Spaces:
Running
Running
File size: 12,250 Bytes
5c6971a bec7b04 5f2ea7c 82c09c3 bec7b04 5f2ea7c bec7b04 5c6971a bec7b04 5f2ea7c bec7b04 57186bd e076485 bec7b04 5c6971a bee746c bec7b04 5f2ea7c bec7b04 5c6971a bec7b04 5c6971a 5f2ea7c 5c6971a 5612af2 5c6971a bec7b04 5c6971a 5f2ea7c 5c6971a e68e1fe 5c6971a 5f2ea7c 5612af2 5f2ea7c 5612af2 5f2ea7c 5c6971a 5612af2 5f2ea7c 5612af2 5c6971a 5612af2 5f2ea7c 5c6971a 5f2ea7c bec7b04 5c6971a 5f2ea7c 5c6971a bec7b04 5c6971a bec7b04 5c6971a bec7b04 5c6971a 5f2ea7c 3898411 bec7b04 5c6971a 5f2ea7c 5c6971a 5f2ea7c 5c6971a 5f2ea7c 5c6971a 5f2ea7c bec7b04 5f2ea7c 5c6971a 5f2ea7c bec7b04 5c6971a bec7b04 5c6971a bec7b04 5c6971a bec7b04 5c6971a 412751a bec7b04 5c6971a bec7b04 412751a 5c6971a 412751a 5612af2 412751a 5612af2 412751a 5c6971a 5612af2 bec7b04 412751a bec7b04 5c6971a 5f2ea7c bec7b04 5c6971a bec7b04 5c6971a bec7b04 5c6971a 5f2ea7c 5c6971a 5f2ea7c bec7b04 887218e da0dafc 887218e 5f2ea7c bec7b04 5f2ea7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
from flask import Flask, render_template, request, redirect, url_for, session, flash
import os
from werkzeug.utils import secure_filename
#from retrival import generate_data_store
from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from huggingface_hub import InferenceClient
from langchain.schema import Document
from langchain_core.documents import Document
from dotenv import load_dotenv
import re
import numpy as np
import glob
import shutil
from werkzeug.utils import secure_filename
import asyncio
import nltk
nltk.download('punkt_tab')
import nltk
nltk.download('averaged_perceptron_tagger_eng')
app = Flask(__name__)
# Set the secret key for session management
app.secret_key = os.urandom(24)
# Configurations
UPLOAD_FOLDER = "uploads/"
VECTOR_DB_FOLDER = "VectorDB/"
TABLE_DB_FOLDER = "TableDB/"
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
# Global variables
CHROMA_PATH = None
TABLE_PATH = None
PROMPT_TEMPLATE_DOC = """
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:
- Use only the provided context; do not add external information.
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
- If available, use the provided source information to support the response.
- Answer concisely and factually.
Context:
{context}
---
Question:
{question}
Response:
[/INST]
"""
# prompt if the document having the tables
PROMPT_TEMPLATE_TAB = """
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:
- Use only the provided context; do not add external information.
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
- If available, use the provided source information to support the response.
- If a table is provided as html, incorporate its relevant details into the response while maintaining a structured format.
- Answer concisely and factually.
Context:
{context}
---
Table:
{table}
---
Question:
{question}
Response:
[/INST]
"""
#HFT = os.getenv('HF_TOKEN')
#client = InferenceClient(api_key=HFT)
@app.route('/', methods=['GET'])
def home():
return render_template('home.html')
@app.route('/chat', methods=['GET', 'POST'])
def chat():
if 'history' not in session:
session['history'] = []
print("sessionhist1",session['history'])
global CHROMA_PATH
global TABLE_PATH
old_db = session.get('old_db', None)
print(f"Selected DB: {CHROMA_PATH}")
# if old_db != None:
# if CHROMA_PATH != old_db:
# session['history'] = []
#print("sessionhist1",session['history'])
if request.method == 'POST':
query_text = request.form['query_text']
if CHROMA_PATH is None:
flash("Please select a database first!", "error")
return redirect(url_for('list_dbs'))
# Load the selected Document Database
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
#embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Convert the query to its embedding vector
query_embedding = embedding_function.embed_query(query_text)
if isinstance(query_embedding, float):
query_embedding = [query_embedding]
# print(f"Query embedding: {query_embedding}")
# print(f"Type of query embedding: {type(query_embedding)}")
# print(f"Length of query embedding: {len(query_embedding) if isinstance(query_embedding, (list, np.ndarray)) else 'Not applicable'}")
results_document = db.similarity_search_by_vector_with_relevance_scores(
embedding=query_embedding, # Pass the query embedding
k=3,
#filter=filter_condition # Pass the filter condition
)
print("results------------------->",results_document)
print("============================================")
print("============================================")
context_text_document = " \n\n###\n\n ".join(
[f"Source: {doc.metadata.get('source', '')} Page_content:{doc.page_content}\n" for doc, _score in results_document]
)
# Loading Table Database only if available
if TABLE_PATH is not None:
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
results_table = tdb.similarity_search_by_vector_with_relevance_scores(
embedding=query_embedding, # Pass the query embedding
k=2
#filter=filter_condition # Pass the filter condition
)
print("results------------------->",results_table)
context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
# Prepare the prompt and query the model
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_TAB)
prompt = prompt_template.format(context=context_text_document,table=context_text_table,question=query_text)
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
print("results------------------->",prompt)
else:
# Prepare the prompt and query the model
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_DOC)
prompt = prompt_template.format(context=context_text_document,question=query_text)
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
print("results------------------->",prompt)
#Model Defining and its use
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
HFT = os.environ["HF_TOKEN"]
llm = HuggingFaceEndpoint(
repo_id=repo_id,
#max_tokens=3000,
max_new_tokens=2000,
temperature=0.8,
huggingfacehub_api_token=HFT,
)
data= llm(prompt)
#data = response.choices[0].message.content
# filtering the uneccessary context.
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
data = "We do not have information related to your query on our end."
# Save the query and answer to the session history
session['history'].append((query_text, data))
# Mark the session as modified to ensure it gets saved
session.modified = True
print("sessionhist2",session['history'])
return render_template('chat.html', query_text=query_text, answer=data, history=session['history'],old_db=CHROMA_PATH)
return render_template('chat.html', history=session['history'], old_db=CHROMA_PATH)
@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
if request.method == 'POST':
db_name = request.form.get('db_name', '').strip()
if not db_name:
return "Database name is required", 400
# Get uploaded files
files = request.files.getlist('folder') # Folder uploads (multiple files)
single_files = request.files.getlist('file') # Single file uploads
print("==================folder==>", files)
print("==================single_files==>", single_files)
# Ensure at least one valid file is uploaded
if not any(file.filename.strip() for file in files) and not any(file.filename.strip() for file in single_files):
return "No files uploaded", 400
# Create upload directory
upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
print(f"Base Upload Path: {upload_base_path}")
os.makedirs(upload_base_path, exist_ok=True)
# Process single file uploads first (if any exist)
if any(file.filename.strip() for file in single_files):
for file in single_files:
if file.filename.strip(): # Ensure the file is valid
file_name = secure_filename(file.filename)
file_path = os.path.join(upload_base_path, file_name)
print(f"Saving single file to: {file_path}")
file.save(file_path)
# If single file is uploaded, skip folder processing
print("Single file uploaded, skipping folder processing.")
asyncio.run(generate_data_store(upload_base_path, db_name))
return redirect(url_for('list_dbs'))
# Process folder files only if valid files exist
if any(file.filename.strip() for file in files):
for file in files:
if file.filename.strip(): # Ensure it's a valid file
file_name = secure_filename(file.filename)
file_path = os.path.join(upload_base_path, file_name)
print(f"Saving folder file to: {file_path}")
file.save(file_path)
# Generate datastore
asyncio.run(generate_data_store(upload_base_path, db_name))
return redirect(url_for('list_dbs'))
return render_template('create_db.html')
@app.route('/list-dbs', methods=['GET'])
def list_dbs():
vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
return render_template('list_dbs.html', vector_dbs=vector_dbs)
@app.route('/select-db/<db_name>', methods=['POST'])
def select_db(db_name):
flash(f"{db_name} Database has been selected", "table_selected")
#Selecting the Documnet Vector DB
global CHROMA_PATH
global TABLE_PATH
print(f"Selected DB: {CHROMA_PATH}")
print("-----------------------------------------------------1----")
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
print(f"Selected DB: {CHROMA_PATH}")
print("-----------------------------------------------------2----")
# Selecting the Table Vector DB
table_db_path = os.path.join(TABLE_DB_FOLDER, db_name)
table_db_path = table_db_path.replace("\\", "/")
TABLE_PATH = table_db_path if os.path.exists(table_db_path) else None
print(f"Selected Table DB: {TABLE_PATH}")
return redirect(url_for('chat'))
@app.route('/update-dbs/<db_name>', methods=['GET','POST'])
def update_db(db_name):
if request.method == 'POST':
db_name = request.form['db_name']
# Get all files from the uploaded folder
files = request.files.getlist('folder')
if not files:
return "No files uploaded", 400
print(f"Selected DB: {db_name}")
DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
DB_PATH = DB_PATH.replace("\\", "/")
print(f"Selected DB: {DB_PATH}")
generate_data_store(DB_PATH, db_name)
return redirect(url_for('list_dbs'))
return render_template('update_db.html')
if __name__ == "__main__":
app.run(debug=False, use_reloader=False)
|