Spaces:
Sleeping
Sleeping
import math | |
import warnings | |
import torch | |
from torch import Tensor | |
from torch.nn.parameter import Parameter, UninitializedParameter | |
from .. import functional as F | |
from .. import init | |
from .lazy import LazyModuleMixin | |
from .module import Module | |
from .utils import _single, _pair, _triple, _reverse_repeat_tuple | |
from torch._torch_docs import reproducibility_notes | |
from ..common_types import _size_1_t, _size_2_t, _size_3_t | |
from typing import Optional, List, Tuple, Union | |
__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', | |
'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d', | |
'LazyConvTranspose3d'] | |
convolution_notes = \ | |
{"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs. | |
:attr:`in_channels` and :attr:`out_channels` must both be divisible by | |
:attr:`groups`. For example, | |
* At groups=1, all inputs are convolved to all outputs. | |
* At groups=2, the operation becomes equivalent to having two conv | |
layers side by side, each seeing half the input channels | |
and producing half the output channels, and both subsequently | |
concatenated. | |
* At groups= :attr:`in_channels`, each input channel is convolved with | |
its own set of filters (of size | |
:math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""", | |
"depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`, | |
where `K` is a positive integer, this operation is also known as a "depthwise convolution". | |
In other words, for an input of size :math:`(N, C_{in}, L_{in})`, | |
a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments | |
:math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""} # noqa: B950 | |
class _ConvNd(Module): | |
__constants__ = ['stride', 'padding', 'dilation', 'groups', | |
'padding_mode', 'output_padding', 'in_channels', | |
'out_channels', 'kernel_size'] | |
__annotations__ = {'bias': Optional[torch.Tensor]} | |
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: # type: ignore[empty-body] | |
... | |
in_channels: int | |
_reversed_padding_repeated_twice: List[int] | |
out_channels: int | |
kernel_size: Tuple[int, ...] | |
stride: Tuple[int, ...] | |
padding: Union[str, Tuple[int, ...]] | |
dilation: Tuple[int, ...] | |
transposed: bool | |
output_padding: Tuple[int, ...] | |
groups: int | |
padding_mode: str | |
weight: Tensor | |
bias: Optional[Tensor] | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Tuple[int, ...], | |
stride: Tuple[int, ...], | |
padding: Tuple[int, ...], | |
dilation: Tuple[int, ...], | |
transposed: bool, | |
output_padding: Tuple[int, ...], | |
groups: int, | |
bias: bool, | |
padding_mode: str, | |
device=None, | |
dtype=None) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__() | |
if groups <= 0: | |
raise ValueError('groups must be a positive integer') | |
if in_channels % groups != 0: | |
raise ValueError('in_channels must be divisible by groups') | |
if out_channels % groups != 0: | |
raise ValueError('out_channels must be divisible by groups') | |
valid_padding_strings = {'same', 'valid'} | |
if isinstance(padding, str): | |
if padding not in valid_padding_strings: | |
raise ValueError( | |
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}") | |
if padding == 'same' and any(s != 1 for s in stride): | |
raise ValueError("padding='same' is not supported for strided convolutions") | |
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'} | |
if padding_mode not in valid_padding_modes: | |
raise ValueError(f"padding_mode must be one of {valid_padding_modes}, but got padding_mode='{padding_mode}'") | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.transposed = transposed | |
self.output_padding = output_padding | |
self.groups = groups | |
self.padding_mode = padding_mode | |
# `_reversed_padding_repeated_twice` is the padding to be passed to | |
# `F.pad` if needed (e.g., for non-zero padding types that are | |
# implemented as two ops: padding + conv). `F.pad` accepts paddings in | |
# reverse order than the dimension. | |
if isinstance(self.padding, str): | |
self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size) | |
if padding == 'same': | |
for d, k, i in zip(dilation, kernel_size, | |
range(len(kernel_size) - 1, -1, -1)): | |
total_padding = d * (k - 1) | |
left_pad = total_padding // 2 | |
self._reversed_padding_repeated_twice[2 * i] = left_pad | |
self._reversed_padding_repeated_twice[2 * i + 1] = ( | |
total_padding - left_pad) | |
else: | |
self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2) | |
if transposed: | |
self.weight = Parameter(torch.empty( | |
(in_channels, out_channels // groups, *kernel_size), **factory_kwargs)) | |
else: | |
self.weight = Parameter(torch.empty( | |
(out_channels, in_channels // groups, *kernel_size), **factory_kwargs)) | |
if bias: | |
self.bias = Parameter(torch.empty(out_channels, **factory_kwargs)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with | |
# uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size) | |
# For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573 | |
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
if self.bias is not None: | |
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) | |
if fan_in != 0: | |
bound = 1 / math.sqrt(fan_in) | |
init.uniform_(self.bias, -bound, bound) | |
def extra_repr(self): | |
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' | |
', stride={stride}') | |
if self.padding != (0,) * len(self.padding): | |
s += ', padding={padding}' | |
if self.dilation != (1,) * len(self.dilation): | |
s += ', dilation={dilation}' | |
if self.output_padding != (0,) * len(self.output_padding): | |
s += ', output_padding={output_padding}' | |
if self.groups != 1: | |
s += ', groups={groups}' | |
if self.bias is None: | |
s += ', bias=False' | |
if self.padding_mode != 'zeros': | |
s += ', padding_mode={padding_mode}' | |
return s.format(**self.__dict__) | |
def __setstate__(self, state): | |
super().__setstate__(state) | |
if not hasattr(self, 'padding_mode'): | |
self.padding_mode = 'zeros' | |
class Conv1d(_ConvNd): | |
__doc__ = r"""Applies a 1D convolution over an input signal composed of several input | |
planes. | |
In the simplest case, the output value of the layer with input size | |
:math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be | |
precisely described as: | |
.. math:: | |
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + | |
\sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k) | |
\star \text{input}(N_i, k) | |
where :math:`\star` is the valid `cross-correlation`_ operator, | |
:math:`N` is a batch size, :math:`C` denotes a number of channels, | |
:math:`L` is a length of signal sequence. | |
""" + r""" | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation, a single | |
number or a one-element tuple. | |
* :attr:`padding` controls the amount of padding applied to the input. It | |
can be either a string {{'valid', 'same'}} or a tuple of ints giving the | |
amount of implicit padding applied on both sides. | |
* :attr:`dilation` controls the spacing between the kernel points; also | |
known as the à trous algorithm. It is harder to describe, but this `link`_ | |
has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
Note: | |
{depthwise_separable_note} | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
Note: | |
This module supports complex data types i.e. ``complex32, complex64, complex128``. | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int, tuple or str, optional): Padding added to both sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, | |
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel | |
elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input | |
channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the | |
output. Default: ``True`` | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})` | |
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where | |
.. math:: | |
L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation} | |
\times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{out\_channels}, | |
\frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}` | |
bias (Tensor): the learnable bias of the module of shape | |
(out_channels). If :attr:`bias` is ``True``, then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}` | |
Examples:: | |
>>> m = nn.Conv1d(16, 33, 3, stride=2) | |
>>> input = torch.randn(20, 16, 50) | |
>>> output = m(input) | |
.. _cross-correlation: | |
https://en.wikipedia.org/wiki/Cross-correlation | |
.. _link: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_1_t, | |
stride: _size_1_t = 1, | |
padding: Union[str, _size_1_t] = 0, | |
dilation: _size_1_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', # TODO: refine this type | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
# we create new variables below to make mypy happy since kernel_size has | |
# type Union[int, Tuple[int]] and kernel_size_ has type Tuple[int] | |
kernel_size_ = _single(kernel_size) | |
stride_ = _single(stride) | |
padding_ = padding if isinstance(padding, str) else _single(padding) | |
dilation_ = _single(dilation) | |
super().__init__( | |
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, | |
False, _single(0), groups, bias, padding_mode, **factory_kwargs) | |
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): | |
if self.padding_mode != 'zeros': | |
return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), | |
weight, bias, self.stride, | |
_single(0), self.dilation, self.groups) | |
return F.conv1d(input, weight, bias, self.stride, | |
self.padding, self.dilation, self.groups) | |
def forward(self, input: Tensor) -> Tensor: | |
return self._conv_forward(input, self.weight, self.bias) | |
class Conv2d(_ConvNd): | |
__doc__ = r"""Applies a 2D convolution over an input signal composed of several input | |
planes. | |
In the simplest case, the output value of the layer with input size | |
:math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})` | |
can be precisely described as: | |
.. math:: | |
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) + | |
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k) | |
where :math:`\star` is the valid 2D `cross-correlation`_ operator, | |
:math:`N` is a batch size, :math:`C` denotes a number of channels, | |
:math:`H` is a height of input planes in pixels, and :math:`W` is | |
width in pixels. | |
""" + r""" | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation, a single | |
number or a tuple. | |
* :attr:`padding` controls the amount of padding applied to the input. It | |
can be either a string {{'valid', 'same'}} or an int / a tuple of ints giving the | |
amount of implicit padding applied on both sides. | |
* :attr:`dilation` controls the spacing between the kernel points; also | |
known as the à trous algorithm. It is harder to describe, but this `link`_ | |
has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be: | |
- a single ``int`` -- in which case the same value is used for the height and width dimension | |
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, | |
and the second `int` for the width dimension | |
Note: | |
{depthwise_separable_note} | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
Note: | |
This module supports complex data types i.e. ``complex32, complex64, complex128``. | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int, tuple or str, optional): Padding added to all four sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, | |
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input | |
channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the | |
output. Default: ``True`` | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})` | |
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where | |
.. math:: | |
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] | |
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor | |
.. math:: | |
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] | |
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},` | |
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` | |
bias (Tensor): the learnable bias of the module of shape | |
(out_channels). If :attr:`bias` is ``True``, | |
then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` | |
Examples: | |
>>> # With square kernels and equal stride | |
>>> m = nn.Conv2d(16, 33, 3, stride=2) | |
>>> # non-square kernels and unequal stride and with padding | |
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) | |
>>> # non-square kernels and unequal stride and with padding and dilation | |
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) | |
>>> input = torch.randn(20, 16, 50, 100) | |
>>> output = m(input) | |
.. _cross-correlation: | |
https://en.wikipedia.org/wiki/Cross-correlation | |
.. _link: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_2_t, | |
stride: _size_2_t = 1, | |
padding: Union[str, _size_2_t] = 0, | |
dilation: _size_2_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', # TODO: refine this type | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size_ = _pair(kernel_size) | |
stride_ = _pair(stride) | |
padding_ = padding if isinstance(padding, str) else _pair(padding) | |
dilation_ = _pair(dilation) | |
super().__init__( | |
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, | |
False, _pair(0), groups, bias, padding_mode, **factory_kwargs) | |
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): | |
if self.padding_mode != 'zeros': | |
return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode), | |
weight, bias, self.stride, | |
_pair(0), self.dilation, self.groups) | |
return F.conv2d(input, weight, bias, self.stride, | |
self.padding, self.dilation, self.groups) | |
def forward(self, input: Tensor) -> Tensor: | |
return self._conv_forward(input, self.weight, self.bias) | |
class Conv3d(_ConvNd): | |
__doc__ = r"""Applies a 3D convolution over an input signal composed of several input | |
planes. | |
In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)` | |
and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as: | |
.. math:: | |
out(N_i, C_{out_j}) = bias(C_{out_j}) + | |
\sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k) | |
where :math:`\star` is the valid 3D `cross-correlation`_ operator | |
""" + r""" | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation. | |
* :attr:`padding` controls the amount of padding applied to the input. It | |
can be either a string {{'valid', 'same'}} or a tuple of ints giving the | |
amount of implicit padding applied on both sides. | |
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. | |
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be: | |
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension | |
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension, | |
the second `int` for the height dimension and the third `int` for the width dimension | |
Note: | |
{depthwise_separable_note} | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
Note: | |
This module supports complex data types i.e. ``complex32, complex64, complex128``. | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int, tuple or str, optional): Padding added to all six sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})` | |
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`, | |
where | |
.. math:: | |
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] | |
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor | |
.. math:: | |
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] | |
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor | |
.. math:: | |
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] | |
\times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},` | |
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` | |
bias (Tensor): the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``, | |
then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` | |
Examples:: | |
>>> # With square kernels and equal stride | |
>>> m = nn.Conv3d(16, 33, 3, stride=2) | |
>>> # non-square kernels and unequal stride and with padding | |
>>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0)) | |
>>> input = torch.randn(20, 16, 10, 50, 100) | |
>>> output = m(input) | |
.. _cross-correlation: | |
https://en.wikipedia.org/wiki/Cross-correlation | |
.. _link: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_3_t, | |
stride: _size_3_t = 1, | |
padding: Union[str, _size_3_t] = 0, | |
dilation: _size_3_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size_ = _triple(kernel_size) | |
stride_ = _triple(stride) | |
padding_ = padding if isinstance(padding, str) else _triple(padding) | |
dilation_ = _triple(dilation) | |
super().__init__( | |
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, | |
False, _triple(0), groups, bias, padding_mode, **factory_kwargs) | |
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]): | |
if self.padding_mode != "zeros": | |
return F.conv3d( | |
F.pad( | |
input, self._reversed_padding_repeated_twice, mode=self.padding_mode | |
), | |
weight, | |
bias, | |
self.stride, | |
_triple(0), | |
self.dilation, | |
self.groups, | |
) | |
return F.conv3d( | |
input, weight, bias, self.stride, self.padding, self.dilation, self.groups | |
) | |
def forward(self, input: Tensor) -> Tensor: | |
return self._conv_forward(input, self.weight, self.bias) | |
class _ConvTransposeNd(_ConvNd): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, | |
padding, dilation, transposed, output_padding, | |
groups, bias, padding_mode, device=None, dtype=None) -> None: | |
if padding_mode != 'zeros': | |
raise ValueError(f'Only "zeros" padding mode is supported for {self.__class__.__name__}') | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
in_channels, out_channels, kernel_size, stride, | |
padding, dilation, transposed, output_padding, | |
groups, bias, padding_mode, **factory_kwargs) | |
# dilation being an optional parameter is for backwards | |
# compatibility | |
def _output_padding(self, input: Tensor, output_size: Optional[List[int]], | |
stride: List[int], padding: List[int], kernel_size: List[int], | |
num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]: | |
if output_size is None: | |
ret = _single(self.output_padding) # converting to list if was not already | |
else: | |
has_batch_dim = input.dim() == num_spatial_dims + 2 | |
num_non_spatial_dims = 2 if has_batch_dim else 1 | |
if len(output_size) == num_non_spatial_dims + num_spatial_dims: | |
output_size = output_size[num_non_spatial_dims:] | |
if len(output_size) != num_spatial_dims: | |
raise ValueError( | |
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})" | |
.format(num_spatial_dims, input.dim(), num_spatial_dims, | |
num_non_spatial_dims + num_spatial_dims, len(output_size))) | |
min_sizes = torch.jit.annotate(List[int], []) | |
max_sizes = torch.jit.annotate(List[int], []) | |
for d in range(num_spatial_dims): | |
dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] - | |
2 * padding[d] + | |
(dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1) | |
min_sizes.append(dim_size) | |
max_sizes.append(min_sizes[d] + stride[d] - 1) | |
for i in range(len(output_size)): | |
size = output_size[i] | |
min_size = min_sizes[i] | |
max_size = max_sizes[i] | |
if size < min_size or size > max_size: | |
raise ValueError( | |
f"requested an output size of {output_size}, but valid sizes range " | |
f"from {min_sizes} to {max_sizes} (for an input of {input.size()[2:]})") | |
res = torch.jit.annotate(List[int], []) | |
for d in range(num_spatial_dims): | |
res.append(output_size[d] - min_sizes[d]) | |
ret = res | |
return ret | |
class ConvTranspose1d(_ConvTransposeNd): | |
__doc__ = r"""Applies a 1D transposed convolution operator over an input image | |
composed of several input planes. | |
This module can be seen as the gradient of Conv1d with respect to its input. | |
It is also known as a fractionally-strided convolution or | |
a deconvolution (although it is not an actual deconvolution operation as it does | |
not compute a true inverse of convolution). For more information, see the visualizations | |
`here`_ and the `Deconvolutional Networks`_ paper. | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation. | |
* :attr:`padding` controls the amount of implicit zero padding on both | |
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note | |
below for details. | |
* :attr:`output_padding` controls the additional size added to one side | |
of the output shape. See note below for details. | |
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. | |
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
Note: | |
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` | |
amount of zero padding to both sizes of the input. This is set so that | |
when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d` | |
are initialized with same parameters, they are inverses of each other in | |
regard to the input and output shapes. However, when ``stride > 1``, | |
:class:`~torch.nn.Conv1d` maps multiple input shapes to the same output | |
shape. :attr:`output_padding` is provided to resolve this ambiguity by | |
effectively increasing the calculated output shape on one side. Note | |
that :attr:`output_padding` is only used to find output shape, but does | |
not actually add zero-padding to output. | |
Note: | |
In some circumstances when using the CUDA backend with CuDNN, this operator | |
may select a nondeterministic algorithm to increase performance. If this is | |
undesirable, you can try to make the operation deterministic (potentially at | |
a performance cost) by setting ``torch.backends.cudnn.deterministic = | |
True``. | |
Please see the notes on :doc:`/notes/randomness` for background. | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})` | |
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where | |
.. math:: | |
L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} | |
\times (\text{kernel\_size} - 1) + \text{output\_padding} + 1 | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` | |
:math:`\text{kernel\_size})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}` | |
bias (Tensor): the learnable bias of the module of shape (out_channels). | |
If :attr:`bias` is ``True``, then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}` | |
.. _`here`: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
.. _`Deconvolutional Networks`: | |
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_1_t, | |
stride: _size_1_t = 1, | |
padding: _size_1_t = 0, | |
output_padding: _size_1_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: _size_1_t = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size = _single(kernel_size) | |
stride = _single(stride) | |
padding = _single(padding) | |
dilation = _single(dilation) | |
output_padding = _single(output_padding) | |
super().__init__( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, | |
True, output_padding, groups, bias, padding_mode, **factory_kwargs) | |
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: | |
if self.padding_mode != 'zeros': | |
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d') | |
assert isinstance(self.padding, tuple) | |
# One cannot replace List by Tuple or Sequence in "_output_padding" because | |
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. | |
num_spatial_dims = 1 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type] | |
num_spatial_dims, self.dilation) # type: ignore[arg-type] | |
return F.conv_transpose1d( | |
input, self.weight, self.bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
class ConvTranspose2d(_ConvTransposeNd): | |
__doc__ = r"""Applies a 2D transposed convolution operator over an input image | |
composed of several input planes. | |
This module can be seen as the gradient of Conv2d with respect to its input. | |
It is also known as a fractionally-strided convolution or | |
a deconvolution (although it is not an actual deconvolution operation as it does | |
not compute a true inverse of convolution). For more information, see the visualizations | |
`here`_ and the `Deconvolutional Networks`_ paper. | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation. | |
* :attr:`padding` controls the amount of implicit zero padding on both | |
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note | |
below for details. | |
* :attr:`output_padding` controls the additional size added to one side | |
of the output shape. See note below for details. | |
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. | |
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` | |
can either be: | |
- a single ``int`` -- in which case the same value is used for the height and width dimensions | |
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension, | |
and the second `int` for the width dimension | |
Note: | |
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` | |
amount of zero padding to both sizes of the input. This is set so that | |
when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d` | |
are initialized with same parameters, they are inverses of each other in | |
regard to the input and output shapes. However, when ``stride > 1``, | |
:class:`~torch.nn.Conv2d` maps multiple input shapes to the same output | |
shape. :attr:`output_padding` is provided to resolve this ambiguity by | |
effectively increasing the calculated output shape on one side. Note | |
that :attr:`output_padding` is only used to find output shape, but does | |
not actually add zero-padding to output. | |
Note: | |
{cudnn_reproducibility_note} | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of each dimension in the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of each dimension in the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})` | |
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where | |
.. math:: | |
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] | |
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 | |
.. math:: | |
W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] | |
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` | |
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` | |
bias (Tensor): the learnable bias of the module of shape (out_channels) | |
If :attr:`bias` is ``True``, then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}` | |
Examples:: | |
>>> # With square kernels and equal stride | |
>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2) | |
>>> # non-square kernels and unequal stride and with padding | |
>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) | |
>>> input = torch.randn(20, 16, 50, 100) | |
>>> output = m(input) | |
>>> # exact output size can be also specified as an argument | |
>>> input = torch.randn(1, 16, 12, 12) | |
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) | |
>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1) | |
>>> h = downsample(input) | |
>>> h.size() | |
torch.Size([1, 16, 6, 6]) | |
>>> output = upsample(h, output_size=input.size()) | |
>>> output.size() | |
torch.Size([1, 16, 12, 12]) | |
.. _`here`: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
.. _`Deconvolutional Networks`: | |
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_2_t, | |
stride: _size_2_t = 1, | |
padding: _size_2_t = 0, | |
output_padding: _size_2_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: _size_2_t = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size = _pair(kernel_size) | |
stride = _pair(stride) | |
padding = _pair(padding) | |
dilation = _pair(dilation) | |
output_padding = _pair(output_padding) | |
super().__init__( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, | |
True, output_padding, groups, bias, padding_mode, **factory_kwargs) | |
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: | |
if self.padding_mode != 'zeros': | |
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d') | |
assert isinstance(self.padding, tuple) | |
# One cannot replace List by Tuple or Sequence in "_output_padding" because | |
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. | |
num_spatial_dims = 2 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type] | |
num_spatial_dims, self.dilation) # type: ignore[arg-type] | |
return F.conv_transpose2d( | |
input, self.weight, self.bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
class ConvTranspose3d(_ConvTransposeNd): | |
__doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input | |
planes. | |
The transposed convolution operator multiplies each input value element-wise by a learnable kernel, | |
and sums over the outputs from all input feature planes. | |
This module can be seen as the gradient of Conv3d with respect to its input. | |
It is also known as a fractionally-strided convolution or | |
a deconvolution (although it is not an actual deconvolution operation as it does | |
not compute a true inverse of convolution). For more information, see the visualizations | |
`here`_ and the `Deconvolutional Networks`_ paper. | |
This module supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. | |
* :attr:`stride` controls the stride for the cross-correlation. | |
* :attr:`padding` controls the amount of implicit zero padding on both | |
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note | |
below for details. | |
* :attr:`output_padding` controls the additional size added to one side | |
of the output shape. See note below for details. | |
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. | |
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does. | |
{groups_note} | |
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` | |
can either be: | |
- a single ``int`` -- in which case the same value is used for the depth, height and width dimensions | |
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension, | |
the second `int` for the height dimension and the third `int` for the width dimension | |
Note: | |
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding`` | |
amount of zero padding to both sizes of the input. This is set so that | |
when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d` | |
are initialized with same parameters, they are inverses of each other in | |
regard to the input and output shapes. However, when ``stride > 1``, | |
:class:`~torch.nn.Conv3d` maps multiple input shapes to the same output | |
shape. :attr:`output_padding` is provided to resolve this ambiguity by | |
effectively increasing the calculated output shape on one side. Note | |
that :attr:`output_padding` is only used to find output shape, but does | |
not actually add zero-padding to output. | |
Note: | |
{cudnn_reproducibility_note} | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of each dimension in the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of each dimension in the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
""".format(**reproducibility_notes, **convolution_notes) + r""" | |
Shape: | |
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})` | |
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or | |
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where | |
.. math:: | |
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] | |
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1 | |
.. math:: | |
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] | |
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 | |
.. math:: | |
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2] | |
\times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1 | |
Attributes: | |
weight (Tensor): the learnable weights of the module of shape | |
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},` | |
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`. | |
The values of these weights are sampled from | |
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` | |
bias (Tensor): the learnable bias of the module of shape (out_channels) | |
If :attr:`bias` is ``True``, then the values of these weights are | |
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where | |
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}` | |
Examples:: | |
>>> # With square kernels and equal stride | |
>>> m = nn.ConvTranspose3d(16, 33, 3, stride=2) | |
>>> # non-square kernels and unequal stride and with padding | |
>>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2)) | |
>>> input = torch.randn(20, 16, 10, 50, 100) | |
>>> output = m(input) | |
.. _`here`: | |
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md | |
.. _`Deconvolutional Networks`: | |
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: _size_3_t, | |
stride: _size_3_t = 1, | |
padding: _size_3_t = 0, | |
output_padding: _size_3_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: _size_3_t = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
kernel_size = _triple(kernel_size) | |
stride = _triple(stride) | |
padding = _triple(padding) | |
dilation = _triple(dilation) | |
output_padding = _triple(output_padding) | |
super().__init__( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, | |
True, output_padding, groups, bias, padding_mode, **factory_kwargs) | |
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor: | |
if self.padding_mode != 'zeros': | |
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d') | |
assert isinstance(self.padding, tuple) | |
# One cannot replace List by Tuple or Sequence in "_output_padding" because | |
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`. | |
num_spatial_dims = 3 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type] | |
num_spatial_dims, self.dilation) # type: ignore[arg-type] | |
return F.conv_transpose3d( | |
input, self.weight, self.bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
# TODO: Deprecate and remove the following alias `_ConvTransposeMixin`. | |
# | |
# `_ConvTransposeMixin` was a mixin that was removed. It is meant to be used | |
# with `_ConvNd` to construct actual module classes that implements conv | |
# transpose ops: | |
# | |
# class MyConvTranspose(_ConvNd, _ConvTransposeMixin): | |
# ... | |
# | |
# In PyTorch, it has been replaced by `_ConvTransposeNd`, which is a proper | |
# subclass of `_ConvNd`. However, some user code in the wild still (incorrectly) | |
# use the internal class `_ConvTransposeMixin`. Hence, we provide this alias | |
# for BC, because it is cheap and easy for us to do so, even though that | |
# `_ConvTransposeNd` is really not a mixin anymore (but multiple inheritance as | |
# above would still work). | |
class _ConvTransposeMixin(_ConvTransposeNd): | |
def __init__(self, *args, **kwargs): | |
warnings.warn( | |
"_ConvTransposeMixin is a deprecated internal class. " | |
"Please consider using public APIs.") | |
super().__init__(*args, **kwargs) | |
# TODO: Conv2dLocal | |
# TODO: Conv2dMap | |
# TODO: ConvTranspose2dMap | |
class _LazyConvXdMixin(LazyModuleMixin): | |
groups: int | |
transposed: bool | |
in_channels: int | |
out_channels: int | |
kernel_size: Tuple[int, ...] | |
weight: UninitializedParameter | |
bias: UninitializedParameter | |
def reset_parameters(self) -> None: | |
# has_uninitialized_params is defined in parent class and it is using a protocol on self | |
if not self.has_uninitialized_params() and self.in_channels != 0: # type: ignore[misc] | |
# "type:ignore[..]" is required because mypy thinks that "reset_parameters" is undefined | |
# in super class. Turns out that it is defined in _ConvND which is inherited by any class | |
# that also inherits _LazyConvXdMixin | |
super().reset_parameters() # type: ignore[misc] | |
# Signature of "initialize_parameters" is incompatible with the definition in supertype LazyModuleMixin | |
def initialize_parameters(self, input) -> None: # type: ignore[override] | |
# defined by parent class but using a protocol | |
if self.has_uninitialized_params(): # type: ignore[misc] | |
self.in_channels = self._get_in_channels(input) | |
if self.in_channels % self.groups != 0: | |
raise ValueError('in_channels must be divisible by groups') | |
assert isinstance(self.weight, UninitializedParameter) | |
if self.transposed: | |
self.weight.materialize(( | |
self.in_channels, self.out_channels // self.groups, *self.kernel_size)) | |
else: | |
self.weight.materialize(( | |
self.out_channels, self.in_channels // self.groups, *self.kernel_size)) | |
if self.bias is not None: | |
assert isinstance(self.bias, UninitializedParameter) | |
self.bias.materialize((self.out_channels,)) | |
self.reset_parameters() | |
# Function to extract in_channels from first input. | |
def _get_in_channels(self, input: Tensor) -> int: | |
num_spatial_dims = self._get_num_spatial_dims() | |
num_dims_no_batch = num_spatial_dims + 1 # +1 for channels dim | |
num_dims_batch = num_dims_no_batch + 1 | |
if input.dim() not in (num_dims_no_batch, num_dims_batch): | |
raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but " | |
"got input of size: {}".format(num_dims_no_batch, num_dims_batch, | |
self.__class__.__name__, input.shape)) | |
return input.shape[1] if input.dim() == num_dims_batch else input.shape[0] | |
# Function to return the number of spatial dims expected for inputs to the module. | |
# This is expected to be implemented by subclasses. | |
def _get_num_spatial_dims(self) -> int: | |
raise NotImplementedError() | |
# LazyConv1d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConv1d(_LazyConvXdMixin, Conv1d): # type: ignore[misc] | |
r"""A :class:`torch.nn.Conv1d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`Conv1d` is inferred from the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): Zero-padding added to both sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, | |
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel | |
elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input | |
channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the | |
output. Default: ``True`` | |
.. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = Conv1d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_1_t, | |
stride: _size_1_t = 1, | |
padding: _size_1_t = 0, | |
dilation: _size_1_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 1 | |
# LazyConv2d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConv2d(_LazyConvXdMixin, Conv2d): # type: ignore[misc] | |
r"""A :class:`torch.nn.Conv2d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`Conv2d` that is inferred from the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): Zero-padding added to both sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, | |
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel | |
elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input | |
channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the | |
output. Default: ``True`` | |
.. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = Conv2d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_2_t, | |
stride: _size_2_t = 1, | |
padding: _size_2_t = 0, | |
dilation: _size_2_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', # TODO: refine this type | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 2 | |
# LazyConv3d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConv3d(_LazyConvXdMixin, Conv3d): # type: ignore[misc] | |
r"""A :class:`torch.nn.Conv3d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`Conv3d` that is inferred from | |
the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): Zero-padding added to both sides of | |
the input. Default: 0 | |
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, | |
``'replicate'`` or ``'circular'``. Default: ``'zeros'`` | |
dilation (int or tuple, optional): Spacing between kernel | |
elements. Default: 1 | |
groups (int, optional): Number of blocked connections from input | |
channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the | |
output. Default: ``True`` | |
.. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = Conv3d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_3_t, | |
stride: _size_3_t = 1, | |
padding: _size_3_t = 0, | |
dilation: _size_3_t = 1, | |
groups: int = 1, | |
bias: bool = True, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 3 | |
# LazyConvTranspose1d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d): # type: ignore[misc] | |
r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from | |
the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
.. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = ConvTranspose1d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_1_t, | |
stride: _size_1_t = 1, | |
padding: _size_1_t = 0, | |
output_padding: _size_1_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: _size_1_t = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
output_padding, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
dilation, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 1 | |
# LazyConvTranspose2d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d): # type: ignore[misc] | |
r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`ConvTranspose2d` is inferred from | |
the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of each dimension in the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of each dimension in the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
.. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = ConvTranspose2d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_2_t, | |
stride: _size_2_t = 1, | |
padding: _size_2_t = 0, | |
output_padding: _size_2_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: int = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
output_padding, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
dilation, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 2 | |
# LazyConvTranspose3d defines weight as a Tensor but derived class defines it as UnitializeParameter | |
class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d): # type: ignore[misc] | |
r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of the ``in_channels`` argument. | |
The ``in_channels`` argument of the :class:`ConvTranspose3d` is inferred from | |
the ``input.size(1)``. | |
The attributes that will be lazily initialized are `weight` and `bias`. | |
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation | |
on lazy modules and their limitations. | |
Args: | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding | |
will be added to both sides of each dimension in the input. Default: 0 | |
output_padding (int or tuple, optional): Additional size added to one side | |
of each dimension in the output shape. Default: 0 | |
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 | |
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` | |
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 | |
.. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin` | |
""" | |
# super class define this variable as None. "type: ignore[..] is required | |
# since we are redefining the variable. | |
cls_to_become = ConvTranspose3d # type: ignore[assignment] | |
def __init__( | |
self, | |
out_channels: int, | |
kernel_size: _size_3_t, | |
stride: _size_3_t = 1, | |
padding: _size_3_t = 0, | |
output_padding: _size_3_t = 0, | |
groups: int = 1, | |
bias: bool = True, | |
dilation: _size_3_t = 1, | |
padding_mode: str = 'zeros', | |
device=None, | |
dtype=None | |
) -> None: | |
factory_kwargs = {'device': device, 'dtype': dtype} | |
super().__init__( | |
0, | |
0, | |
kernel_size, | |
stride, | |
padding, | |
output_padding, | |
groups, | |
# bias is hardcoded to False to avoid creating tensor | |
# that will soon be overwritten. | |
False, | |
dilation, | |
padding_mode, | |
**factory_kwargs | |
) | |
self.weight = UninitializedParameter(**factory_kwargs) | |
self.out_channels = out_channels | |
if bias: | |
self.bias = UninitializedParameter(**factory_kwargs) | |
def _get_num_spatial_dims(self) -> int: | |
return 3 | |