/* * SPDX-License-Identifier: Apache-2.0 */ #include "onnx/defs/math/utils.h" #include namespace ONNX_NAMESPACE { namespace defs { namespace math { namespace utils { void MatMulShapeInference(ONNX_NAMESPACE::InferenceContext& ctx, int input1Idx, int input2Idx) { if (!hasInputShape(ctx, input1Idx) || !hasInputShape(ctx, input2Idx)) { return; } const auto shape0 = ctx.getInputType(input1Idx)->tensor_type().shape(); const auto shape1 = ctx.getInputType(input2Idx)->tensor_type().shape(); if (shape0.dim_size() == 0 || shape1.dim_size() == 0) { fail_shape_inference("Input tensors of wrong rank (0)."); } ONNX_NAMESPACE::TensorShapeProto shapeL, shapeR; // First promote each shape to at least rank-2. This logic is // specific to matmul, not generic broadcasting. { if (shape0.dim_size() == 1) { shapeL.add_dim()->set_dim_value(1); *shapeL.add_dim() = shape0.dim(0); } else { *shapeL.mutable_dim() = shape0.dim(); } if (shape1.dim_size() == 1) { *shapeR.add_dim() = shape1.dim(0); shapeR.add_dim()->set_dim_value(1); } else { *shapeR.mutable_dim() = shape1.dim(); } } // Check for compatible matrix multiply dimensions { auto dimL = shapeL.dim(shapeL.dim_size() - 1); auto dimR = shapeR.dim(shapeR.dim_size() - 2); if (dimL.has_dim_value() && dimR.has_dim_value() && dimL.dim_value() != dimR.dim_value()) { fail_shape_inference("Incompatible dimensions for matrix multiplication"); } } ONNX_NAMESPACE::TensorShapeProto resultShape; // Now call out to generic multidimensional broadcasting for // the broadcastable prefixes. { ONNX_NAMESPACE::TensorShapeProto prefixShapeL, prefixShapeR; for (int i = 0; i < shapeL.dim_size() - 2; ++i) { *prefixShapeL.add_dim() = shapeL.dim(i); } for (int i = 0; i < shapeR.dim_size() - 2; ++i) { *prefixShapeR.add_dim() = shapeR.dim(i); } bidirectionalBroadcastShapeInference(prefixShapeL, prefixShapeR, resultShape); } // Back to matmul-specific. Add the trailing dimensions back in. { if (shape0.dim_size() != 1) { *resultShape.add_dim() = shapeL.dim(shapeL.dim_size() - 2); } if (shape1.dim_size() != 1) { *resultShape.add_dim() = shapeR.dim(shapeR.dim_size() - 1); } } *ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape() = resultShape; } void QLinearMatMulShapeInference(ONNX_NAMESPACE::InferenceContext& ctx) { auto a_type = ctx.getInputType(0); auto b_type = ctx.getInputType(3); if (nullptr == a_type || nullptr == b_type || a_type->value_case() != ONNX_NAMESPACE::TypeProto::kTensorType || b_type->value_case() != ONNX_NAMESPACE::TypeProto::kTensorType) { fail_type_inference("inputs are expected to have tensor type."); } auto a_zero_point_type = ctx.getInputType(2); if (nullptr == a_zero_point_type || a_zero_point_type->tensor_type().elem_type() != a_type->tensor_type().elem_type()) { fail_type_inference("input and zero_point pair is expected to have be same type."); } auto b_zero_point_type = ctx.getInputType(5); if (nullptr == b_zero_point_type || b_zero_point_type->tensor_type().elem_type() != b_type->tensor_type().elem_type()) { fail_type_inference("input and zero_point pair is expected to have same type."); } propagateElemTypeFromInputToOutput(ctx, 7, 0); MatMulShapeInference(ctx, 0, 3); } const char* QLinearMatMulDoc() { static const char* QLinearMatMul_doc = R"DOC( Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. It consumes two quantized input tensors, their scales and zero points, scale and zero point of output, and computes the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or N-D tensor (per row for 'a' and per column for 'b'). Scalar refers to per tensor quantization whereas N-D refers to per row or per column quantization. If the input is 2D of shape [M, K] then zero point and scale tensor may be an M element vector [v_1, v_2, ..., v_M] for per row quantization and K element vector of shape [v_1, v_2, ..., v_K] for per column quantization. If the input is N-D tensor with shape [D1, D2, M, K] then zero point and scale tensor may have shape [D1, D2, M, 1] for per row quantization and shape [D1, D2, 1, K] for per column quantization. Production must never overflow, and accumulation may overflow if and only if in 32 bits. )DOC"; return QLinearMatMul_doc; } } // namespace utils } // namespace math } // namespace defs } // namespace ONNX_NAMESPACE