Spaces:
Sleeping
Sleeping
# Copyright (c) ONNX Project Contributors | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
import platform | |
import sys | |
import unittest | |
from typing import Any | |
import numpy | |
import version_utils | |
import onnx.backend.base | |
import onnx.backend.test | |
import onnx.shape_inference | |
import onnx.version_converter | |
from onnx import ModelProto | |
from onnx.backend.base import Device, DeviceType | |
from onnx.reference import ReferenceEvaluator | |
# The following just executes a backend based on ReferenceEvaluator through the backend test | |
class ReferenceEvaluatorBackendRep(onnx.backend.base.BackendRep): | |
def __init__(self, session): | |
self._session = session | |
def run(self, inputs, **kwargs): | |
if isinstance(inputs, numpy.ndarray): | |
inputs = [inputs] | |
if isinstance(inputs, list): | |
if len(inputs) == len(self._session.input_names): | |
feeds = dict(zip(self._session.input_names, inputs)) | |
else: | |
feeds = {} | |
pos_inputs = 0 | |
for inp, tshape in zip( | |
self._session.input_names, self._session.input_types | |
): | |
shape = tuple(d.dim_value for d in tshape.tensor_type.shape.dim) | |
if shape == inputs[pos_inputs].shape: | |
feeds[inp] = inputs[pos_inputs] | |
pos_inputs += 1 | |
if pos_inputs >= len(inputs): | |
break | |
elif isinstance(inputs, dict): | |
feeds = inputs | |
else: | |
raise TypeError(f"Unexpected input type {type(inputs)!r}.") | |
outs = self._session.run(None, feeds) | |
return outs | |
class ReferenceEvaluatorBackend(onnx.backend.base.Backend): | |
def is_opset_supported(cls, model): | |
return True, "" | |
def supports_device(cls, device: str) -> bool: | |
d = Device(device) | |
return d.type == DeviceType.CPU # type: ignore[no-any-return] | |
def create_inference_session(cls, model): | |
return ReferenceEvaluator(model) | |
def prepare( | |
cls, model: Any, device: str = "CPU", **kwargs: Any | |
) -> ReferenceEvaluatorBackendRep: | |
# if isinstance(model, ReferenceEvaluatorBackendRep): | |
# return model | |
if isinstance(model, ReferenceEvaluator): | |
return ReferenceEvaluatorBackendRep(model) | |
if isinstance(model, (str, bytes, ModelProto)): | |
inf = cls.create_inference_session(model) | |
return cls.prepare(inf, device, **kwargs) | |
raise TypeError(f"Unexpected type {type(model)} for model.") | |
def run_model(cls, model, inputs, device=None, **kwargs): | |
rep = cls.prepare(model, device, **kwargs) | |
return rep.run(inputs, **kwargs) | |
def run_node(cls, node, inputs, device=None, outputs_info=None, **kwargs): | |
raise NotImplementedError("Unable to run the model node by node.") | |
backend_test = onnx.backend.test.BackendTest(ReferenceEvaluatorBackend, __name__) | |
if os.getenv("APPVEYOR"): | |
backend_test.exclude("(test_vgg19|test_zfnet)") | |
if platform.architecture()[0] == "32bit": | |
backend_test.exclude("(test_vgg19|test_zfnet|test_bvlc_alexnet)") | |
if platform.system() == "Windows": | |
backend_test.exclude("test_sequence_model") | |
# The following tests are not supported. | |
backend_test.exclude( | |
"(test_gradient" | |
"|test_if_opt" | |
"|test_loop16_seq_none" | |
"|test_range_float_type_positive_delta_expanded" | |
"|test_range_int32_type_negative_delta_expanded" | |
"|test_scan_sum)" | |
) | |
# The following tests are about deprecated operators. | |
backend_test.exclude("(test_scatter_with_axis|test_scatter_without)") | |
# The following tests are using types not supported by numpy. | |
# They could be if method to_array is extended to support custom | |
# types the same as the reference implementation does | |
# (see onnx.reference.op_run.to_array_extended). | |
backend_test.exclude( | |
"(test_cast_FLOAT_to_FLOAT8" | |
"|test_cast_FLOAT16_to_FLOAT8" | |
"|test_castlike_FLOAT_to_FLOAT8" | |
"|test_castlike_FLOAT16_to_FLOAT8" | |
"|test_cast_FLOAT_to_UINT4" | |
"|test_cast_FLOAT16_to_UINT4" | |
"|test_cast_FLOAT_to_INT4" | |
"|test_cast_FLOAT16_to_INT4" | |
"|test_cast_no_saturate_FLOAT_to_FLOAT8" | |
"|test_cast_no_saturate_FLOAT16_to_FLOAT8" | |
"|test_cast_BFLOAT16_to_FLOAT" | |
"|test_castlike_BFLOAT16_to_FLOAT" | |
"|test_quantizelinear_e4m3" | |
"|test_quantizelinear_e5m2" | |
"|test_quantizelinear_uint4" | |
"|test_quantizelinear_int4" | |
")" | |
) | |
# The following tests are using types not supported by NumPy. | |
# They could be if method to_array is extended to support custom | |
# types the same as the reference implementation does | |
# (see onnx.reference.op_run.to_array_extended). | |
backend_test.exclude( | |
"(test_cast_FLOAT_to_BFLOAT16" | |
"|test_castlike_FLOAT_to_BFLOAT16" | |
"|test_castlike_FLOAT_to_BFLOAT16_expanded" | |
")" | |
) | |
# The following tests are too slow with the reference implementation (Conv). | |
backend_test.exclude( | |
"(test_bvlc_alexnet" | |
"|test_densenet121" | |
"|test_inception_v1" | |
"|test_inception_v2" | |
"|test_resnet50" | |
"|test_shufflenet" | |
"|test_squeezenet" | |
"|test_vgg19" | |
"|test_zfnet512)" | |
) | |
# The following tests cannot pass because they consists in generating random number. | |
backend_test.exclude("(test_bernoulli)") | |
# The following tests fail due to a bug in the backend test comparison. | |
backend_test.exclude( | |
"(test_cast_FLOAT_to_STRING|test_castlike_FLOAT_to_STRING|test_strnorm)" | |
) | |
# The following tests fail due to a shape mismatch. | |
backend_test.exclude( | |
"(test_center_crop_pad_crop_axes_hwc_expanded" | |
"|test_lppool_2d_dilations" | |
"|test_averagepool_2d_dilations)" | |
) | |
# The following tests fail due to a type mismatch. | |
backend_test.exclude("(test_eyelike_without_dtype)") | |
# The following tests fail due to discrepancies (small but still higher than 1e-7). | |
backend_test.exclude("test_adam_multiple") # 1e-2 | |
# Currently google-re2/Pillow is not supported on Win32 and is required for the reference implementation of RegexFullMatch. | |
if sys.platform == "win32": | |
backend_test.exclude("test_regex_full_match_basic_cpu") | |
backend_test.exclude("test_regex_full_match_email_domain_cpu") | |
backend_test.exclude("test_regex_full_match_empty_cpu") | |
backend_test.exclude("test_image_decoder_decode_") | |
if sys.platform == "darwin": | |
# FIXME: https://github.com/onnx/onnx/issues/5792 | |
backend_test.exclude("test_qlinearmatmul_3D_int8_float16_cpu") | |
backend_test.exclude("test_qlinearmatmul_3D_int8_float32_cpu") | |
# op_dft and op_stft requires numpy >= 1.21.5 | |
if version_utils.numpy_older_than("1.21.5"): | |
backend_test.exclude("test_stft") | |
backend_test.exclude("test_stft_with_window") | |
backend_test.exclude("test_stft_cpu") | |
backend_test.exclude("test_dft") | |
backend_test.exclude("test_dft_axis") | |
backend_test.exclude("test_dft_inverse") | |
backend_test.exclude("test_dft_opset19") | |
backend_test.exclude("test_dft_axis_opset19") | |
backend_test.exclude("test_dft_inverse_opset19") | |
# import all test cases at global scope to make them visible to python.unittest | |
globals().update(backend_test.test_cases) | |
if __name__ == "__main__": | |
res = unittest.main(verbosity=2, exit=False) | |
tests_run = res.result.testsRun | |
errors = len(res.result.errors) | |
skipped = len(res.result.skipped) | |
unexpected_successes = len(res.result.unexpectedSuccesses) | |
expected_failures = len(res.result.expectedFailures) | |
print("---------------------------------") | |
print( | |
f"tests_run={tests_run} errors={errors} skipped={skipped} " | |
f"unexpected_successes={unexpected_successes} " | |
f"expected_failures={expected_failures}" | |
) | |