Spaces:
Sleeping
Sleeping
File size: 13,777 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/function.h"
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
static const char* QuantizeLinear_ver21_doc = R"DOC(
The linear quantization operator consumes a high-precision tensor, a scale, and a zero point to compute the
low-precision/quantized tensor. The scale factor and zero point must have the same shape, determining the quantization
granularity. The quantization formula is `y = saturate((x / y_scale) + y_zero_point)`.
Saturation is done according to:
- uint16: [0, 65535]
- int16: [-32768, 32767]
- uint8: [0, 255]
- int8: [-128, 127]
- uint4: [0, 15]
- int4: [-8, 7]
For `(x / y_scale)`, it rounds to the nearest even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
`y_zero_point` and `y` must have the same type. `y_zero_point` is usually not used for quantization to float8 types, but the quantization
formula remains the same for consistency, and the type of the attribute `y_zero_point` still determines the quantization type.
There are three supported quantization granularities, determined by the shape of `y_scale`.
In all cases, `y_zero_point` must have the same shape as `y_scale`.
- Per-tensor (per-layer) quantization: `y_scale` is a scalar.
- Per-axis quantization: The scale must be a 1-D tensor, with the length of the quantization axis. For an input shape
`(D0, ..., Di, ..., Dn)` and `axis=i`, `y_scale` is a 1-D tensor of length `Di`.
- Blocked quantization: The scale's shape is identical to the input's shape, except for one dimension, in which
blocking is performed. Given `x` shape `(D0, ..., Di, ..., Dn)`, `axis=i`, and block size `B`: `y_scale` shape is
`(D0, ..., ceil(Di/B), ..., Dn)`.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
QuantizeLinear,
21,
OpSchema()
.Input(0, "x", "N-D full precision Input tensor to be quantized.", "T1")
.Input(
1,
"y_scale",
"Scale for doing quantization to get `y`. For per-tensor/layer quantization the scale is a scalar, for "
"per-axis quantization it is a 1-D Tensor and for blocked quantization it has the same shape as the "
"input, except for one dimension in which blocking is performed.",
"T1")
.Input(
2,
"y_zero_point",
"Zero point for doing quantization to get `y`. Shape must match `y_scale`."
"Default is uint8 with zero point of 0 if it's not specified.",
"T2",
OpSchema::Optional)
.Output(0, "y", "N-D quantized output tensor. It has same shape as input `x`.", "T2")
.Attr(
"axis",
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
"where `r = rank(input)`.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Attr(
"saturate",
"The parameter defines how the conversion behaves if an input value is out of "
"range of the destination type. It only applies for float 8 quantization "
"(float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz). It is true by default. "
"All cases are fully described in two tables inserted in the operator description.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Attr(
"block_size",
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"output_dtype",
"(Optional) The output data type. If not supplied, the output data type is inferred from `y_zero_point` data type (`T2`). "
"If neither `output_dtype` nor `y_zero_point` are supplied, output data type is uint8. "
"If both `output_dtype` and `y_zero_point` are specified, `output_dtype` must be `T2`.",
AttributeProto::INT,
static_cast<int64_t>(0))
.TypeConstraint(
"T1",
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)", "tensor(int32)"},
"The type of the input 'x'.")
.TypeConstraint(
"T2",
{"tensor(int8)",
"tensor(uint8)",
"tensor(int16)",
"tensor(uint16)",
"tensor(float8e4m3fn)",
"tensor(float8e4m3fnuz)",
"tensor(float8e5m2)",
"tensor(float8e5m2fnuz)",
"tensor(uint4)",
"tensor(int4)"},
"The type of the input `y_zero_point` and the output `y`.")
.SetDoc(QuantizeLinear_ver21_doc)
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
auto const zp_type = ctx.hasInput(2) ? ctx.getInputType(2) : nullptr;
auto const output_dtype =
static_cast<TensorProto_DataType>(getAttribute(ctx, "output_dtype", TensorProto::UNDEFINED));
if (zp_type != nullptr) {
auto const zp_elem_type = static_cast<TensorProto_DataType>(getTensorElementType(*zp_type));
if (output_dtype != TensorProto::UNDEFINED && output_dtype != zp_elem_type) {
fail_type_inference(
"output_dtype ",
TensorProto_DataType_Name(output_dtype),
" does not match y_zero_point type ",
TensorProto_DataType_Name(zp_elem_type),
".");
}
propagateElemTypeFromInputToOutput(ctx, 2, 0);
} else if (output_dtype != TensorProto::UNDEFINED) {
propagateElemTypeFromAttributeToOutput(ctx, "output_dtype", 0);
} else {
updateOutputElemType(ctx, 0, TensorProto::UINT8);
}
if (!hasInputShape(ctx, 0)) {
return;
}
auto& input_shape = getInputShape(ctx, 0);
updateOutputShape(ctx, 0, input_shape);
}));
static const char* DequantizeLinear_ver21_doc = R"DOC(
The linear dequantization operator. It consumes a quantized tensor, a scale, and a zero point to compute the
full-precision tensor. The dequantization formula is `y = (x - x_zero_point) * x_scale`. `x_scale` and `x_zero_point`
must have the same shape, determining the quantization's granularity: a scalar for per-tensor/per-layer quantization,
a 1-D tensor for per-axis quantization, or have a rank identical to the input for blocked quantization.
See QuantizeLinear for details on quantization granularity.
`x_zero_point` and `x` must have the same type. `x` and `y` must have the same shape. In the case of dequantizing
`int32`, there's no zero point (zero point is supposed to be 0).
`zero-point` is usually not used in the case of float8 types quantization, but the dequantization formula remains the same
for consistency, and `x_scale` still determines the output type.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
DequantizeLinear,
21,
OpSchema()
.Input(0, "x", "N-D quantized input tensor to be de-quantized.", "T1")
.Input(
1,
"x_scale",
"Scale for input `x`. For per-tensor/layer dequantization the scale is a scalar, for "
"per per-axis dequantization it is a 1-D Tensor and for blocked dequantization it has the same shape as "
"the input, except for one dimension in which blocking is performed.",
"T2")
.Input(
2,
"x_zero_point",
"Zero point for input `x`. Shape must match x_scale. "
"It's optional. Zero point is 0 when it's not specified.",
"T1",
OpSchema::Optional)
.Output(0, "y", "N-D full precision output tensor. It has same shape as input `x`.", "T2")
.Attr(
"axis",
"(Optional) The axis of the dequantizing dimension of the input tensor. Used for per-axis and blocked "
"quantization. Negative value means counting dimensions from the back. Accepted range is `[-r, r-1]` "
"where `r = rank(input)`.",
AttributeProto::INT,
static_cast<int64_t>(1))
.Attr(
"block_size",
"(Optional) The size of the quantization block (number of times every scale is replicated). Used only for "
"blocked quantization. The block size is a positive integer. Given `x` shape `(D0, ..., Di, ..., Dn)`, "
"`y_scale` shape `(S0, ... Si, ...Sn)` and `axis=i`, the accepted range is "
"`[ceil(Di/Si), ceil(Di/(Si-1))-1]`",
AttributeProto::INT,
static_cast<int64_t>(0))
.TypeConstraint(
"T1",
{"tensor(int8)",
"tensor(uint8)",
"tensor(int16)",
"tensor(uint16)",
"tensor(int32)",
"tensor(float8e4m3fn)",
"tensor(float8e4m3fnuz)",
"tensor(float8e5m2)",
"tensor(float8e5m2fnuz)",
"tensor(uint4)",
"tensor(int4)"},
"The type of the inputs 'x_zero_point' and 'x'.")
.TypeConstraint(
"T2",
{"tensor(float)", "tensor(float16)", "tensor(bfloat16)"},
"'x_scale' determines the output type.")
.SetDoc(DequantizeLinear_ver21_doc)
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
propagateElemTypeFromInputToOutput(ctx, 1, 0);
if (!hasInputShape(ctx, 0)) {
return;
}
auto& input_shape = getInputShape(ctx, 0);
updateOutputShape(ctx, 0, input_shape);
}));
static const char* DynamicQuantizeLinear_ver11_doc = R"DOC(
A Function to fuse calculation for Scale, Zero Point and FP32->8Bit conversion of FP32 Input data.
Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input.
Scale is calculated as:
```
y_scale = (maximum(0, max(x)) - minimum(0, min(x))) / (qmax - qmin)
```
* where qmax and qmin are max and min values for quantization range i.e. [0, 255] in case of uint8
* data range is adjusted to include 0.
Zero point is calculated as:
```
intermediate_zero_point = qmin - min(x)/y_scale
y_zero_point = cast(round(saturate(itermediate_zero_point)))
```
* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
* rounding to nearest ties to even.
Data quantization formula is:
```
y = saturate (round (x / y_scale) + y_zero_point)
```
* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported.
* rounding to nearest ties to even.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
DynamicQuantizeLinear,
11,
OpSchema()
.SetDoc(DynamicQuantizeLinear_ver11_doc)
.Input(0, "x", "Input tensor", "T1")
.Output(0, "y", "Quantized output tensor", "T2")
.Output(
1,
"y_scale",
"Output scale. It's a scalar, which means a per-tensor/layer quantization.",
"tensor(float)")
.Output(
2,
"y_zero_point",
"Output zero point. It's a scalar, which means a per-tensor/layer quantization.",
"T2")
.TypeConstraint("T1", {"tensor(float)"}, "Constrain 'x' to float tensor.")
.TypeConstraint("T2", {"tensor(uint8)"}, "Constrain 'y_zero_point' and 'y' to 8-bit unsigned integer tensor.")
.FunctionBody(R"ONNX(
{
Q_Min = Constant<value = float {0.0}>()
Q_Max = Constant<value = float {255.0}>()
X_Min = ReduceMin <keepdims = 0> (x)
X_Min_Adjusted = Min (X_Min, Q_Min)
X_Max = ReduceMax <keepdims = 0> (x)
X_Max_Adjusted = Max (X_Max, Q_Min)
X_Range = Sub (X_Max_Adjusted, X_Min_Adjusted)
Scale = Div (X_Range, Q_Max)
Min_Scaled = Div (X_Min_Adjusted, Scale)
Initial_ZeroPoint_FP = Sub (Q_Min, Min_Scaled)
Clipped_ZeroPoint_FP = Clip (Initial_ZeroPoint_FP, Q_Min, Q_Max)
Rounded_ZeroPoint_FP = Round (Clipped_ZeroPoint_FP)
Zeropoint = Cast <to = 2> (Rounded_ZeroPoint_FP)
y_scale = Identity (Scale)
y_zero_point = Identity (Zeropoint)
y = QuantizeLinear (x, Scale, Zeropoint)
}
)ONNX")
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
updateOutputElemType(ctx, 0, TensorProto::UINT8);
updateOutputElemType(ctx, 1, TensorProto::FLOAT);
updateOutputElemType(ctx, 2, TensorProto::UINT8);
ctx.getOutputType(1)->mutable_tensor_type()->mutable_shape();
ctx.getOutputType(2)->mutable_tensor_type()->mutable_shape();
if (!hasInputShape(ctx, 0))
return;
auto& input_shape = getInputShape(ctx, 0);
updateOutputShape(ctx, 0, input_shape);
}));
} // namespace ONNX_NAMESPACE
|