File size: 8,012 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) ONNX Project Contributors

# SPDX-License-Identifier: Apache-2.0

import os
import platform
import sys
import unittest
from typing import Any

import numpy
import version_utils

import onnx.backend.base
import onnx.backend.test
import onnx.shape_inference
import onnx.version_converter
from onnx import ModelProto
from onnx.backend.base import Device, DeviceType
from onnx.reference import ReferenceEvaluator

# The following just executes a backend based on ReferenceEvaluator through the backend test


class ReferenceEvaluatorBackendRep(onnx.backend.base.BackendRep):
    def __init__(self, session):
        self._session = session

    def run(self, inputs, **kwargs):
        if isinstance(inputs, numpy.ndarray):
            inputs = [inputs]
        if isinstance(inputs, list):
            if len(inputs) == len(self._session.input_names):
                feeds = dict(zip(self._session.input_names, inputs))
            else:
                feeds = {}
                pos_inputs = 0
                for inp, tshape in zip(
                    self._session.input_names, self._session.input_types
                ):
                    shape = tuple(d.dim_value for d in tshape.tensor_type.shape.dim)
                    if shape == inputs[pos_inputs].shape:
                        feeds[inp] = inputs[pos_inputs]
                        pos_inputs += 1
                        if pos_inputs >= len(inputs):
                            break
        elif isinstance(inputs, dict):
            feeds = inputs
        else:
            raise TypeError(f"Unexpected input type {type(inputs)!r}.")
        outs = self._session.run(None, feeds)
        return outs


class ReferenceEvaluatorBackend(onnx.backend.base.Backend):
    @classmethod
    def is_opset_supported(cls, model):
        return True, ""

    @classmethod
    def supports_device(cls, device: str) -> bool:
        d = Device(device)
        return d.type == DeviceType.CPU  # type: ignore[no-any-return]

    @classmethod
    def create_inference_session(cls, model):
        return ReferenceEvaluator(model)

    @classmethod
    def prepare(

        cls, model: Any, device: str = "CPU", **kwargs: Any

    ) -> ReferenceEvaluatorBackendRep:
        # if isinstance(model, ReferenceEvaluatorBackendRep):
        #    return model
        if isinstance(model, ReferenceEvaluator):
            return ReferenceEvaluatorBackendRep(model)
        if isinstance(model, (str, bytes, ModelProto)):
            inf = cls.create_inference_session(model)
            return cls.prepare(inf, device, **kwargs)
        raise TypeError(f"Unexpected type {type(model)} for model.")

    @classmethod
    def run_model(cls, model, inputs, device=None, **kwargs):
        rep = cls.prepare(model, device, **kwargs)
        return rep.run(inputs, **kwargs)

    @classmethod
    def run_node(cls, node, inputs, device=None, outputs_info=None, **kwargs):
        raise NotImplementedError("Unable to run the model node by node.")


backend_test = onnx.backend.test.BackendTest(ReferenceEvaluatorBackend, __name__)

if os.getenv("APPVEYOR"):
    backend_test.exclude("(test_vgg19|test_zfnet)")
if platform.architecture()[0] == "32bit":
    backend_test.exclude("(test_vgg19|test_zfnet|test_bvlc_alexnet)")
if platform.system() == "Windows":
    backend_test.exclude("test_sequence_model")

# The following tests are not supported.
backend_test.exclude(
    "(test_gradient"
    "|test_if_opt"
    "|test_loop16_seq_none"
    "|test_range_float_type_positive_delta_expanded"
    "|test_range_int32_type_negative_delta_expanded"
    "|test_scan_sum)"
)

# The following tests are about deprecated operators.
backend_test.exclude("(test_scatter_with_axis|test_scatter_without)")

# The following tests are using types not supported by numpy.
# They could be if method to_array is extended to support custom
# types the same as the reference implementation does
# (see onnx.reference.op_run.to_array_extended).
backend_test.exclude(
    "(test_cast_FLOAT_to_FLOAT8"
    "|test_cast_FLOAT16_to_FLOAT8"
    "|test_castlike_FLOAT_to_FLOAT8"
    "|test_castlike_FLOAT16_to_FLOAT8"
    "|test_cast_FLOAT_to_UINT4"
    "|test_cast_FLOAT16_to_UINT4"
    "|test_cast_FLOAT_to_INT4"
    "|test_cast_FLOAT16_to_INT4"
    "|test_cast_no_saturate_FLOAT_to_FLOAT8"
    "|test_cast_no_saturate_FLOAT16_to_FLOAT8"
    "|test_cast_BFLOAT16_to_FLOAT"
    "|test_castlike_BFLOAT16_to_FLOAT"
    "|test_quantizelinear_e4m3"
    "|test_quantizelinear_e5m2"
    "|test_quantizelinear_uint4"
    "|test_quantizelinear_int4"
    ")"
)

# The following tests are using types not supported by NumPy.
# They could be if method to_array is extended to support custom
# types the same as the reference implementation does
# (see onnx.reference.op_run.to_array_extended).
backend_test.exclude(
    "(test_cast_FLOAT_to_BFLOAT16"
    "|test_castlike_FLOAT_to_BFLOAT16"
    "|test_castlike_FLOAT_to_BFLOAT16_expanded"
    ")"
)

# The following tests are too slow with the reference implementation (Conv).
backend_test.exclude(
    "(test_bvlc_alexnet"
    "|test_densenet121"
    "|test_inception_v1"
    "|test_inception_v2"
    "|test_resnet50"
    "|test_shufflenet"
    "|test_squeezenet"
    "|test_vgg19"
    "|test_zfnet512)"
)

# The following tests cannot pass because they consists in generating random number.
backend_test.exclude("(test_bernoulli)")

# The following tests fail due to a bug in the backend test comparison.
backend_test.exclude(
    "(test_cast_FLOAT_to_STRING|test_castlike_FLOAT_to_STRING|test_strnorm)"
)

# The following tests fail due to a shape mismatch.
backend_test.exclude(
    "(test_center_crop_pad_crop_axes_hwc_expanded"
    "|test_lppool_2d_dilations"
    "|test_averagepool_2d_dilations)"
)

# The following tests fail due to a type mismatch.
backend_test.exclude("(test_eyelike_without_dtype)")

# The following tests fail due to discrepancies (small but still higher than 1e-7).
backend_test.exclude("test_adam_multiple")  # 1e-2

# Currently google-re2/Pillow is not supported on Win32 and is required for the reference implementation of RegexFullMatch.
if sys.platform == "win32":
    backend_test.exclude("test_regex_full_match_basic_cpu")
    backend_test.exclude("test_regex_full_match_email_domain_cpu")
    backend_test.exclude("test_regex_full_match_empty_cpu")
    backend_test.exclude("test_image_decoder_decode_")

if sys.platform == "darwin":
    # FIXME: https://github.com/onnx/onnx/issues/5792
    backend_test.exclude("test_qlinearmatmul_3D_int8_float16_cpu")
    backend_test.exclude("test_qlinearmatmul_3D_int8_float32_cpu")

# op_dft and op_stft requires numpy >= 1.21.5
if version_utils.numpy_older_than("1.21.5"):
    backend_test.exclude("test_stft")
    backend_test.exclude("test_stft_with_window")
    backend_test.exclude("test_stft_cpu")
    backend_test.exclude("test_dft")
    backend_test.exclude("test_dft_axis")
    backend_test.exclude("test_dft_inverse")
    backend_test.exclude("test_dft_opset19")
    backend_test.exclude("test_dft_axis_opset19")
    backend_test.exclude("test_dft_inverse_opset19")

# import all test cases at global scope to make them visible to python.unittest
globals().update(backend_test.test_cases)

if __name__ == "__main__":
    res = unittest.main(verbosity=2, exit=False)
    tests_run = res.result.testsRun
    errors = len(res.result.errors)
    skipped = len(res.result.skipped)
    unexpected_successes = len(res.result.unexpectedSuccesses)
    expected_failures = len(res.result.expectedFailures)
    print("---------------------------------")
    print(
        f"tests_run={tests_run} errors={errors} skipped={skipped} "
        f"unexpected_successes={unexpected_successes} "
        f"expected_failures={expected_failures}"
    )