Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
from flask import Flask, render_template, request, redirect, url_for, session
|
2 |
import os
|
3 |
from werkzeug.utils import secure_filename
|
4 |
-
from retrival import generate_data_store
|
|
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.prompts import ChatPromptTemplate
|
|
|
|
|
8 |
from huggingface_hub import InferenceClient
|
9 |
from langchain.schema import Document
|
10 |
from langchain_core.documents import Document
|
@@ -13,6 +16,7 @@ import re
|
|
13 |
import glob
|
14 |
import shutil
|
15 |
from werkzeug.utils import secure_filename
|
|
|
16 |
|
17 |
app = Flask(__name__)
|
18 |
|
@@ -22,16 +26,19 @@ app.secret_key = os.urandom(24)
|
|
22 |
# Configurations
|
23 |
UPLOAD_FOLDER = "uploads/"
|
24 |
VECTOR_DB_FOLDER = "VectorDB/"
|
25 |
-
|
26 |
|
27 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
28 |
-
|
29 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
30 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
31 |
-
os.makedirs(
|
32 |
|
33 |
# Global variables
|
34 |
CHROMA_PATH = None
|
|
|
|
|
|
|
35 |
PROMPT_TEMPLATE = """
|
36 |
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. Do not include any external information.
|
37 |
|
@@ -45,8 +52,28 @@ Question:
|
|
45 |
|
46 |
Response:
|
47 |
"""
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@app.route('/', methods=['GET'])
|
52 |
def home():
|
@@ -60,12 +87,14 @@ def chat():
|
|
60 |
print("sessionhist1",session['history'])
|
61 |
|
62 |
global CHROMA_PATH
|
|
|
|
|
63 |
old_db = session.get('old_db', None)
|
64 |
print(f"Selected DB: {CHROMA_PATH}")
|
65 |
|
66 |
-
if old_db != None:
|
67 |
-
|
68 |
-
|
69 |
|
70 |
#print("sessionhist1",session['history'])
|
71 |
|
@@ -74,25 +103,46 @@ def chat():
|
|
74 |
if CHROMA_PATH is None:
|
75 |
return render_template('chat.html', error="No vector database selected!", history=[])
|
76 |
|
77 |
-
# Load the selected
|
78 |
-
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
79 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Prepare the prompt and query the model
|
84 |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
85 |
-
prompt = prompt_template.format(context=
|
|
|
86 |
print("results------------------->",prompt)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
-
data = response.choices[0].message.content
|
95 |
|
|
|
|
|
|
|
|
|
96 |
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
|
97 |
data = "We do not have information related to your query on our end."
|
98 |
|
@@ -159,12 +209,44 @@ def list_dbs():
|
|
159 |
|
160 |
@app.route('/select-db/<db_name>', methods=['POST'])
|
161 |
def select_db(db_name):
|
|
|
|
|
162 |
global CHROMA_PATH
|
163 |
print(f"Selected DB: {CHROMA_PATH}")
|
164 |
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
165 |
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
|
166 |
print(f"Selected DB: {CHROMA_PATH}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
return redirect(url_for('chat'))
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
if __name__ == "__main__":
|
170 |
-
app.run(debug=False, use_reloader=False)
|
|
|
|
|
|
1 |
from flask import Flask, render_template, request, redirect, url_for, session
|
2 |
import os
|
3 |
from werkzeug.utils import secure_filename
|
4 |
+
#from retrival import generate_data_store
|
5 |
+
from retrival2 import generate_data_store,add_document_to_existing_db, delete_chunks_by_source
|
6 |
from langchain_community.vectorstores import Chroma
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from langchain.prompts import ChatPromptTemplate
|
9 |
+
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
|
10 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
from huggingface_hub import InferenceClient
|
12 |
from langchain.schema import Document
|
13 |
from langchain_core.documents import Document
|
|
|
16 |
import glob
|
17 |
import shutil
|
18 |
from werkzeug.utils import secure_filename
|
19 |
+
import asyncio
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
|
|
|
26 |
# Configurations
|
27 |
UPLOAD_FOLDER = "uploads/"
|
28 |
VECTOR_DB_FOLDER = "VectorDB/"
|
29 |
+
#TABLE_DB_FOLDER = "TableDB/"
|
30 |
|
31 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
32 |
+
|
33 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
34 |
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
|
35 |
+
#os.makedirs(TABLE_DB_FOLDER, exist_ok=True)
|
36 |
|
37 |
# Global variables
|
38 |
CHROMA_PATH = None
|
39 |
+
#TABLE_PATH = None
|
40 |
+
|
41 |
+
#System prompt
|
42 |
PROMPT_TEMPLATE = """
|
43 |
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. Do not include any external information.
|
44 |
|
|
|
52 |
|
53 |
Response:
|
54 |
"""
|
55 |
+
|
56 |
+
# PROMPT_TEMPLATE = """
|
57 |
+
# You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the provided context, table data, and the question asked. Consider only the given inputs strictly and use them to answer the question. Do not include any external information.
|
58 |
+
|
59 |
+
# If the table variable contains tabular data, analyze and extract all relevant details from it. Provide a structured response summarizing the table data if it is relevant to the question. If the table data is not relevant, base your answer only on the context.
|
60 |
+
|
61 |
+
# Context:
|
62 |
+
# {context}
|
63 |
+
|
64 |
+
# Table:
|
65 |
+
# {table}
|
66 |
+
|
67 |
+
# ---
|
68 |
+
|
69 |
+
# Question:
|
70 |
+
# {question}
|
71 |
+
|
72 |
+
# Response:
|
73 |
+
# """
|
74 |
+
|
75 |
+
#HFT = os.getenv('HF_TOKEN')
|
76 |
+
#client = InferenceClient(api_key=HFT)
|
77 |
|
78 |
@app.route('/', methods=['GET'])
|
79 |
def home():
|
|
|
87 |
print("sessionhist1",session['history'])
|
88 |
|
89 |
global CHROMA_PATH
|
90 |
+
#global TABLE_PATH
|
91 |
+
|
92 |
old_db = session.get('old_db', None)
|
93 |
print(f"Selected DB: {CHROMA_PATH}")
|
94 |
|
95 |
+
# if old_db != None:
|
96 |
+
# if CHROMA_PATH != old_db:
|
97 |
+
# session['history'] = []
|
98 |
|
99 |
#print("sessionhist1",session['history'])
|
100 |
|
|
|
103 |
if CHROMA_PATH is None:
|
104 |
return render_template('chat.html', error="No vector database selected!", history=[])
|
105 |
|
106 |
+
# Load the selected Document Database
|
107 |
+
#embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
108 |
+
embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
109 |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
110 |
+
results_document = db.similarity_search_with_relevance_scores(query_text, k=3)
|
111 |
+
|
112 |
+
print("results------------------->",results_document)
|
113 |
+
context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document])
|
114 |
+
|
115 |
+
|
116 |
+
# # Load the selected Table Database
|
117 |
+
# #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
118 |
+
# embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
119 |
+
# tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
|
120 |
+
# results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2)
|
121 |
+
|
122 |
+
# print("results------------------->",results_table)
|
123 |
+
# context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])
|
124 |
|
125 |
# Prepare the prompt and query the model
|
126 |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
127 |
+
prompt = prompt_template.format(context=context_text_document,question=query_text)
|
128 |
+
#prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
|
129 |
print("results------------------->",prompt)
|
130 |
+
|
131 |
+
|
132 |
+
#Model Defining and its use
|
133 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
134 |
+
HFT = os.environ["HF_TOKEN"]
|
135 |
+
llm = HuggingFaceEndpoint(
|
136 |
+
repo_id=repo_id,
|
137 |
+
max_tokens=3000,
|
138 |
+
temperature=0.8,
|
139 |
+
huggingfacehub_api_token=HFT,
|
140 |
)
|
|
|
141 |
|
142 |
+
data= llm(prompt)
|
143 |
+
#data = response.choices[0].message.content
|
144 |
+
|
145 |
+
# filtering the uneccessary context.
|
146 |
if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
|
147 |
data = "We do not have information related to your query on our end."
|
148 |
|
|
|
209 |
|
210 |
@app.route('/select-db/<db_name>', methods=['POST'])
|
211 |
def select_db(db_name):
|
212 |
+
|
213 |
+
#Selecting the Documnet Vector DB
|
214 |
global CHROMA_PATH
|
215 |
print(f"Selected DB: {CHROMA_PATH}")
|
216 |
CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
217 |
CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
|
218 |
print(f"Selected DB: {CHROMA_PATH}")
|
219 |
+
|
220 |
+
#Selecting the Table Vector DB
|
221 |
+
# global TABLE_PATH
|
222 |
+
# print(f"Selected DB: {TABLE_PATH}")
|
223 |
+
# TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name)
|
224 |
+
# TABLE_PATH = TABLE_PATH.replace("\\", "/")
|
225 |
+
# print(f"Selected DB: {TABLE_PATH}")
|
226 |
+
|
227 |
+
|
228 |
return redirect(url_for('chat'))
|
229 |
|
230 |
+
# @app.route('/update-dbs/<db_name>', methods=['GET','POST'])
|
231 |
+
# def update_db(db_name):
|
232 |
+
# if request.method == 'POST':
|
233 |
+
# db_name = request.form['db_name']
|
234 |
+
|
235 |
+
# # Get all files from the uploaded folder
|
236 |
+
# files = request.files.getlist('folder')
|
237 |
+
# if not files:
|
238 |
+
# return "No files uploaded", 400
|
239 |
+
# print(f"Selected DB: {db_name}")
|
240 |
+
# DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
|
241 |
+
# DB_PATH = DB_PATH.replace("\\", "/")
|
242 |
+
# print(f"Selected DB: {DB_PATH}")
|
243 |
+
|
244 |
+
# generate_data_store(DB_PATH, db_name)
|
245 |
+
|
246 |
+
# return redirect(url_for('list_dbs'))
|
247 |
+
# return render_template('update_db.html')
|
248 |
+
|
249 |
if __name__ == "__main__":
|
250 |
+
app.run(debug=False, use_reloader=False)
|
251 |
+
|
252 |
+
|