Spaces:
Sleeping
Sleeping
from typing import Optional | |
import torch | |
from torch import Tensor | |
from torch.nn.parameter import Parameter | |
from .module import Module | |
from .. import functional as F | |
from .. import init | |
__all__ = ['Embedding', 'EmbeddingBag'] | |
class Embedding(Module): | |
r"""A simple lookup table that stores embeddings of a fixed dictionary and size. | |
This module is often used to store word embeddings and retrieve them using indices. | |
The input to the module is a list of indices, and the output is the corresponding | |
word embeddings. | |
Args: | |
num_embeddings (int): size of the dictionary of embeddings | |
embedding_dim (int): the size of each embedding vector | |
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient; | |
therefore, the embedding vector at :attr:`padding_idx` is not updated during training, | |
i.e. it remains as a fixed "pad". For a newly constructed Embedding, | |
the embedding vector at :attr:`padding_idx` will default to all zeros, | |
but can be updated to another value to be used as the padding vector. | |
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` | |
is renormalized to have norm :attr:`max_norm`. | |
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. | |
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of | |
the words in the mini-batch. Default ``False``. | |
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. | |
See Notes for more details regarding sparse gradients. | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) | |
initialized from :math:`\mathcal{N}(0, 1)` | |
Shape: | |
- Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract | |
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` | |
.. note:: | |
Keep in mind that only a limited number of optimizers support | |
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), | |
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) | |
.. note:: | |
When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the | |
:attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be | |
modified in-place, performing a differentiable operation on ``Embedding.weight`` before | |
calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when | |
:attr:`max_norm` is not ``None``. For example:: | |
n, d, m = 3, 5, 7 | |
embedding = nn.Embedding(n, d, max_norm=True) | |
W = torch.randn((m, d), requires_grad=True) | |
idx = torch.tensor([1, 2]) | |
a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable | |
b = embedding(idx) @ W.t() # modifies weight in-place | |
out = (a.unsqueeze(0) + b.unsqueeze(1)) | |
loss = out.sigmoid().prod() | |
loss.backward() | |
Examples:: | |
>>> # an Embedding module containing 10 tensors of size 3 | |
>>> embedding = nn.Embedding(10, 3) | |
>>> # a batch of 2 samples of 4 indices each | |
>>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> embedding(input) | |
tensor([[[-0.0251, -1.6902, 0.7172], | |
[-0.6431, 0.0748, 0.6969], | |
[ 1.4970, 1.3448, -0.9685], | |
[-0.3677, -2.7265, -0.1685]], | |
[[ 1.4970, 1.3448, -0.9685], | |
[ 0.4362, -0.4004, 0.9400], | |
[-0.6431, 0.0748, 0.6969], | |
[ 0.9124, -2.3616, 1.1151]]]) | |
>>> # example with padding_idx | |
>>> embedding = nn.Embedding(10, 3, padding_idx=0) | |
>>> input = torch.LongTensor([[0, 2, 0, 5]]) | |
>>> embedding(input) | |
tensor([[[ 0.0000, 0.0000, 0.0000], | |
[ 0.1535, -2.0309, 0.9315], | |
[ 0.0000, 0.0000, 0.0000], | |
[-0.1655, 0.9897, 0.0635]]]) | |
>>> # example of changing `pad` vector | |
>>> padding_idx = 0 | |
>>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx) | |
>>> embedding.weight | |
Parameter containing: | |
tensor([[ 0.0000, 0.0000, 0.0000], | |
[-0.7895, -0.7089, -0.0364], | |
[ 0.6778, 0.5803, 0.2678]], requires_grad=True) | |
>>> with torch.no_grad(): | |
... embedding.weight[padding_idx] = torch.ones(3) | |
>>> embedding.weight | |
Parameter containing: | |
tensor([[ 1.0000, 1.0000, 1.0000], | |
[-0.7895, -0.7089, -0.0364], | |
[ 0.6778, 0.5803, 0.2678]], requires_grad=True) | |
""" | |
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm', | |
'norm_type', 'scale_grad_by_freq', 'sparse'] | |
num_embeddings: int | |
embedding_dim: int | |
padding_idx: Optional[int] | |
max_norm: Optional[float] | |
norm_type: float | |
scale_grad_by_freq: bool | |
weight: Tensor | |
freeze: bool | |
sparse: bool | |
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, | |
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, | |
sparse: bool = False, _weight: Optional[Tensor] = None, _freeze: bool = False, | |
device=None, dtype=None) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__() | |
self.num_embeddings = num_embeddings | |
self.embedding_dim = embedding_dim | |
if padding_idx is not None: | |
if padding_idx > 0: | |
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings' | |
elif padding_idx < 0: | |
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings' | |
padding_idx = self.num_embeddings + padding_idx | |
self.padding_idx = padding_idx | |
self.max_norm = max_norm | |
self.norm_type = norm_type | |
self.scale_grad_by_freq = scale_grad_by_freq | |
if _weight is None: | |
self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs), | |
requires_grad=not _freeze) | |
self.reset_parameters() | |
else: | |
assert list(_weight.shape) == [num_embeddings, embedding_dim], \ | |
'Shape of weight does not match num_embeddings and embedding_dim' | |
self.weight = Parameter(_weight, requires_grad=not _freeze) | |
self.sparse = sparse | |
def reset_parameters(self) -> None: | |
init.normal_(self.weight) | |
self._fill_padding_idx_with_zero() | |
def _fill_padding_idx_with_zero(self) -> None: | |
if self.padding_idx is not None: | |
with torch.no_grad(): | |
self.weight[self.padding_idx].fill_(0) | |
def forward(self, input: Tensor) -> Tensor: | |
return F.embedding( | |
input, self.weight, self.padding_idx, self.max_norm, | |
self.norm_type, self.scale_grad_by_freq, self.sparse) | |
def extra_repr(self) -> str: | |
s = '{num_embeddings}, {embedding_dim}' | |
if self.padding_idx is not None: | |
s += ', padding_idx={padding_idx}' | |
if self.max_norm is not None: | |
s += ', max_norm={max_norm}' | |
if self.norm_type != 2: | |
s += ', norm_type={norm_type}' | |
if self.scale_grad_by_freq is not False: | |
s += ', scale_grad_by_freq={scale_grad_by_freq}' | |
if self.sparse is not False: | |
s += ', sparse=True' | |
return s.format(**self.__dict__) | |
def from_pretrained(cls, embeddings, freeze=True, padding_idx=None, | |
max_norm=None, norm_type=2., scale_grad_by_freq=False, | |
sparse=False): | |
r"""Create Embedding instance from given 2-dimensional FloatTensor. | |
Args: | |
embeddings (Tensor): FloatTensor containing weights for the Embedding. | |
First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``. | |
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process. | |
Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True`` | |
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient; | |
therefore, the embedding vector at :attr:`padding_idx` is not updated during training, | |
i.e. it remains as a fixed "pad". | |
max_norm (float, optional): See module initialization documentation. | |
norm_type (float, optional): See module initialization documentation. Default ``2``. | |
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``. | |
sparse (bool, optional): See module initialization documentation. | |
Examples:: | |
>>> # FloatTensor containing pretrained weights | |
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) | |
>>> embedding = nn.Embedding.from_pretrained(weight) | |
>>> # Get embeddings for index 1 | |
>>> input = torch.LongTensor([1]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> embedding(input) | |
tensor([[ 4.0000, 5.1000, 6.3000]]) | |
""" | |
assert embeddings.dim() == 2, \ | |
'Embeddings parameter is expected to be 2-dimensional' | |
rows, cols = embeddings.shape | |
embedding = cls( | |
num_embeddings=rows, | |
embedding_dim=cols, | |
_weight=embeddings, | |
_freeze=freeze, | |
padding_idx=padding_idx, | |
max_norm=max_norm, | |
norm_type=norm_type, | |
scale_grad_by_freq=scale_grad_by_freq, | |
sparse=sparse) | |
return embedding | |
class EmbeddingBag(Module): | |
r"""Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings. | |
For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`, | |
and with 2D inputs, this class | |
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``, | |
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``, | |
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``. | |
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these | |
operations. | |
EmbeddingBag also supports per-sample weights as an argument to the forward | |
pass. This scales the output of the Embedding before performing a weighted | |
reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the | |
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to | |
:attr:`per_sample_weights`. | |
Args: | |
num_embeddings (int): size of the dictionary of embeddings | |
embedding_dim (int): the size of each embedding vector | |
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` | |
is renormalized to have norm :attr:`max_norm`. | |
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. | |
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of | |
the words in the mini-batch. Default ``False``. | |
Note: this option is not supported when ``mode="max"``. | |
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag. | |
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights` | |
into consideration. ``"mean"`` computes the average of the values | |
in the bag, ``"max"`` computes the max value over each bag. | |
Default: ``"mean"`` | |
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See | |
Notes for more details regarding sparse gradients. Note: this option is not | |
supported when ``mode="max"``. | |
include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element | |
is equivalent to the size of `indices`. This matches the CSR format. | |
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the | |
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated | |
during training, i.e. it remains as a fixed "pad". For a newly constructed | |
EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all | |
zeros, but can be updated to another value to be used as the padding vector. | |
Note that the embedding vector at :attr:`padding_idx` is excluded from the | |
reduction. | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)` | |
initialized from :math:`\mathcal{N}(0, 1)`. | |
Examples:: | |
>>> # an EmbeddingBag module containing 10 tensors of size 3 | |
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum') | |
>>> # a batch of 2 samples of 4 indices each | |
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) | |
>>> offsets = torch.tensor([0, 4], dtype=torch.long) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> embedding_sum(input, offsets) | |
tensor([[-0.8861, -5.4350, -0.0523], | |
[ 1.1306, -2.5798, -1.0044]]) | |
>>> # Example with padding_idx | |
>>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2) | |
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long) | |
>>> offsets = torch.tensor([0, 4], dtype=torch.long) | |
>>> embedding_sum(input, offsets) | |
tensor([[ 0.0000, 0.0000, 0.0000], | |
[-0.7082, 3.2145, -2.6251]]) | |
>>> # An EmbeddingBag can be loaded from an Embedding like so | |
>>> embedding = nn.Embedding(10, 3, padding_idx=2) | |
>>> embedding_sum = nn.EmbeddingBag.from_pretrained( | |
embedding.weight, | |
padding_idx=embedding.padding_idx, | |
mode='sum') | |
""" | |
__constants__ = ['num_embeddings', 'embedding_dim', 'max_norm', 'norm_type', | |
'scale_grad_by_freq', 'mode', 'sparse', 'include_last_offset', | |
'padding_idx'] | |
num_embeddings: int | |
embedding_dim: int | |
max_norm: Optional[float] | |
norm_type: float | |
scale_grad_by_freq: bool | |
weight: Tensor | |
mode: str | |
sparse: bool | |
include_last_offset: bool | |
padding_idx: Optional[int] | |
def __init__(self, num_embeddings: int, embedding_dim: int, | |
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, | |
mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None, | |
include_last_offset: bool = False, padding_idx: Optional[int] = None, | |
device=None, dtype=None) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__() | |
self.num_embeddings = num_embeddings | |
self.embedding_dim = embedding_dim | |
self.max_norm = max_norm | |
self.norm_type = norm_type | |
self.scale_grad_by_freq = scale_grad_by_freq | |
if padding_idx is not None: | |
if padding_idx > 0: | |
assert padding_idx < self.num_embeddings, 'padding_idx must be within num_embeddings' | |
elif padding_idx < 0: | |
assert padding_idx >= -self.num_embeddings, 'padding_idx must be within num_embeddings' | |
padding_idx = self.num_embeddings + padding_idx | |
self.padding_idx = padding_idx | |
if _weight is None: | |
self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs)) | |
self.reset_parameters() | |
else: | |
assert list(_weight.shape) == [num_embeddings, embedding_dim], \ | |
'Shape of weight does not match num_embeddings and embedding_dim' | |
self.weight = Parameter(_weight) | |
self.mode = mode | |
self.sparse = sparse | |
self.include_last_offset = include_last_offset | |
def reset_parameters(self) -> None: | |
init.normal_(self.weight) | |
self._fill_padding_idx_with_zero() | |
def _fill_padding_idx_with_zero(self) -> None: | |
if self.padding_idx is not None: | |
with torch.no_grad(): | |
self.weight[self.padding_idx].fill_(0) | |
def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor: | |
"""Forward pass of EmbeddingBag. | |
Args: | |
input (Tensor): Tensor containing bags of indices into the embedding matrix. | |
offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines | |
the starting index position of each bag (sequence) in :attr:`input`. | |
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None | |
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights` | |
must have exactly the same shape as input and is treated as having the same | |
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``. | |
Returns: | |
Tensor output shape of `(B, embedding_dim)`. | |
.. note:: | |
A few notes about ``input`` and ``offsets``: | |
- :attr:`input` and :attr:`offsets` have to be of the same type, either int or long | |
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences) | |
each of fixed length ``N``, and this will return ``B`` values aggregated in a way | |
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case. | |
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of | |
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing the | |
starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`, | |
:attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have | |
returned vectors filled by zeros. | |
""" | |
return F.embedding_bag(input, self.weight, offsets, | |
self.max_norm, self.norm_type, | |
self.scale_grad_by_freq, self.mode, self.sparse, | |
per_sample_weights, self.include_last_offset, | |
self.padding_idx) | |
def extra_repr(self) -> str: | |
s = '{num_embeddings}, {embedding_dim}' | |
if self.max_norm is not None: | |
s += ', max_norm={max_norm}' | |
if self.norm_type != 2: | |
s += ', norm_type={norm_type}' | |
if self.scale_grad_by_freq is not False: | |
s += ', scale_grad_by_freq={scale_grad_by_freq}' | |
s += ', mode={mode}' | |
if self.padding_idx is not None: | |
s += ', padding_idx={padding_idx}' | |
return s.format(**{k: repr(v) for k, v in self.__dict__.items()}) | |
def from_pretrained(cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None, | |
norm_type: float = 2., scale_grad_by_freq: bool = False, | |
mode: str = 'mean', sparse: bool = False, include_last_offset: bool = False, | |
padding_idx: Optional[int] = None) -> 'EmbeddingBag': | |
r"""Create EmbeddingBag instance from given 2-dimensional FloatTensor. | |
Args: | |
embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag. | |
First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'. | |
freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process. | |
Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True`` | |
max_norm (float, optional): See module initialization documentation. Default: ``None`` | |
norm_type (float, optional): See module initialization documentation. Default ``2``. | |
scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``. | |
mode (str, optional): See module initialization documentation. Default: ``"mean"`` | |
sparse (bool, optional): See module initialization documentation. Default: ``False``. | |
include_last_offset (bool, optional): See module initialization documentation. Default: ``False``. | |
padding_idx (int, optional): See module initialization documentation. Default: ``None``. | |
Examples:: | |
>>> # FloatTensor containing pretrained weights | |
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) | |
>>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight) | |
>>> # Get embeddings for index 1 | |
>>> input = torch.LongTensor([[1, 0]]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> embeddingbag(input) | |
tensor([[ 2.5000, 3.7000, 4.6500]]) | |
""" | |
assert embeddings.dim() == 2, \ | |
'Embeddings parameter is expected to be 2-dimensional' | |
rows, cols = embeddings.shape | |
embeddingbag = cls( | |
num_embeddings=rows, | |
embedding_dim=cols, | |
_weight=embeddings, | |
max_norm=max_norm, | |
norm_type=norm_type, | |
scale_grad_by_freq=scale_grad_by_freq, | |
mode=mode, | |
sparse=sparse, | |
include_last_offset=include_last_offset, | |
padding_idx=padding_idx) | |
embeddingbag.weight.requires_grad = not freeze | |
return embeddingbag | |