File size: 12,250 Bytes
5c6971a
bec7b04
 
5f2ea7c
82c09c3
bec7b04
 
 
5f2ea7c
 
bec7b04
 
 
 
 
5c6971a
bec7b04
 
 
5f2ea7c
bec7b04
57186bd
 
 
e076485
 
 
bec7b04
 
 
 
 
 
 
 
5c6971a
bee746c
bec7b04
5f2ea7c
bec7b04
 
5c6971a
bec7b04
 
 
5c6971a
5f2ea7c
5c6971a
 
5612af2
5c6971a
 
 
 
bec7b04
 
 
 
 
 
 
 
 
 
5c6971a
5f2ea7c
5c6971a
 
 
 
e68e1fe
5c6971a
 
 
 
 
5f2ea7c
5612af2
 
5f2ea7c
5612af2
5f2ea7c
5c6971a
 
 
 
 
5612af2
 
5f2ea7c
5612af2
5c6971a
 
5612af2
5f2ea7c
5c6971a
5f2ea7c
 
bec7b04
 
 
 
 
 
 
 
 
 
 
 
 
5c6971a
5f2ea7c
5c6971a
 
bec7b04
5c6971a
 
 
 
 
bec7b04
 
 
 
5c6971a
 
bec7b04
5c6971a
5f2ea7c
3898411
 
bec7b04
5c6971a
 
 
 
 
 
 
 
 
 
 
 
5f2ea7c
5c6971a
 
 
 
 
 
 
5f2ea7c
5c6971a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2ea7c
 
 
 
 
5c6971a
 
5f2ea7c
 
bec7b04
 
5f2ea7c
 
5c6971a
5f2ea7c
bec7b04
 
 
 
 
 
 
 
 
 
5c6971a
bec7b04
5c6971a
bec7b04
 
 
 
5c6971a
 
 
bec7b04
5c6971a
 
 
 
412751a
 
 
 
 
bec7b04
 
5c6971a
bec7b04
 
 
 
412751a
 
5c6971a
412751a
 
 
 
 
 
 
 
 
 
5612af2
412751a
 
 
 
 
 
 
 
5612af2
412751a
5c6971a
5612af2
 
 
bec7b04
412751a
bec7b04
 
 
 
 
 
 
5c6971a
5f2ea7c
bec7b04
5c6971a
bec7b04
5c6971a
bec7b04
 
 
5c6971a
5f2ea7c
5c6971a
 
 
 
 
5f2ea7c
bec7b04
 
887218e
 
da0dafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887218e
5f2ea7c
bec7b04
5f2ea7c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from flask import Flask, render_template, request, redirect, url_for, session, flash
import os
from werkzeug.utils import secure_filename
#from retrival import generate_data_store
from retrival import generate_data_store #,add_document_to_existing_db, delete_chunks_by_source
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from huggingface_hub import InferenceClient
from langchain.schema import Document 
from langchain_core.documents import Document
from dotenv import load_dotenv
import re
import numpy as np
import glob
import shutil
from werkzeug.utils import secure_filename
import asyncio

import nltk
nltk.download('punkt_tab')

import nltk
nltk.download('averaged_perceptron_tagger_eng')

app = Flask(__name__)

# Set the secret key for session management
app.secret_key = os.urandom(24)

# Configurations
UPLOAD_FOLDER = "uploads/"
VECTOR_DB_FOLDER = "VectorDB/"
TABLE_DB_FOLDER = "TableDB/"

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(VECTOR_DB_FOLDER, exist_ok=True)
os.makedirs(TABLE_DB_FOLDER, exist_ok=True)

# Global variables
CHROMA_PATH = None
TABLE_PATH = None

PROMPT_TEMPLATE_DOC = """
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:

- Use only the provided context; do not add external information.
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
- If available, use the provided source information to support the response.
- Answer concisely and factually.

Context:
{context}

---

Question:
{question}

Response:
[/INST]

"""
# prompt if the document having the tables
PROMPT_TEMPLATE_TAB = """
<s>[INST] You are a retrieval-augmented generation (RAG) assistant. Your task is to generate a response strictly based on the given context. Follow these instructions:

- Use only the provided context; do not add external information.
- The context contains multiple retrieved chunks separated by "###". Choose only the most relevant chunks to answer the question and ignore unrelated ones.
- If available, use the provided source information to support the response.
- If a table is provided as html, incorporate its relevant details into the response while maintaining a structured format.
- Answer concisely and factually.

Context:
{context}

---

Table:
{table}  

---

Question:
{question}

Response:
[/INST]

"""


#HFT = os.getenv('HF_TOKEN')
#client = InferenceClient(api_key=HFT)

@app.route('/', methods=['GET'])
def home():
    return render_template('home.html')

@app.route('/chat', methods=['GET', 'POST'])
def chat():
    
    if 'history' not in session:
        session['history'] = []
    print("sessionhist1",session['history'])
    
    global CHROMA_PATH
    global TABLE_PATH
    
    old_db = session.get('old_db', None) 
    print(f"Selected DB: {CHROMA_PATH}")
    
    # if old_db != None:
    #     if CHROMA_PATH != old_db:
    #         session['history'] = [] 
        
    #print("sessionhist1",session['history'])
    
    if request.method == 'POST':
        query_text = request.form['query_text']
        if CHROMA_PATH is None:
            flash("Please select a database first!", "error")
            return redirect(url_for('list_dbs'))

        
        # Load the selected Document Database 
        embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
        #embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
        db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
        # Convert the query to its embedding vector
        query_embedding = embedding_function.embed_query(query_text)
        if isinstance(query_embedding, float):
            query_embedding = [query_embedding]
        # print(f"Query embedding: {query_embedding}")
        # print(f"Type of query embedding: {type(query_embedding)}")
        # print(f"Length of query embedding: {len(query_embedding) if isinstance(query_embedding, (list, np.ndarray)) else 'Not applicable'}")
        results_document = db.similarity_search_by_vector_with_relevance_scores(
            embedding=query_embedding,  # Pass the query embedding
            k=3,
            #filter=filter_condition         # Pass the filter condition
        )
        
        print("results------------------->",results_document)  
        print("============================================")  
        print("============================================")
           
        context_text_document = "   \n\n###\n\n   ".join(
            [f"Source: {doc.metadata.get('source', '')} Page_content:{doc.page_content}\n" for doc, _score in results_document]
        )
        
        # Loading Table Database only if available
        if TABLE_PATH is not None:
            #embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
            embedding_function = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
            tdb = Chroma(persist_directory=TABLE_PATH, embedding_function=embedding_function)
            results_table = tdb.similarity_search_by_vector_with_relevance_scores(
                embedding=query_embedding,  # Pass the query embedding
                k=2
                #filter=filter_condition         # Pass the filter condition
            )
            print("results------------------->",results_table)       
            context_text_table = "\n\n---\n\n".join([doc.page_content for doc, _score in results_table])

            # Prepare the prompt and query the model
            prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_TAB)
            prompt = prompt_template.format(context=context_text_document,table=context_text_table,question=query_text)
            #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
            print("results------------------->",prompt)
        else:
            # Prepare the prompt and query the model
            prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE_DOC)
            prompt = prompt_template.format(context=context_text_document,question=query_text)
            #prompt = prompt_template.format(context=context_text_document,table=context_text_table, question=query_text)
            print("results------------------->",prompt)
            
        #Model Defining and its use 
        repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
        HFT = os.environ["HF_TOKEN"]
        llm = HuggingFaceEndpoint(
            repo_id=repo_id,
            #max_tokens=3000,
            max_new_tokens=2000,
            temperature=0.8,
            huggingfacehub_api_token=HFT,
        )

        data= llm(prompt)
        #data = response.choices[0].message.content

        # filtering the uneccessary context.
        if re.search(r'\bmention\b|\bnot mention\b|\bnot mentioned\b|\bnot contain\b|\bnot include\b|\bnot provide\b|\bdoes not\b|\bnot explicitly\b|\bnot explicitly mentioned\b', data, re.IGNORECASE):
            data = "We do not have information related to your query on our end."
            
        # Save the query and answer to the session history
        session['history'].append((query_text, data))
        
        # Mark the session as modified to ensure it gets saved
        session.modified = True
        print("sessionhist2",session['history'])

        return render_template('chat.html', query_text=query_text, answer=data, history=session['history'],old_db=CHROMA_PATH)

    return render_template('chat.html', history=session['history'], old_db=CHROMA_PATH)

@app.route('/create-db', methods=['GET', 'POST'])
def create_db():
    if request.method == 'POST':
        db_name = request.form.get('db_name', '').strip()
        if not db_name:
            return "Database name is required", 400

        # Get uploaded files
        files = request.files.getlist('folder')  # Folder uploads (multiple files)
        single_files = request.files.getlist('file')  # Single file uploads

        print("==================folder==>", files)
        print("==================single_files==>", single_files)

        # Ensure at least one valid file is uploaded
        if not any(file.filename.strip() for file in files) and not any(file.filename.strip() for file in single_files):
            return "No files uploaded", 400

        # Create upload directory
        upload_base_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(db_name))
        print(f"Base Upload Path: {upload_base_path}")
        os.makedirs(upload_base_path, exist_ok=True)

        # Process single file uploads first (if any exist)
        if any(file.filename.strip() for file in single_files):
            for file in single_files:
                if file.filename.strip():  # Ensure the file is valid
                    file_name = secure_filename(file.filename)
                    file_path = os.path.join(upload_base_path, file_name)
                    print(f"Saving single file to: {file_path}")
                    file.save(file_path)

            # If single file is uploaded, skip folder processing
            print("Single file uploaded, skipping folder processing.")
            asyncio.run(generate_data_store(upload_base_path, db_name))
            return redirect(url_for('list_dbs'))

        # Process folder files only if valid files exist
        if any(file.filename.strip() for file in files):
            for file in files:
                if file.filename.strip():  # Ensure it's a valid file
                    file_name = secure_filename(file.filename)
                    file_path = os.path.join(upload_base_path, file_name)
                    print(f"Saving folder file to: {file_path}")
                    file.save(file_path)

        # Generate datastore
        asyncio.run(generate_data_store(upload_base_path, db_name))
        return redirect(url_for('list_dbs'))

    return render_template('create_db.html')


@app.route('/list-dbs', methods=['GET'])
def list_dbs():
    vector_dbs = [name for name in os.listdir(VECTOR_DB_FOLDER) if os.path.isdir(os.path.join(VECTOR_DB_FOLDER, name))]
    return render_template('list_dbs.html', vector_dbs=vector_dbs)

@app.route('/select-db/<db_name>', methods=['POST'])
def select_db(db_name):
    flash(f"{db_name} Database has been selected", "table_selected")
    #Selecting the Documnet Vector DB
    global CHROMA_PATH
    global TABLE_PATH
    print(f"Selected DB: {CHROMA_PATH}")
    print("-----------------------------------------------------1----")
    CHROMA_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
    CHROMA_PATH = CHROMA_PATH.replace("\\", "/")
    print(f"Selected DB: {CHROMA_PATH}")
    print("-----------------------------------------------------2----")
    
    # Selecting the Table Vector DB
    table_db_path = os.path.join(TABLE_DB_FOLDER, db_name)
    table_db_path = table_db_path.replace("\\", "/")
    TABLE_PATH = table_db_path if os.path.exists(table_db_path) else None
    print(f"Selected Table DB: {TABLE_PATH}")
    
    return redirect(url_for('chat'))

@app.route('/update-dbs/<db_name>', methods=['GET','POST'])
def update_db(db_name):
    if request.method == 'POST':
        db_name = request.form['db_name']

        # Get all files from the uploaded folder
        files = request.files.getlist('folder')
        if not files:
            return "No files uploaded", 400
        print(f"Selected DB: {db_name}")
        DB_PATH = os.path.join(VECTOR_DB_FOLDER, db_name)
        DB_PATH = DB_PATH.replace("\\", "/")
        print(f"Selected DB: {DB_PATH}")

        generate_data_store(DB_PATH, db_name)

        return redirect(url_for('list_dbs'))
    return render_template('update_db.html')

if __name__ == "__main__":
    app.run(debug=False, use_reloader=False)