File size: 9,495 Bytes
bec7b04
 
 
5f2ea7c
82c09c3
bec7b04
 
 
5f2ea7c
 
bec7b04
 
 
 
 
 
 
 
5f2ea7c
bec7b04
57186bd
 
 
e076485
 
 
bec7b04
 
 
 
 
 
 
 
5f2ea7c
bee746c
bec7b04
5f2ea7c
bec7b04
 
5f2ea7c
bec7b04
 
 
eaf6118
5f2ea7c
 
 
bec7b04
e68e1fe
bec7b04
 
 
 
 
 
 
 
 
 
 
5f2ea7c
e68e1fe
5f2ea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bec7b04
 
 
 
 
 
 
 
 
 
 
 
 
5f2ea7c
 
eaf6118
 
bec7b04
6c95635
 
 
bec7b04
 
 
 
 
 
5f2ea7c
 
 
bec7b04
5f2ea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
bec7b04
 
 
5f2ea7c
 
bec7b04
5f2ea7c
 
 
 
 
 
 
 
 
 
bec7b04
 
5f2ea7c
 
e68e1fe
5f2ea7c
bec7b04
 
 
 
 
 
 
 
 
 
eaf6118
bec7b04
eaf6118
bec7b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2ea7c
 
bec7b04
 
 
 
 
5f2ea7c
 
 
 
 
 
 
 
 
bec7b04
 
887218e
 
da0dafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887218e
5f2ea7c
bec7b04
5f2ea7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from flask import Flask, render_template, request, redirect, url_for, session
import os
from werkzeug.utils import secure_filename
#from retrival import generate_data_store
from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from huggingface_hub import InferenceClient
from langchain.schema import Document 
from langchain_core.documents import Document
from dotenv import load_dotenv
import re
import glob
import shutil
from werkzeug.utils import secure_filename
import asyncio

import nltk
nltk.download('punkt_tab')

import nltk
nltk.download('averaged_perceptron_tagger_eng')

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
VECTOR_DB_FOLDER = "VectorDB/"
#TABLE_DB_FOLDER = "TableDB/"

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
#os.makedirs(TABLE_DB_FOLDER, exist_ok=True)

# Global variables
CHROMA_PATH = None
TEMP_PATH = None
#TABLE_PATH = None

#System prompt
PROMPT_TEMPLATE = """
You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the context provided and the question asked. Consider only the following context strictly, and use it to answer the question. If the question cannot be answered using the context, respond with: "The information requested is not mentioned in the context."

Context:
{context}

---

Question:
{question}

Response:
"""


# PROMPT_TEMPLATE = """
# You are working with a retrieval-augmented generation (RAG) setup. Your task is to generate a response based on the provided context, table data, and the question asked. Consider only the given inputs strictly and use them to answer the question. Do not include any external information.

# If the table variable contains tabular data, analyze and extract all relevant details from it. Provide a structured response summarizing the table data if it is relevant to the question. If the table data is not relevant, base your answer only on the context.

# Context:
# {context}

# Table:
# {table}

# ---

# Question:
# {question}

# Response:
# """

#HFT = os.getenv('HF_TOKEN')
#client = InferenceClient(api_key=HFT)

@app.route('/', methods=['GET'])
def home():
    return render_template('home.html')

@app.route('/chat', methods=['GET', 'POST'])
def chat():
    
    if 'history' not in session:
        session['history'] = []
    print("sessionhist1",session['history'])
    
    global CHROMA_PATH
    #global TABLE_PATH
    
    #old_db = session.get('old_db', None) 
    #print(f"Selected DB: {CHROMA_PATH}")
    
    #if TEMP_PATH is not None and TEMP_PATH != CHROMA_PATH:
    #    session['history'] = []
    #TEMP_PATH = CHROMA_PATH
    
    if request.method == 'POST':
        query_text = request.form['query_text']
        if CHROMA_PATH is None:
            return render_template('chat.html', error="No vector database selected!", history=[])

        # Load the selected Document Database 
        #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
        embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
        results_document = db.similarity_search_with_relevance_scores(query_text, k=3)
        
        print("results------------------->",results_document)       
        context_text_document = "\n\n---\n\n".join([doc.page_content for doc, _score in results_document])
        
        
        # # Load the selected Table Database
        # #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
        # embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
        # tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
        # results_table = tdb.similarity_search_with_relevance_scores(query_text, k=2)
        
        # print("results------------------->",results_table)       
        # context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])

        # Prepare the prompt and query the model
        prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
        prompt = prompt_template.format(context=context_text_document,question=query_text)
        #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
        print("results------------------->",prompt)
        
        
        #Model Defining and its use 
        repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
        HFT = os.environ["HF_TOKEN"]
        llm = HuggingFaceEndpoint(
            repo_id=repo_id,
            max_tokens=3000,
            temperature=0.8,
            huggingfacehub_api_token=HFT,
        )

        data= llm(prompt)
        #data = response.choices[0].message.content
        print("LLM response------------------>",data)
        # filtering the uneccessary context.
        if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
            data = "We do not have information related to your query on our end."
            
        # Save the query and answer to the session history
        session['history'].append((query_text, data))
        
        # Mark the session as modified to ensure it gets saved
        session.modified = True
        print("sessionhist2",session['history'])

        return render_template('chat.html', query_text=query_text, answer=data, history=session['history'])

    return render_template('chat.html', history=session['history'])

@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
    if request.method == 'POST':
        db_name = request.form['db_name']

        # Get all files from the uploaded folder
        files = request.files.getlist('folder')
        if not files:
            return "No files uploaded", 400

        # if not exist
        os.makedirs(UPLOAD_FOLDER, exist_ok=True)
        # Define the base upload path
        upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
        #upload_base_path = upload_base_path.replace("\\", "/")
        print(f"Base Upload Path: {upload_base_path}")
        os.makedirs(upload_base_path, exist_ok=True)

        # Save each file and recreate folder structure
        for file in files:
            print("file , files",files,file)
            #relative_path = file.filename  # This should contain the subfolder structure
            file_path = os.path.join(upload_base_path)
            #file_path = file_path.replace("\\", "/")

            # Ensure the directory exists before saving the file
            print(f"Saving to: {file_path}")
            os.makedirs(os.path.dirname(file_path), exist_ok=True)
            
            
            # Get the file path and save it
            file_path = os.path.join(upload_base_path, secure_filename(file.filename))
            file.save(file_path)
                    
        # Generate datastore
        generate_data_store(upload_base_path, db_name)

        # # Clean up uploaded files (if needed)
        #if os.path.exists(app.config['UPLOAD_FOLDER']):
        #    shutil.rmtree(app.config['UPLOAD_FOLDER'])

        return redirect(url_for('list_dbs'))

    return render_template('create_db.html')

@app.route('/list-dbs', methods=['GET'])
def list_dbs():
    vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
    return render_template('list_dbs.html', vector_dbs=vector_dbs)

@app.route('/select-db/<db_name>', methods=['POST'])
def select_db(db_name):
    
    #Selecting the Documnet Vector DB
    global CHROMA_PATH
    print(f"Selected DB: {CHROMA_PATH}")
    CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
    CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
    print(f"Selected DB: {CHROMA_PATH}")
    
    #Selecting the Table Vector DB
    # global TABLE_PATH
    # print(f"Selected DB: {TABLE_PATH}")
    # TABLE_PATH = os.path.join(TABLE_DB_FOLDER, db_name)
    # TABLE_PATH = TABLE_PATH.replace("\\", "/")
    # print(f"Selected DB: {TABLE_PATH}")
    
    
    return redirect(url_for('chat'))

@app.route('/update-dbs/<db_name>', methods=['GET','POST'])
def update_db(db_name):
    if request.method == 'POST':
        db_name = request.form['db_name']

        # Get all files from the uploaded folder
        files = request.files.getlist('folder')
        if not files:
            return "No files uploaded", 400
        print(f"Selected DB: {db_name}")
        DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
        DB_PATH = DB_PATH.replace("\\", "/")
        print(f"Selected DB: {DB_PATH}")

        generate_data_store(DB_PATH, db_name)

        return redirect(url_for('list_dbs'))
    return render_template('update_db.html')

if __name__ == "__main__":
    app.run(debug=False, use_reloader=False)