File size: 23,846 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from typing import Optional

import torch
from torch import Tensor
from torch.nn.parameter import Parameter

from .module import Module
from .. import functional as F
from .. import init

__all__ = ['Embedding', 'EmbeddingBag']

class Embedding(Module):
    r"""A simple lookup table that stores embeddings of a fixed dictionary and size.



    This module is often used to store word embeddings and retrieve them using indices.

    The input to the module is a list of indices, and the output is the corresponding

    word embeddings.



    Args:

        num_embeddings (int): size of the dictionary of embeddings

        embedding_dim (int): the size of each embedding vector

        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;

                                     therefore, the embedding vector at :attr:`padding_idx` is not updated during training,

                                     i.e. it remains as a fixed "pad". For a newly constructed Embedding,

                                     the embedding vector at :attr:`padding_idx` will default to all zeros,

                                     but can be updated to another value to be used as the padding vector.

        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`

                                    is renormalized to have norm :attr:`max_norm`.

        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.

        scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of

                                                the words in the mini-batch. Default ``False``.

        sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.

                                 See Notes for more details regarding sparse gradients.



    Attributes:

        weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)

                         initialized from :math:`\mathcal{N}(0, 1)`



    Shape:

        - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract

        - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`



    .. note::

        Keep in mind that only a limited number of optimizers support

        sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),

        :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)



    .. note::

        When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the

        :attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be

        modified in-place, performing a differentiable operation on ``Embedding.weight`` before

        calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when

        :attr:`max_norm` is not ``None``. For example::



            n, d, m = 3, 5, 7

            embedding = nn.Embedding(n, d, max_norm=True)

            W = torch.randn((m, d), requires_grad=True)

            idx = torch.tensor([1, 2])

            a = embedding.weight.clone() @ W.t()  # weight must be cloned for this to be differentiable

            b = embedding(idx) @ W.t()  # modifies weight in-place

            out = (a.unsqueeze(0) + b.unsqueeze(1))

            loss = out.sigmoid().prod()

            loss.backward()



    Examples::



        >>> # an Embedding module containing 10 tensors of size 3

        >>> embedding = nn.Embedding(10, 3)

        >>> # a batch of 2 samples of 4 indices each

        >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> embedding(input)

        tensor([[[-0.0251, -1.6902,  0.7172],

                 [-0.6431,  0.0748,  0.6969],

                 [ 1.4970,  1.3448, -0.9685],

                 [-0.3677, -2.7265, -0.1685]],



                [[ 1.4970,  1.3448, -0.9685],

                 [ 0.4362, -0.4004,  0.9400],

                 [-0.6431,  0.0748,  0.6969],

                 [ 0.9124, -2.3616,  1.1151]]])





        >>> # example with padding_idx

        >>> embedding = nn.Embedding(10, 3, padding_idx=0)

        >>> input = torch.LongTensor([[0, 2, 0, 5]])

        >>> embedding(input)

        tensor([[[ 0.0000,  0.0000,  0.0000],

                 [ 0.1535, -2.0309,  0.9315],

                 [ 0.0000,  0.0000,  0.0000],

                 [-0.1655,  0.9897,  0.0635]]])



        >>> # example of changing `pad` vector

        >>> padding_idx = 0

        >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)

        >>> embedding.weight

        Parameter containing:

        tensor([[ 0.0000,  0.0000,  0.0000],

                [-0.7895, -0.7089, -0.0364],

                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)

        >>> with torch.no_grad():

        ...     embedding.weight[padding_idx] = torch.ones(3)

        >>> embedding.weight

        Parameter containing:

        tensor([[ 1.0000,  1.0000,  1.0000],

                [-0.7895, -0.7089, -0.0364],

                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)

    """

    __constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
                     'norm_type', 'scale_grad_by_freq', 'sparse']

    num_embeddings: int
    embedding_dim: int
    padding_idx: Optional[int]
    max_norm: Optional[float]
    norm_type: float
    scale_grad_by_freq: bool
    weight: Tensor
    freeze: bool
    sparse: bool

    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,

                 max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,

                 sparse: bool = False, _weight: Optional[Tensor] = None, _freeze: bool = False,

                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        if padding_idx is not None:
            if padding_idx > 0:
                assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
            elif padding_idx < 0:
                assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
                padding_idx = self.num_embeddings + padding_idx
        self.padding_idx = padding_idx
        self.max_norm = max_norm
        self.norm_type = norm_type
        self.scale_grad_by_freq = scale_grad_by_freq
        if _weight is None:
            self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs),
                                    requires_grad=not _freeze)
            self.reset_parameters()
        else:
            assert list(_weight.shape) == [num_embeddings, embedding_dim], \
                'Shape of weight does not match num_embeddings and embedding_dim'
            self.weight = Parameter(_weight, requires_grad=not _freeze)

        self.sparse = sparse

    def reset_parameters(self) -> None:
        init.normal_(self.weight)
        self._fill_padding_idx_with_zero()

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with torch.no_grad():
                self.weight[self.padding_idx].fill_(0)

    def forward(self, input: Tensor) -> Tensor:
        return F.embedding(
            input, self.weight, self.padding_idx, self.max_norm,
            self.norm_type, self.scale_grad_by_freq, self.sparse)

    def extra_repr(self) -> str:
        s = '{num_embeddings}, {embedding_dim}'
        if self.padding_idx is not None:
            s += ', padding_idx={padding_idx}'
        if self.max_norm is not None:
            s += ', max_norm={max_norm}'
        if self.norm_type != 2:
            s += ', norm_type={norm_type}'
        if self.scale_grad_by_freq is not False:
            s += ', scale_grad_by_freq={scale_grad_by_freq}'
        if self.sparse is not False:
            s += ', sparse=True'
        return s.format(**self.__dict__)

    @classmethod
    def from_pretrained(cls, embeddings, freeze=True, padding_idx=None,

                        max_norm=None, norm_type=2., scale_grad_by_freq=False,

                        sparse=False):
        r"""Create Embedding instance from given 2-dimensional FloatTensor.



        Args:

            embeddings (Tensor): FloatTensor containing weights for the Embedding.

                First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.

            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.

                Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``

            padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;

                                         therefore, the embedding vector at :attr:`padding_idx` is not updated during training,

                                         i.e. it remains as a fixed "pad".

            max_norm (float, optional): See module initialization documentation.

            norm_type (float, optional): See module initialization documentation. Default ``2``.

            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.

            sparse (bool, optional): See module initialization documentation.



        Examples::



            >>> # FloatTensor containing pretrained weights

            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])

            >>> embedding = nn.Embedding.from_pretrained(weight)

            >>> # Get embeddings for index 1

            >>> input = torch.LongTensor([1])

            >>> # xdoctest: +IGNORE_WANT("non-deterministic")

            >>> embedding(input)

            tensor([[ 4.0000,  5.1000,  6.3000]])

        """
        assert embeddings.dim() == 2, \
            'Embeddings parameter is expected to be 2-dimensional'
        rows, cols = embeddings.shape
        embedding = cls(
            num_embeddings=rows,
            embedding_dim=cols,
            _weight=embeddings,
            _freeze=freeze,
            padding_idx=padding_idx,
            max_norm=max_norm,
            norm_type=norm_type,
            scale_grad_by_freq=scale_grad_by_freq,
            sparse=sparse)
        return embedding


class EmbeddingBag(Module):
    r"""Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.



    For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,

    and with 2D inputs, this class



        * with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,

        * with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,

        * with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.



    However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these

    operations.



    EmbeddingBag also supports per-sample weights as an argument to the forward

    pass. This scales the output of the Embedding before performing a weighted

    reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the

    only supported ``mode`` is ``"sum"``, which computes a weighted sum according to

    :attr:`per_sample_weights`.



    Args:

        num_embeddings (int): size of the dictionary of embeddings

        embedding_dim (int): the size of each embedding vector

        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`

                                    is renormalized to have norm :attr:`max_norm`.

        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.

        scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of

                                                the words in the mini-batch. Default ``False``.

                                                Note: this option is not supported when ``mode="max"``.

        mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.

                                 ``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`

                                 into consideration. ``"mean"`` computes the average of the values

                                 in the bag, ``"max"`` computes the max value over each bag.

                                 Default: ``"mean"``

        sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See

                                 Notes for more details regarding sparse gradients. Note: this option is not

                                 supported when ``mode="max"``.

        include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element

                                      is equivalent to the size of `indices`. This matches the CSR format.

        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the

                                     gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated

                                     during training, i.e. it remains as a fixed "pad". For a newly constructed

                                     EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all

                                     zeros, but can be updated to another value to be used as the padding vector.

                                     Note that the embedding vector at :attr:`padding_idx` is excluded from the

                                     reduction.



    Attributes:

        weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`

                         initialized from :math:`\mathcal{N}(0, 1)`.



    Examples::



        >>> # an EmbeddingBag module containing 10 tensors of size 3

        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')

        >>> # a batch of 2 samples of 4 indices each

        >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)

        >>> offsets = torch.tensor([0, 4], dtype=torch.long)

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> embedding_sum(input, offsets)

        tensor([[-0.8861, -5.4350, -0.0523],

                [ 1.1306, -2.5798, -1.0044]])



        >>> # Example with padding_idx

        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)

        >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)

        >>> offsets = torch.tensor([0, 4], dtype=torch.long)

        >>> embedding_sum(input, offsets)

        tensor([[ 0.0000,  0.0000,  0.0000],

                [-0.7082,  3.2145, -2.6251]])



        >>> # An EmbeddingBag can be loaded from an Embedding like so

        >>> embedding = nn.Embedding(10, 3, padding_idx=2)

        >>> embedding_sum = nn.EmbeddingBag.from_pretrained(

                embedding.weight,

                padding_idx=embedding.padding_idx,

                mode='sum')

    """

    __constants__ = ['num_embeddings', 'embedding_dim', 'max_norm', 'norm_type',
                     'scale_grad_by_freq', 'mode', 'sparse', 'include_last_offset',
                     'padding_idx']

    num_embeddings: int
    embedding_dim: int
    max_norm: Optional[float]
    norm_type: float
    scale_grad_by_freq: bool
    weight: Tensor
    mode: str
    sparse: bool
    include_last_offset: bool
    padding_idx: Optional[int]

    def __init__(self, num_embeddings: int, embedding_dim: int,

                 max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,

                 mode: str = 'mean', sparse: bool = False, _weight: Optional[Tensor] = None,

                 include_last_offset: bool = False, padding_idx: Optional[int] = None,

                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.max_norm = max_norm
        self.norm_type = norm_type
        self.scale_grad_by_freq = scale_grad_by_freq
        if padding_idx is not None:
            if padding_idx > 0:
                assert padding_idx < self.num_embeddings, 'padding_idx must be within num_embeddings'
            elif padding_idx < 0:
                assert padding_idx >= -self.num_embeddings, 'padding_idx must be within num_embeddings'
                padding_idx = self.num_embeddings + padding_idx
        self.padding_idx = padding_idx
        if _weight is None:
            self.weight = Parameter(torch.empty((num_embeddings, embedding_dim), **factory_kwargs))
            self.reset_parameters()
        else:
            assert list(_weight.shape) == [num_embeddings, embedding_dim], \
                'Shape of weight does not match num_embeddings and embedding_dim'
            self.weight = Parameter(_weight)
        self.mode = mode
        self.sparse = sparse
        self.include_last_offset = include_last_offset

    def reset_parameters(self) -> None:
        init.normal_(self.weight)
        self._fill_padding_idx_with_zero()

    def _fill_padding_idx_with_zero(self) -> None:
        if self.padding_idx is not None:
            with torch.no_grad():
                self.weight[self.padding_idx].fill_(0)

    def forward(self, input: Tensor, offsets: Optional[Tensor] = None, per_sample_weights: Optional[Tensor] = None) -> Tensor:
        """Forward pass of EmbeddingBag.



        Args:

            input (Tensor): Tensor containing bags of indices into the embedding matrix.

            offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines

                the starting index position of each bag (sequence) in :attr:`input`.

            per_sample_weights (Tensor, optional): a tensor of float / double weights, or None

                to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`

                must have exactly the same shape as input and is treated as having the same

                :attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.



        Returns:

            Tensor output shape of `(B, embedding_dim)`.



        .. note::



            A few notes about ``input`` and ``offsets``:



            - :attr:`input` and :attr:`offsets` have to be of the same type, either int or long



            - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)

              each of fixed length ``N``, and this will return ``B`` values aggregated in a way

              depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.



            - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of

              multiple bags (sequences).  :attr:`offsets` is required to be a 1D tensor containing the

              starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,

              :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have

              returned vectors filled by zeros.

        """
        return F.embedding_bag(input, self.weight, offsets,
                               self.max_norm, self.norm_type,
                               self.scale_grad_by_freq, self.mode, self.sparse,
                               per_sample_weights, self.include_last_offset,
                               self.padding_idx)

    def extra_repr(self) -> str:
        s = '{num_embeddings}, {embedding_dim}'
        if self.max_norm is not None:
            s += ', max_norm={max_norm}'
        if self.norm_type != 2:
            s += ', norm_type={norm_type}'
        if self.scale_grad_by_freq is not False:
            s += ', scale_grad_by_freq={scale_grad_by_freq}'
        s += ', mode={mode}'
        if self.padding_idx is not None:
            s += ', padding_idx={padding_idx}'
        return s.format(**{k: repr(v) for k, v in self.__dict__.items()})

    @classmethod
    def from_pretrained(cls, embeddings: Tensor, freeze: bool = True, max_norm: Optional[float] = None,

                        norm_type: float = 2., scale_grad_by_freq: bool = False,

                        mode: str = 'mean', sparse: bool = False, include_last_offset: bool = False,

                        padding_idx: Optional[int] = None) -> 'EmbeddingBag':
        r"""Create EmbeddingBag instance from given 2-dimensional FloatTensor.



        Args:

            embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.

                First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.

            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.

                Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``

            max_norm (float, optional): See module initialization documentation. Default: ``None``

            norm_type (float, optional): See module initialization documentation. Default ``2``.

            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.

            mode (str, optional): See module initialization documentation. Default: ``"mean"``

            sparse (bool, optional): See module initialization documentation. Default: ``False``.

            include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.

            padding_idx (int, optional): See module initialization documentation. Default: ``None``.



        Examples::



            >>> # FloatTensor containing pretrained weights

            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])

            >>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)

            >>> # Get embeddings for index 1

            >>> input = torch.LongTensor([[1, 0]])

            >>> # xdoctest: +IGNORE_WANT("non-deterministic")

            >>> embeddingbag(input)

            tensor([[ 2.5000,  3.7000,  4.6500]])

        """
        assert embeddings.dim() == 2, \
            'Embeddings parameter is expected to be 2-dimensional'
        rows, cols = embeddings.shape
        embeddingbag = cls(
            num_embeddings=rows,
            embedding_dim=cols,
            _weight=embeddings,
            max_norm=max_norm,
            norm_type=norm_type,
            scale_grad_by_freq=scale_grad_by_freq,
            mode=mode,
            sparse=sparse,
            include_last_offset=include_last_offset,
            padding_idx=padding_idx)
        embeddingbag.weight.requires_grad = not freeze
        return embeddingbag