File size: 5,619 Bytes
4596869
 
 
 
868658d
d4177a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4596869
e632772
d4177a4
 
e632772
4596869
d4177a4
 
 
 
 
 
 
 
 
4596869
 
d4177a4
4596869
837effe
 
d4177a4
 
837effe
d4177a4
837effe
 
d4177a4
 
 
837effe
d4177a4
 
 
837effe
 
d4177a4
 
 
837effe
4596869
d4177a4
cf0645c
d4177a4
cf0645c
 
d4177a4
 
 
 
cf0645c
4596869
 
d4177a4
 
 
4596869
d4177a4
 
 
4596869
d4177a4
4596869
 
d4177a4
 
 
 
 
 
 
 
 
 
 
 
 
4596869
 
d4177a4
 
 
 
 
 
 
 
 
 
 
 
4596869
 
 
d4177a4
4596869
d4177a4
837effe
4596869
 
 
 
837effe
 
d4177a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4596869
d4177a4
4596869
 
 
cf0645c
 
4596869
d4177a4
 
 
4596869
 
faa8315
4596869
d4177a4
4596869
d4177a4
 
 
 
 
 
 
 
 
 
 
 
 
 
4596869
 
d4177a4
4596869
 
 
 
 
d4177a4
4596869
 
d4177a4
 
 
4596869
 
 
d4177a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import logging
import os
import gradio as gr
import pandas as pd
from pinecone import Pinecone
from utils import (
    get_zotero_ids,
    get_arxiv_papers,
    get_hf_embeddings,
    upload_to_pinecone,
    get_new_papers,
    recommend_papers,
)
from dotenv import load_dotenv

load_dotenv(".env")
HF_API_KEY = os.getenv("HF_API_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
INDEX_NAME = os.getenv("INDEX_NAME")
NAMESPACE_NAME = os.getenv("NAMESPACE_NAME")

script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)


def category_radio(cat):
    if cat == "Computer Vision and Pattern Recognition":
        return "cs.CV"
    elif cat == "Computation and Language":
        return "cs.CL"
    elif cat == "Artificial Intelligence":
        return "cs.AI"
    elif cat == "Robotics":
        return "cs.RO"


def comment_radio(com):
    if com == "None":
        return None
    else:
        return com


def reset_project():
    file_path = "arxiv-scrape.csv"
    if os.path.exists(file_path):
        os.remove(file_path)
        logging.info(
            f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
        )

    api_key = os.getenv("PINECONE_API_KEY")
    index = os.getenv("INDEX_NAME")
    pc = Pinecone(api_key=api_key)
    if index in pc.list_indexes().names():
        pc.delete_index(index)
        logging.info(
            f"{index} index has been deleted from the vectordb. Delete reset_project() if you want to persist recommended papers."
        )
    return f"{file_path} has been deleted.<br />{index} index has been deleted from the vectordb.<br />"


def reset_csv():
    file_path = "arxiv-scrape.csv"
    if os.path.exists(file_path):
        os.remove(file_path)
        logging.info(
            f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers."
        )


with gr.Blocks() as demo:

    zotero_api_key = gr.Textbox(
        label="Zotero API Key", type="password", value=os.getenv("ZOTERO_API_KEY")
    )

    zotero_library_id = gr.Textbox(
        label="Zotero Library ID", value=os.getenv("ZOTERO_LIBRARY_ID")
    )

    zotero_tag = gr.Textbox(label="Zotero Tag", value=os.getenv("ZOTERO_TAG"))

    arxiv_category_name = gr.State([])
    radio_arxiv_category_name = gr.Radio(
        [
            "Computer Vision and Pattern Recognition",
            "Computation and Language",
            "Artificial Intelligence",
            "Robotics",
        ],
        value=["Computer Vision and Pattern Recognition"],
        label="ArXiv Category Query",
    )
    radio_arxiv_category_name.change(
        fn=category_radio, inputs=radio_arxiv_category_name, outputs=arxiv_category_name
    )

    arxiv_comment_query = gr.State([])
    radio_arxiv_comment_query = gr.Radio(
        ["CVPR", "ACL", "TACL", "JAIR", "IJRR", "None"],
        value=["CVPR"],
        label="ArXiv Comment Query",
    )
    radio_arxiv_comment_query.change(
        fn=comment_radio, inputs=radio_arxiv_comment_query, outputs=arxiv_comment_query
    )

    threshold = gr.Slider(
        minimum=0.70, maximum=0.99, value=0.80, label="Similarity Score Threshold"
    )

    init_output = gr.Textbox(label="Project Initialization Result")

    rec_output = gr.Markdown(label="Recommended Papers")

    reset_output = gr.Markdown(label="Reset Declaration")

    init_btn = gr.Button("Initialize")

    rec_btn = gr.Button("Recommend")

    reset_btn = gr.Button("Reset")

    reset_btn.click(fn=reset_project, inputs=[], outputs=[reset_output])

    @init_btn.click(
        inputs=[zotero_api_key, zotero_library_id, zotero_tag], outputs=[init_output]
    )
    def init(
        zotero_api_key,
        zotero_library_id,
        zotero_tag,
        hf_api_key=HF_API_KEY,
        pinecone_api_key=PINECONE_API_KEY,
        index_name=INDEX_NAME,
        namespace_name=NAMESPACE_NAME,
    ):

        logging.basicConfig(
            filename="logfile.log",
            level=logging.INFO,
            format="%(asctime)s - %(levelname)s - %(message)s",
        )
        logging.info("Project Initialization Script Started (Serverless)")

        ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag)

        df = get_arxiv_papers(ids)

        embeddings, dim = get_hf_embeddings(hf_api_key, df)

        feedback = upload_to_pinecone(
            pinecone_api_key, index_name, namespace_name, embeddings, dim, df
        )

        logging.info(feedback)
        if isinstance(feedback, dict):
            return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace."
        else:
            return feedback

    @rec_btn.click(
        inputs=[arxiv_category_name, arxiv_comment_query, threshold],
        outputs=[rec_output],
    )
    def recs(
        arxiv_category_name,
        arxiv_comment_query,
        threshold,
        hf_api_key=HF_API_KEY,
        pinecone_api_key=PINECONE_API_KEY,
        index_name=INDEX_NAME,
        namespace_name=NAMESPACE_NAME,
    ):
        logging.info("Weekly Script Started (Serverless)")

        df = get_arxiv_papers(category=arxiv_category_name, comment=arxiv_comment_query)

        df = get_new_papers(df)

        if not isinstance(df, pd.DataFrame):
            return df

        embeddings, _ = get_hf_embeddings(hf_api_key, df)

        results = recommend_papers(
            pinecone_api_key, index_name, namespace_name, embeddings, df, threshold * 3
        )

        return results


demo.launch(share=True)