Spaces:
Sleeping
Sleeping
/* | |
* SPDX-License-Identifier: Apache-2.0 | |
*/ | |
namespace ONNX_NAMESPACE { | |
static const char* QuantizeLinear_ver21_doc = R"DOC( | |
The linear quantization operator consumes a high-precision tensor, a scale, and a zero point to compute the | |
low-precision/quantized tensor. The scale factor and zero point must have the same shape, determining the quantization | |
granularity. The quantization formula is `y = saturate((x / y_scale) + y_zero_point)`. | |
Saturation is done according to: | |
- uint16: [0, 65535] | |
- int16: [-32768, 32767] | |
- uint8: [0, 255] | |
- int8: [-128, 127] | |
- uint4: [0, 15] | |
- int4: [-8, 7] | |
For `(x / y_scale)`, it rounds to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details. | |
`y_zero_point` and `y` must have the same type. `y_zero_point` is usually not used for quantization to float8 types, but the quantization | |
formula remains the same for consistency, and the type of the attribute `y_zero_point` still determines the quantization type. | |
There are three supported quantization granularities, determined by the shape of `y_scale`. | |
In all cases, `y_zero_point` must have the same shape as `y_scale`. | |
- Per-tensor (per-layer) quantization: `y_scale` is a scalar. | |
- Per-axis quantization: The scale must be a 1-D tensor, with the length of the quantization axis. For an input shape | |
`(D0, ..., Di, ..., Dn)` and `axis=i`, `y_scale` is a 1-D tensor of length `Di`. | |
- Blocked quantization: The scale's shape is identical to the input's shape, except for one dimension, in which | |
blocking is performed. Given `x` shape `(D0, ..., Di, ..., Dn)`, `axis=i`, and block size `B`: `y_scale` shape is | |
`(D0, ..., ceil(Di/B), ..., Dn)`. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
QuantizeLinear, | |
21, | |
OpSchema() | |
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1") | |
.Input( | |
1, | |
"y_scale", | |
"Scale for doing quantization to get `y`. For per-tensor/layer quantization the scale is a scalar, for " | |
"per-axis quantization it is a 1-D Tensor and for blocked quantization it has the same shape as the " | |
"input, except for one dimension in which blocking is performed.", | |
"T1") | |
.Input( | |
2, | |
"y_zero_point", | |
"Zero point for doing quantization to get `y`. Shape must match `y_scale`." | |
"Default is uint8 with zero point of 0 if it's not specified.", | |
"T2", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D quantized output tensor. It has same shape as input `x`.", "T2") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked " | |
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` " | |
"where `r = rank(input)`.", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.Attr( | |
"saturate", | |
"The parameter defines how the conversion behaves if an input value is out of " | |
"range of the destination type. It only applies for float 8 quantization " | |
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. " | |
"All cases are fully described in two tables inserted in the operator description.", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.Attr( | |
"block_size", | |
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for " | |
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, " | |
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is " | |
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`", | |
AttributeProto::INT, | |
static_cast<int64_t>(0)) | |
.Attr( | |
"output_dtype", | |
"(Optional) The output data type. If not supplied, the output data type is inferred from `y_zero_point` data type (`T2`). " | |
"If neither `output_dtype` nor `y_zero_point` are supplied, output data type is uint8. " | |
"If both `output_dtype` and `y_zero_point` are specified, `output_dtype` must be `T2`.", | |
AttributeProto::INT, | |
static_cast<int64_t>(0)) | |
.TypeConstraint( | |
"T1", | |
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"}, | |
"The type of the input 'x'.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(int8)", | |
"tensor(uint8)", | |
"tensor(int16)", | |
"tensor(uint16)", | |
"tensor(float8e4m3fn)", | |
"tensor(float8e4m3fnuz)", | |
"tensor(float8e5m2)", | |
"tensor(float8e5m2fnuz)", | |
"tensor(uint4)", | |
"tensor(int4)"}, | |
"The type of the input `y_zero_point` and the output `y`.") | |
.SetDoc(QuantizeLinear_ver21_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
auto const zp_type = ctx.hasInput(2) ? ctx.getInputType(2) : nullptr; | |
auto const output_dtype = | |
static_cast<TensorProto_DataType>(getAttribute(ctx, "output_dtype", TensorProto::UNDEFINED)); | |
if (zp_type != nullptr) { | |
auto const zp_elem_type = static_cast<TensorProto_DataType>(getTensorElementType(*zp_type)); | |
if (output_dtype != TensorProto::UNDEFINED && output_dtype != zp_elem_type) { | |
fail_type_inference( | |
"output_dtype ", | |
TensorProto_DataType_Name(output_dtype), | |
" does not match y_zero_point type ", | |
TensorProto_DataType_Name(zp_elem_type), | |
"."); | |
} | |
propagateElemTypeFromInputToOutput(ctx, 2, 0); | |
} else if (output_dtype != TensorProto::UNDEFINED) { | |
propagateElemTypeFromAttributeToOutput(ctx, "output_dtype", 0); | |
} else { | |
updateOutputElemType(ctx, 0, TensorProto::UINT8); | |
} | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* DequantizeLinear_ver21_doc = R"DOC( | |
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the | |
full-precision tensor. The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point` | |
must have the same shape, determining the quantization's granularity: a scalar for per-tensor/per-layer quantization, | |
a 1-D tensor for per-axis quantization, or have a rank identical to the input for blocked quantization. | |
See QuantizeLinear for details on quantization granularity. | |
`x_zero_point` and `x` must have the same type. `x` and `y` must have the same shape. In the case of dequantizing | |
`int32`, there's no zero point (zero point is supposed to be 0). | |
`zero-point` is usually not used in the case of float8 types quantization, but the dequantization formula remains the same | |
for consistency, and `x_scale` still determines the output type. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
DequantizeLinear, | |
21, | |
OpSchema() | |
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1") | |
.Input( | |
1, | |
"x_scale", | |
"Scale for input `x`. For per-tensor/layer dequantization the scale is a scalar, for " | |
"per per-axis dequantization it is a 1-D Tensor and for blocked dequantization it has the same shape as " | |
"the input, except for one dimension in which blocking is performed.", | |
"T2") | |
.Input( | |
2, | |
"x_zero_point", | |
"Zero point for input `x`. Shape must match x_scale. " | |
"It's optional. Zero point is 0 when it's not specified.", | |
"T1", | |
OpSchema::Optional) | |
.Output(0, "y", "N-D full precision output tensor. It has same shape as input `x`.", "T2") | |
.Attr( | |
"axis", | |
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked " | |
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` " | |
"where `r = rank(input)`.", | |
AttributeProto::INT, | |
static_cast<int64_t>(1)) | |
.Attr( | |
"block_size", | |
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for " | |
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, " | |
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is " | |
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`", | |
AttributeProto::INT, | |
static_cast<int64_t>(0)) | |
.TypeConstraint( | |
"T1", | |
{"tensor(int8)", | |
"tensor(uint8)", | |
"tensor(int16)", | |
"tensor(uint16)", | |
"tensor(int32)", | |
"tensor(float8e4m3fn)", | |
"tensor(float8e4m3fnuz)", | |
"tensor(float8e5m2)", | |
"tensor(float8e5m2fnuz)", | |
"tensor(uint4)", | |
"tensor(int4)"}, | |
"The type of the inputs 'x_zero_point' and 'x'.") | |
.TypeConstraint( | |
"T2", | |
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"}, | |
"'x_scale' determines the output type.") | |
.SetDoc(DequantizeLinear_ver21_doc) | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
propagateElemTypeFromInputToOutput(ctx, 1, 0); | |
if (!hasInputShape(ctx, 0)) { | |
return; | |
} | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
static const char* DynamicQuantizeLinear_ver11_doc = R"DOC( | |
A Function to fuse calculation for Scale, Zero Point and FP32->8Bit conversion of FP32 Input data. | |
Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input. | |
Scale is calculated as: | |
``` | |
y_scale = (maximum(0, max(x)) - minimum(0, min(x))) / (qmax - qmin) | |
``` | |
* where qmax and qmin are max and min values for quantization range i.e. [0, 255] in case of uint8 | |
* data range is adjusted to include 0. | |
Zero point is calculated as: | |
``` | |
intermediate_zero_point = qmin - min(x)/y_scale | |
y_zero_point = cast(round(saturate(itermediate_zero_point))) | |
``` | |
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8 | |
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported. | |
* rounding to nearest ties to even. | |
Data quantization formula is: | |
``` | |
y = saturate (round (x / y_scale) + y_zero_point) | |
``` | |
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported. | |
* rounding to nearest ties to even. | |
)DOC"; | |
ONNX_OPERATOR_SET_SCHEMA( | |
DynamicQuantizeLinear, | |
11, | |
OpSchema() | |
.SetDoc(DynamicQuantizeLinear_ver11_doc) | |
.Input(0, "x", "Input tensor", "T1") | |
.Output(0, "y", "Quantized output tensor", "T2") | |
.Output( | |
1, | |
"y_scale", | |
"Output scale. It's a scalar, which means a per-tensor/layer quantization.", | |
"tensor(float)") | |
.Output( | |
2, | |
"y_zero_point", | |
"Output zero point. It's a scalar, which means a per-tensor/layer quantization.", | |
"T2") | |
.TypeConstraint("T1", {"tensor(float)"}, "Constrain 'x' to float tensor.") | |
.TypeConstraint("T2", {"tensor(uint8)"}, "Constrain 'y_zero_point' and 'y' to 8-bit unsigned integer tensor.") | |
.FunctionBody(R"ONNX( | |
{ | |
Q_Min = Constant<value = float {0.0}>() | |
Q_Max = Constant<value = float {255.0}>() | |
X_Min = ReduceMin <keepdims = 0> (x) | |
X_Min_Adjusted = Min (X_Min, Q_Min) | |
X_Max = ReduceMax <keepdims = 0> (x) | |
X_Max_Adjusted = Max (X_Max, Q_Min) | |
X_Range = Sub (X_Max_Adjusted, X_Min_Adjusted) | |
Scale = Div (X_Range, Q_Max) | |
Min_Scaled = Div (X_Min_Adjusted, Scale) | |
Initial_ZeroPoint_FP = Sub (Q_Min, Min_Scaled) | |
Clipped_ZeroPoint_FP = Clip (Initial_ZeroPoint_FP, Q_Min, Q_Max) | |
Rounded_ZeroPoint_FP = Round (Clipped_ZeroPoint_FP) | |
Zeropoint = Cast <to = 2> (Rounded_ZeroPoint_FP) | |
y_scale = Identity (Scale) | |
y_zero_point = Identity (Zeropoint) | |
y = QuantizeLinear (x, Scale, Zeropoint) | |
} | |
)ONNX") | |
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) { | |
updateOutputElemType(ctx, 0, TensorProto::UINT8); | |
updateOutputElemType(ctx, 1, TensorProto::FLOAT); | |
updateOutputElemType(ctx, 2, TensorProto::UINT8); | |
ctx.getOutputType(1)->mutable_tensor_type()->mutable_shape(); | |
ctx.getOutputType(2)->mutable_tensor_type()->mutable_shape(); | |
if (!hasInputShape(ctx, 0)) | |
return; | |
auto& input_shape = getInputShape(ctx, 0); | |
updateOutputShape(ctx, 0, input_shape); | |
})); | |
} // namespace ONNX_NAMESPACE | |