Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
4.98 kB
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/math/utils.h"
#include <string>
namespace ONNX_NAMESPACE {
namespace defs {
namespace math {
namespace utils {
void MatMulShapeInference(ONNX_NAMESPACE::InferenceContext& ctx, int input1Idx, int input2Idx) {
if (!hasInputShape(ctx, input1Idx) || !hasInputShape(ctx, input2Idx)) {
return;
}
const auto shape0 = ctx.getInputType(input1Idx)->tensor_type().shape();
const auto shape1 = ctx.getInputType(input2Idx)->tensor_type().shape();
if (shape0.dim_size() == 0 || shape1.dim_size() == 0) {
fail_shape_inference("Input tensors of wrong rank (0).");
}
ONNX_NAMESPACE::TensorShapeProto shapeL, shapeR;
// First promote each shape to at least rank-2. This logic is
// specific to matmul, not generic broadcasting.
{
if (shape0.dim_size() == 1) {
shapeL.add_dim()->set_dim_value(1);
*shapeL.add_dim() = shape0.dim(0);
} else {
*shapeL.mutable_dim() = shape0.dim();
}
if (shape1.dim_size() == 1) {
*shapeR.add_dim() = shape1.dim(0);
shapeR.add_dim()->set_dim_value(1);
} else {
*shapeR.mutable_dim() = shape1.dim();
}
}
// Check for compatible matrix multiply dimensions
{
auto dimL = shapeL.dim(shapeL.dim_size() - 1);
auto dimR = shapeR.dim(shapeR.dim_size() - 2);
if (dimL.has_dim_value() && dimR.has_dim_value() && dimL.dim_value() != dimR.dim_value()) {
fail_shape_inference("Incompatible dimensions for matrix multiplication");
}
}
ONNX_NAMESPACE::TensorShapeProto resultShape;
// Now call out to generic multidimensional broadcasting for
// the broadcastable prefixes.
{
ONNX_NAMESPACE::TensorShapeProto prefixShapeL, prefixShapeR;
for (int i = 0; i < shapeL.dim_size() - 2; ++i) {
*prefixShapeL.add_dim() = shapeL.dim(i);
}
for (int i = 0; i < shapeR.dim_size() - 2; ++i) {
*prefixShapeR.add_dim() = shapeR.dim(i);
}
bidirectionalBroadcastShapeInference(prefixShapeL, prefixShapeR, resultShape);
}
// Back to matmul-specific. Add the trailing dimensions back in.
{
if (shape0.dim_size() != 1) {
*resultShape.add_dim() = shapeL.dim(shapeL.dim_size() - 2);
}
if (shape1.dim_size() != 1) {
*resultShape.add_dim() = shapeR.dim(shapeR.dim_size() - 1);
}
}
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape() = resultShape;
}
void QLinearMatMulShapeInference(ONNX_NAMESPACE::InferenceContext& ctx) {
auto a_type = ctx.getInputType(0);
auto b_type = ctx.getInputType(3);
if (nullptr == a_type || nullptr == b_type || a_type->value_case() != ONNX_NAMESPACE::TypeProto::kTensorType ||
b_type->value_case() != ONNX_NAMESPACE::TypeProto::kTensorType) {
fail_type_inference("inputs are expected to have tensor type.");
}
auto a_zero_point_type = ctx.getInputType(2);
if (nullptr == a_zero_point_type ||
a_zero_point_type->tensor_type().elem_type() != a_type->tensor_type().elem_type()) {
fail_type_inference("input and zero_point pair is expected to have be same type.");
}
auto b_zero_point_type = ctx.getInputType(5);
if (nullptr == b_zero_point_type ||
b_zero_point_type->tensor_type().elem_type() != b_type->tensor_type().elem_type()) {
fail_type_inference("input and zero_point pair is expected to have same type.");
}
propagateElemTypeFromInputToOutput(ctx, 7, 0);
MatMulShapeInference(ctx, 0, 3);
}
const char* QLinearMatMulDoc() {
static const char* QLinearMatMul_doc = R"DOC(
Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html.
It consumes two quantized input tensors, their scales and zero points, scale and zero point of output,
and computes the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point).
For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
Scale and zero point must have same shape. They must be either scalar (per tensor) or N-D tensor
(per row for 'a' and per column for 'b'). Scalar refers to per tensor quantization whereas N-D refers to per row
or per column quantization. If the input is 2D of shape [M, K] then zero point and scale tensor may be
an M element vector [v_1, v_2, ..., v_M] for per row quantization and K element vector of shape [v_1, v_2, ..., v_K]
for per column quantization. If the input is N-D tensor with shape [D1, D2, M, K] then zero point and scale tensor may
have shape [D1, D2, M, 1] for per row quantization and shape [D1, D2, 1, K] for per column quantization.
Production must never overflow, and accumulation may overflow if and only if in 32 bits.
)DOC";
return QLinearMatMul_doc;
}
} // namespace utils
} // namespace math
} // namespace defs
} // namespace ONNX_NAMESPACE