Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
6.38 kB
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/reduction/utils.h"
#include <algorithm>
#include <string>
#include <vector>
namespace ONNX_NAMESPACE {
std::vector<std::string> GetSupportedDataTypesForReductionOps(bool supports8bit, bool supports_bool) {
auto data_types = OpSchema::numeric_types_for_math_reduction_ir4();
if (supports8bit) {
data_types.push_back("tensor(uint8)");
data_types.push_back("tensor(int8)");
}
if (supports_bool) {
data_types.push_back("tensor(bool)");
}
return data_types;
}
std::function<void(OpSchema&)> ReduceOpGenerator(
const char* name,
const char* empty_value,
bool supports_8bit_datatypes,
bool axes_input,
const char* func_body,
ContextDependentFunctionBodyBuilder function_builder,
bool supports_boolean_datatype /* = false */) {
return [=](OpSchema& schema) {
std::string doc = R"DOC(
Computes the {name} of the input tensor's elements along the provided axes. The resulting
tensor has the same rank as the input if `keepdims` equals 1. If `keepdims` equals 0, then
the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are
valid. Reduction over an empty set of values yields {empty_value}.
)DOC";
if (supports_boolean_datatype) {
doc += R"DOC(
If the input data type is Boolean, the comparison should consider `False < True`.)DOC";
}
doc += R"DOC(
The above behavior is similar to numpy, with the exception that numpy defaults `keepdims`
to `False` instead of `True`.)DOC";
ReplaceAll(doc, "{name}", name);
ReplaceAll(doc, "{empty_value}", empty_value);
POPULATE_OP_DOC_STR(doc = doc;);
schema.SetDoc(doc.c_str());
schema.Attr(
"keepdims",
"Keep the reduced dimension or not, default 1 means keep reduced dimension.",
AttributeProto::INT,
static_cast<int64_t>(1));
schema.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
if (axes_input) {
schema.Attr(
"noop_with_empty_axes",
"Defines behavior if 'axes' is empty. Default behavior with 'false' is to reduce all axes. "
"When axes is empty and this attribute is set to true, input tensor will not be reduced,"
"and the output tensor would be equivalent to input tensor.",
AttributeProto::INT,
static_cast<int64_t>(0));
schema.Input(
1,
"axes",
"Optional input list of integers, along which to reduce. "
"The default is to reduce over all the dimensions of the input tensor if 'noop_with_empty_axes' is false, "
"else act as an Identity op when 'noop_with_empty_axes' is true. "
"Accepted range is [-r, r-1] where r = rank(data).",
"tensor(int64)",
OpSchema::Optional,
true,
1,
OpSchema::NonDifferentiable);
} else {
schema.Attr(
"axes",
"A list of integers, along which to reduce. The default is to reduce over "
"all the dimensions of the input tensor. Accepted range is [-r, r-1] where r = rank(data).",
AttributeProto::INTS,
OPTIONAL_VALUE);
}
schema.Output(0, "reduced", "Reduced output tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
schema.TypeConstraint(
"T",
GetSupportedDataTypesForReductionOps(supports_8bit_datatypes, supports_boolean_datatype),
supports_boolean_datatype ? "Constrain input and output types to numeric and Boolean tensors."
: "Constrain input and output types to numeric tensors.");
if (func_body) {
schema.FunctionBody(func_body);
} else if (function_builder) {
schema.SetContextDependentFunctionBodyBuilder(function_builder);
}
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
int64_t keep_dims = 1, noop_with_empty_axes = 0;
auto attr_proto = ctx.getAttribute("keepdims");
if (attr_proto) {
keep_dims = attr_proto->i();
}
auto noop_attr_proto = ctx.getAttribute("noop_with_empty_axes");
if (noop_attr_proto) {
noop_with_empty_axes = noop_attr_proto->i();
}
std::vector<int64_t> axes;
if (ctx.hasInput(1)) { // axes is input
if (ctx.getAttribute("axes")) {
fail_shape_inference("axes as an input and attribute cannot be specified at the same time.");
}
const TensorProto* axesInitializer = ctx.getInputData(1);
if (axesInitializer == nullptr) {
// skip if axes is not an initializer
return;
}
std::vector<int64_t> axes_values = ParseData<int64_t>(axesInitializer);
axes.assign(axes_values.begin(), axes_values.end());
} else { // axes is attribute
auto axes_proto = ctx.getAttribute("axes");
if (axes_proto)
axes.assign(axes_proto->ints().begin(), axes_proto->ints().end());
}
auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
if (noop_with_empty_axes && axes.empty()) {
propagateShapeFromInputToOutput(ctx, 0, 0);
return;
}
int64_t input_ndim = input_shape.dim_size();
auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();
for (size_t i = 0; i < axes.size(); ++i) {
if (axes[i] < -input_ndim || axes[i] >= input_ndim) {
fail_shape_inference("axis must be in [-rank, rank-1]. input rank was ", input_ndim);
}
if (axes[i] < 0)
axes[i] += input_ndim;
}
for (int i = 0; i < input_ndim; ++i) {
// axes empty means reduce all dim
if (!axes.empty() && std::find(axes.begin(), axes.end(), i) == axes.end()) {
auto dim = output_shape->add_dim();
dim->CopyFrom(input_shape.dim(i));
} else {
if (keep_dims == 1) {
auto dim = output_shape->add_dim();
dim->set_dim_value(1);
}
}
}
});
};
}
} // namespace ONNX_NAMESPACE