File size: 6,375 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*

 * SPDX-License-Identifier: Apache-2.0

 */

#include "onnx/defs/reduction/utils.h"

#include <algorithm>
#include <string>
#include <vector>

namespace ONNX_NAMESPACE {

std::vector<std::string> GetSupportedDataTypesForReductionOps(bool supports8bit, bool supports_bool) {
  auto data_types = OpSchema::numeric_types_for_math_reduction_ir4();
  if (supports8bit) {
    data_types.push_back("tensor(uint8)");
    data_types.push_back("tensor(int8)");
  }
  if (supports_bool) {
    data_types.push_back("tensor(bool)");
  }

  return data_types;
}

std::function<void(OpSchema&)> ReduceOpGenerator(

    const char* name,

    const char* empty_value,

    bool supports_8bit_datatypes,

    bool axes_input,

    const char* func_body,

    ContextDependentFunctionBodyBuilder function_builder,

    bool supports_boolean_datatype /* = false */) {
  return [=](OpSchema& schema) {
    std::string doc = R"DOC(

Computes the {name} of the input tensor's elements along the provided axes. The resulting

tensor has the same rank as the input if `keepdims` equals 1. If `keepdims` equals 0, then

the resulting tensor has the reduced dimension pruned. Input tensors of rank zero are

valid. Reduction over an empty set of values yields {empty_value}.

)DOC";
    if (supports_boolean_datatype) {
      doc += R"DOC(



If the input data type is Boolean, the comparison should consider `False < True`.)DOC";
    }
    doc += R"DOC(



The above behavior is similar to numpy, with the exception that numpy defaults `keepdims`

to `False` instead of `True`.)DOC";

    ReplaceAll(doc, "{name}", name);
    ReplaceAll(doc, "{empty_value}", empty_value);
    POPULATE_OP_DOC_STR(doc = doc;);
    schema.SetDoc(doc.c_str());
    schema.Attr(
        "keepdims",
        "Keep the reduced dimension or not, default 1 means keep reduced dimension.",
        AttributeProto::INT,
        static_cast<int64_t>(1));
    schema.Input(0, "data", "An input tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
    if (axes_input) {
      schema.Attr(
          "noop_with_empty_axes",
          "Defines behavior if 'axes' is empty. Default behavior with 'false' is to reduce all axes. "
          "When axes is empty and this attribute is set to true, input tensor will not be reduced,"
          "and the output tensor would be equivalent to input tensor.",
          AttributeProto::INT,
          static_cast<int64_t>(0));
      schema.Input(
          1,
          "axes",
          "Optional input list of integers, along which to reduce. "
          "The default is to reduce over all the dimensions of the input tensor if 'noop_with_empty_axes' is false, "
          "else act as an Identity op when 'noop_with_empty_axes' is true. "
          "Accepted range is [-r, r-1] where r = rank(data).",
          "tensor(int64)",
          OpSchema::Optional,
          true,
          1,
          OpSchema::NonDifferentiable);
    } else {
      schema.Attr(
          "axes",
          "A list of integers, along which to reduce. The default is to reduce over "
          "all the dimensions of the input tensor. Accepted range is [-r, r-1] where r = rank(data).",
          AttributeProto::INTS,
          OPTIONAL_VALUE);
    }
    schema.Output(0, "reduced", "Reduced output tensor.", "T", OpSchema::Single, true, 1, OpSchema::Differentiable);
    schema.TypeConstraint(
        "T",
        GetSupportedDataTypesForReductionOps(supports_8bit_datatypes, supports_boolean_datatype),
        supports_boolean_datatype ? "Constrain input and output types to numeric and Boolean tensors."
                                  : "Constrain input and output types to numeric tensors.");
    if (func_body) {
      schema.FunctionBody(func_body);
    } else if (function_builder) {
      schema.SetContextDependentFunctionBodyBuilder(function_builder);
    }
    schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
      propagateElemTypeFromInputToOutput(ctx, 0, 0);
      if (!hasNInputShapes(ctx, 1)) {
        return;
      }

      int64_t keep_dims = 1, noop_with_empty_axes = 0;
      auto attr_proto = ctx.getAttribute("keepdims");
      if (attr_proto) {
        keep_dims = attr_proto->i();
      }
      auto noop_attr_proto = ctx.getAttribute("noop_with_empty_axes");
      if (noop_attr_proto) {
        noop_with_empty_axes = noop_attr_proto->i();
      }
      std::vector<int64_t> axes;
      if (ctx.hasInput(1)) { // axes is input
        if (ctx.getAttribute("axes")) {
          fail_shape_inference("axes as an input and attribute cannot be specified at the same time.");
        }

        const TensorProto* axesInitializer = ctx.getInputData(1);
        if (axesInitializer == nullptr) {
          // skip if axes is not an initializer
          return;
        }
        std::vector<int64_t> axes_values = ParseData<int64_t>(axesInitializer);
        axes.assign(axes_values.begin(), axes_values.end());
      } else { // axes is attribute
        auto axes_proto = ctx.getAttribute("axes");
        if (axes_proto)
          axes.assign(axes_proto->ints().begin(), axes_proto->ints().end());
      }
      auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
      if (noop_with_empty_axes && axes.empty()) {
        propagateShapeFromInputToOutput(ctx, 0, 0);
        return;
      }
      int64_t input_ndim = input_shape.dim_size();
      auto output_shape = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape();

      for (size_t i = 0; i < axes.size(); ++i) {
        if (axes[i] < -input_ndim || axes[i] >= input_ndim) {
          fail_shape_inference("axis must be in [-rank, rank-1]. input rank was ", input_ndim);
        }
        if (axes[i] < 0)
          axes[i] += input_ndim;
      }
      for (int i = 0; i < input_ndim; ++i) {
        // axes empty means reduce all dim
        if (!axes.empty() && std::find(axes.begin(), axes.end(), i) == axes.end()) {
          auto dim = output_shape->add_dim();
          dim->CopyFrom(input_shape.dim(i));
        } else {
          if (keep_dims == 1) {
            auto dim = output_shape->add_dim();
            dim->set_dim_value(1);
          }
        }
      }
    });
  };
}
} // namespace ONNX_NAMESPACE