File size: 5,548 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from .module import Module

from typing import Tuple, Union
from torch import Tensor
from torch.types import _size

__all__ = ['Flatten', 'Unflatten']

class Flatten(Module):
    r"""

    Flattens a contiguous range of dims into a tensor.



    For use with :class:`~nn.Sequential`, see :meth:`torch.flatten` for details.



    Shape:

        - Input: :math:`(*, S_{\text{start}},..., S_{i}, ..., S_{\text{end}}, *)`,'

          where :math:`S_{i}` is the size at dimension :math:`i` and :math:`*` means any

          number of dimensions including none.

        - Output: :math:`(*, \prod_{i=\text{start}}^{\text{end}} S_{i}, *)`.



    Args:

        start_dim: first dim to flatten (default = 1).

        end_dim: last dim to flatten (default = -1).



    Examples::

        >>> input = torch.randn(32, 1, 5, 5)

        >>> # With default parameters

        >>> m = nn.Flatten()

        >>> output = m(input)

        >>> output.size()

        torch.Size([32, 25])

        >>> # With non-default parameters

        >>> m = nn.Flatten(0, 2)

        >>> output = m(input)

        >>> output.size()

        torch.Size([160, 5])

    """

    __constants__ = ['start_dim', 'end_dim']
    start_dim: int
    end_dim: int

    def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None:
        super().__init__()
        self.start_dim = start_dim
        self.end_dim = end_dim

    def forward(self, input: Tensor) -> Tensor:
        return input.flatten(self.start_dim, self.end_dim)

    def extra_repr(self) -> str:
        return f'start_dim={self.start_dim}, end_dim={self.end_dim}'


class Unflatten(Module):
    r"""

    Unflattens a tensor dim expanding it to a desired shape. For use with :class:`~nn.Sequential`.



    * :attr:`dim` specifies the dimension of the input tensor to be unflattened, and it can

      be either `int` or `str` when `Tensor` or `NamedTensor` is used, respectively.



    * :attr:`unflattened_size` is the new shape of the unflattened dimension of the tensor and it can be

      a `tuple` of ints or a `list` of ints or `torch.Size` for `Tensor` input;  a `NamedShape`

      (tuple of `(name, size)` tuples) for `NamedTensor` input.



    Shape:

        - Input: :math:`(*, S_{\text{dim}}, *)`, where :math:`S_{\text{dim}}` is the size at

          dimension :attr:`dim` and :math:`*` means any number of dimensions including none.

        - Output: :math:`(*, U_1, ..., U_n, *)`, where :math:`U` = :attr:`unflattened_size` and

          :math:`\prod_{i=1}^n U_i = S_{\text{dim}}`.



    Args:

        dim (Union[int, str]): Dimension to be unflattened

        unflattened_size (Union[torch.Size, Tuple, List, NamedShape]): New shape of the unflattened dimension



    Examples:

        >>> input = torch.randn(2, 50)

        >>> # With tuple of ints

        >>> m = nn.Sequential(

        >>>     nn.Linear(50, 50),

        >>>     nn.Unflatten(1, (2, 5, 5))

        >>> )

        >>> output = m(input)

        >>> output.size()

        torch.Size([2, 2, 5, 5])

        >>> # With torch.Size

        >>> m = nn.Sequential(

        >>>     nn.Linear(50, 50),

        >>>     nn.Unflatten(1, torch.Size([2, 5, 5]))

        >>> )

        >>> output = m(input)

        >>> output.size()

        torch.Size([2, 2, 5, 5])

        >>> # With namedshape (tuple of tuples)

        >>> input = torch.randn(2, 50, names=('N', 'features'))

        >>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5)))

        >>> output = unflatten(input)

        >>> output.size()

        torch.Size([2, 2, 5, 5])

    """

    NamedShape = Tuple[Tuple[str, int]]

    __constants__ = ['dim', 'unflattened_size']
    dim: Union[int, str]
    unflattened_size: Union[_size, NamedShape]

    def __init__(self, dim: Union[int, str], unflattened_size: Union[_size, NamedShape]) -> None:
        super().__init__()

        if isinstance(dim, int):
            self._require_tuple_int(unflattened_size)
        elif isinstance(dim, str):
            self._require_tuple_tuple(unflattened_size)
        else:
            raise TypeError("invalid argument type for dim parameter")

        self.dim = dim
        self.unflattened_size = unflattened_size

    def _require_tuple_tuple(self, input):
        if (isinstance(input, tuple)):
            for idx, elem in enumerate(input):
                if not isinstance(elem, tuple):
                    raise TypeError("unflattened_size must be tuple of tuples, " +
                                    f"but found element of type {type(elem).__name__} at pos {idx}")
            return
        raise TypeError("unflattened_size must be a tuple of tuples, " +
                        f"but found type {type(input).__name__}")

    def _require_tuple_int(self, input):
        if (isinstance(input, (tuple, list))):
            for idx, elem in enumerate(input):
                if not isinstance(elem, int):
                    raise TypeError("unflattened_size must be tuple of ints, " +
                                    f"but found element of type {type(elem).__name__} at pos {idx}")
            return
        raise TypeError(f"unflattened_size must be a tuple of ints, but found type {type(input).__name__}")

    def forward(self, input: Tensor) -> Tensor:
        return input.unflatten(self.dim, self.unflattened_size)

    def extra_repr(self) -> str:
        return f'dim={self.dim}, unflattened_size={self.unflattened_size}'