr.Textbox(label="Project Initialization Result")
|
114 |
|
115 |
+
rec_output = gr.Markdown(label="Recommended Papers")
|
116 |
|
117 |
+
reset_output = gr.Markdown(label="Reset Declaration")
|
118 |
|
119 |
init_btn = gr.Button("Initialize")
|
120 |
|
|
|
122 |
|
123 |
reset_btn = gr.Button("Reset")
|
124 |
|
125 |
+
reset_btn.click(fn=reset_project, inputs=[], outputs=[reset_output])
|
126 |
+
|
127 |
+
@init_btn.click(
|
128 |
+
inputs=[zotero_api_key, zotero_library_id, zotero_tag], outputs=[init_output]
|
129 |
+
)
|
130 |
+
def init(
|
131 |
+
zotero_api_key,
|
132 |
+
zotero_library_id,
|
133 |
+
zotero_tag,
|
134 |
+
hf_api_key=HF_API_KEY,
|
135 |
+
pinecone_api_key=PINECONE_API_KEY,
|
136 |
+
index_name=INDEX_NAME,
|
137 |
+
namespace_name=NAMESPACE_NAME,
|
138 |
+
):
|
139 |
+
|
140 |
+
logging.basicConfig(
|
141 |
+
filename="logfile.log",
|
142 |
+
level=logging.INFO,
|
143 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
144 |
+
)
|
145 |
logging.info("Project Initialization Script Started (Serverless)")
|
146 |
+
|
147 |
ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag)
|
148 |
|
149 |
df = get_arxiv_papers(ids)
|
150 |
|
151 |
embeddings, dim = get_hf_embeddings(hf_api_key, df)
|
152 |
|
153 |
+
feedback = upload_to_pinecone(
|
154 |
+
pinecone_api_key, index_name, namespace_name, embeddings, dim, df
|
155 |
+
)
|
156 |
|
157 |
logging.info(feedback)
|
158 |
if isinstance(feedback, dict):
|
159 |
return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace."
|
160 |
+
else:
|
161 |
return feedback
|
162 |
+
|
163 |
+
@rec_btn.click(
|
164 |
+
inputs=[arxiv_category_name, arxiv_comment_query, threshold],
|
165 |
+
outputs=[rec_output],
|
166 |
+
)
|
167 |
+
def recs(
|
168 |
+
arxiv_category_name,
|
169 |
+
arxiv_comment_query,
|
170 |
+
threshold,
|
171 |
+
hf_api_key=HF_API_KEY,
|
172 |
+
pinecone_api_key=PINECONE_API_KEY,
|
173 |
+
index_name=INDEX_NAME,
|
174 |
+
namespace_name=NAMESPACE_NAME,
|
175 |
+
):
|
176 |
logging.info("Weekly Script Started (Serverless)")
|
177 |
|
178 |
+
df = get_arxiv_papers(category=arxiv_category_name, comment=arxiv_comment_query)
|
179 |
|
180 |
df = get_new_papers(df)
|
181 |
|
182 |
if not isinstance(df, pd.DataFrame):
|
183 |
return df
|
184 |
+
|
185 |
embeddings, _ = get_hf_embeddings(hf_api_key, df)
|
186 |
|
187 |
+
results = recommend_papers(
|
188 |
+
pinecone_api_key, index_name, namespace_name, embeddings, df, threshold * 3
|
189 |
+
)
|
190 |
|
191 |
return results
|
192 |
|
193 |
+
|
194 |
+
demo.launch(share=True)
|