Spaces:
Sleeping
Sleeping
from .module import Module | |
from typing import Tuple, Union | |
from torch import Tensor | |
from torch.types import _size | |
__all__ = ['Flatten', 'Unflatten'] | |
class Flatten(Module): | |
r""" | |
Flattens a contiguous range of dims into a tensor. | |
For use with :class:`~nn.Sequential`, see :meth:`torch.flatten` for details. | |
Shape: | |
- Input: :math:`(*, S_{\text{start}},..., S_{i}, ..., S_{\text{end}}, *)`,' | |
where :math:`S_{i}` is the size at dimension :math:`i` and :math:`*` means any | |
number of dimensions including none. | |
- Output: :math:`(*, \prod_{i=\text{start}}^{\text{end}} S_{i}, *)`. | |
Args: | |
start_dim: first dim to flatten (default = 1). | |
end_dim: last dim to flatten (default = -1). | |
Examples:: | |
>>> input = torch.randn(32, 1, 5, 5) | |
>>> # With default parameters | |
>>> m = nn.Flatten() | |
>>> output = m(input) | |
>>> output.size() | |
torch.Size([32, 25]) | |
>>> # With non-default parameters | |
>>> m = nn.Flatten(0, 2) | |
>>> output = m(input) | |
>>> output.size() | |
torch.Size([160, 5]) | |
""" | |
__constants__ = ['start_dim', 'end_dim'] | |
start_dim: int | |
end_dim: int | |
def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None: | |
super().__init__() | |
self.start_dim = start_dim | |
self.end_dim = end_dim | |
def forward(self, input: Tensor) -> Tensor: | |
return input.flatten(self.start_dim, self.end_dim) | |
def extra_repr(self) -> str: | |
return f'start_dim={self.start_dim}, end_dim={self.end_dim}' | |
class Unflatten(Module): | |
r""" | |
Unflattens a tensor dim expanding it to a desired shape. For use with :class:`~nn.Sequential`. | |
* :attr:`dim` specifies the dimension of the input tensor to be unflattened, and it can | |
be either `int` or `str` when `Tensor` or `NamedTensor` is used, respectively. | |
* :attr:`unflattened_size` is the new shape of the unflattened dimension of the tensor and it can be | |
a `tuple` of ints or a `list` of ints or `torch.Size` for `Tensor` input; a `NamedShape` | |
(tuple of `(name, size)` tuples) for `NamedTensor` input. | |
Shape: | |
- Input: :math:`(*, S_{\text{dim}}, *)`, where :math:`S_{\text{dim}}` is the size at | |
dimension :attr:`dim` and :math:`*` means any number of dimensions including none. | |
- Output: :math:`(*, U_1, ..., U_n, *)`, where :math:`U` = :attr:`unflattened_size` and | |
:math:`\prod_{i=1}^n U_i = S_{\text{dim}}`. | |
Args: | |
dim (Union[int, str]): Dimension to be unflattened | |
unflattened_size (Union[torch.Size, Tuple, List, NamedShape]): New shape of the unflattened dimension | |
Examples: | |
>>> input = torch.randn(2, 50) | |
>>> # With tuple of ints | |
>>> m = nn.Sequential( | |
>>> nn.Linear(50, 50), | |
>>> nn.Unflatten(1, (2, 5, 5)) | |
>>> ) | |
>>> output = m(input) | |
>>> output.size() | |
torch.Size([2, 2, 5, 5]) | |
>>> # With torch.Size | |
>>> m = nn.Sequential( | |
>>> nn.Linear(50, 50), | |
>>> nn.Unflatten(1, torch.Size([2, 5, 5])) | |
>>> ) | |
>>> output = m(input) | |
>>> output.size() | |
torch.Size([2, 2, 5, 5]) | |
>>> # With namedshape (tuple of tuples) | |
>>> input = torch.randn(2, 50, names=('N', 'features')) | |
>>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5))) | |
>>> output = unflatten(input) | |
>>> output.size() | |
torch.Size([2, 2, 5, 5]) | |
""" | |
NamedShape = Tuple[Tuple[str, int]] | |
__constants__ = ['dim', 'unflattened_size'] | |
dim: Union[int, str] | |
unflattened_size: Union[_size, NamedShape] | |
def __init__(self, dim: Union[int, str], unflattened_size: Union[_size, NamedShape]) -> None: | |
super().__init__() | |
if isinstance(dim, int): | |
self._require_tuple_int(unflattened_size) | |
elif isinstance(dim, str): | |
self._require_tuple_tuple(unflattened_size) | |
else: | |
raise TypeError("invalid argument type for dim parameter") | |
self.dim = dim | |
self.unflattened_size = unflattened_size | |
def _require_tuple_tuple(self, input): | |
if (isinstance(input, tuple)): | |
for idx, elem in enumerate(input): | |
if not isinstance(elem, tuple): | |
raise TypeError("unflattened_size must be tuple of tuples, " + | |
f"but found element of type {type(elem).__name__} at pos {idx}") | |
return | |
raise TypeError("unflattened_size must be a tuple of tuples, " + | |
f"but found type {type(input).__name__}") | |
def _require_tuple_int(self, input): | |
if (isinstance(input, (tuple, list))): | |
for idx, elem in enumerate(input): | |
if not isinstance(elem, int): | |
raise TypeError("unflattened_size must be tuple of ints, " + | |
f"but found element of type {type(elem).__name__} at pos {idx}") | |
return | |
raise TypeError(f"unflattened_size must be a tuple of ints, but found type {type(input).__name__}") | |
def forward(self, input: Tensor) -> Tensor: | |
return input.unflatten(self.dim, self.unflattened_size) | |
def extra_repr(self) -> str: | |
return f'dim={self.dim}, unflattened_size={self.unflattened_size}' | |