File size: 74,239 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
import math
import warnings

import torch
from torch import Tensor
from torch.nn.parameter import Parameter, UninitializedParameter
from .. import functional as F
from .. import init
from .lazy import LazyModuleMixin
from .module import Module
from .utils import _single, _pair, _triple, _reverse_repeat_tuple
from torch._torch_docs import reproducibility_notes

from ..common_types import _size_1_t, _size_2_t, _size_3_t
from typing import Optional, List, Tuple, Union

__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d',
           'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d',
           'LazyConvTranspose3d']

convolution_notes = \
    {"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs.

      :attr:`in_channels` and :attr:`out_channels` must both be divisible by

      :attr:`groups`. For example,



        * At groups=1, all inputs are convolved to all outputs.

        * At groups=2, the operation becomes equivalent to having two conv

          layers side by side, each seeing half the input channels

          and producing half the output channels, and both subsequently

          concatenated.

        * At groups= :attr:`in_channels`, each input channel is convolved with

          its own set of filters (of size

          :math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""",

        "depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`,

        where `K` is a positive integer, this operation is also known as a "depthwise convolution".



        In other words, for an input of size :math:`(N, C_{in}, L_{in})`,

        a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments

        :math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""}  # noqa: B950





class _ConvNd(Module):

    __constants__ = ['stride', 'padding', 'dilation', 'groups',
                     'padding_mode', 'output_padding', 'in_channels',
                     'out_channels', 'kernel_size']
    __annotations__ = {'bias': Optional[torch.Tensor]}

    def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:  # type: ignore[empty-body]
        ...

    in_channels: int
    _reversed_padding_repeated_twice: List[int]
    out_channels: int
    kernel_size: Tuple[int, ...]
    stride: Tuple[int, ...]
    padding: Union[str, Tuple[int, ...]]
    dilation: Tuple[int, ...]
    transposed: bool
    output_padding: Tuple[int, ...]
    groups: int
    padding_mode: str
    weight: Tensor
    bias: Optional[Tensor]

    def __init__(self,

                 in_channels: int,

                 out_channels: int,

                 kernel_size: Tuple[int, ...],

                 stride: Tuple[int, ...],

                 padding: Tuple[int, ...],

                 dilation: Tuple[int, ...],

                 transposed: bool,

                 output_padding: Tuple[int, ...],

                 groups: int,

                 bias: bool,

                 padding_mode: str,

                 device=None,

                 dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        if groups <= 0:
            raise ValueError('groups must be a positive integer')
        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        valid_padding_strings = {'same', 'valid'}
        if isinstance(padding, str):
            if padding not in valid_padding_strings:
                raise ValueError(
                    f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}")
            if padding == 'same' and any(s != 1 for s in stride):
                raise ValueError("padding='same' is not supported for strided convolutions")

        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(f"padding_mode must be one of {valid_padding_modes}, but got padding_mode='{padding_mode}'")
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.transposed = transposed
        self.output_padding = output_padding
        self.groups = groups
        self.padding_mode = padding_mode
        # `_reversed_padding_repeated_twice` is the padding to be passed to
        # `F.pad` if needed (e.g., for non-zero padding types that are
        # implemented as two ops: padding + conv). `F.pad` accepts paddings in
        # reverse order than the dimension.
        if isinstance(self.padding, str):
            self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size)
            if padding == 'same':
                for d, k, i in zip(dilation, kernel_size,
                                   range(len(kernel_size) - 1, -1, -1)):
                    total_padding = d * (k - 1)
                    left_pad = total_padding // 2
                    self._reversed_padding_repeated_twice[2 * i] = left_pad
                    self._reversed_padding_repeated_twice[2 * i + 1] = (
                        total_padding - left_pad)
        else:
            self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2)

        if transposed:
            self.weight = Parameter(torch.empty(
                (in_channels, out_channels // groups, *kernel_size), **factory_kwargs))
        else:
            self.weight = Parameter(torch.empty(
                (out_channels, in_channels // groups, *kernel_size), **factory_kwargs))
        if bias:
            self.bias = Parameter(torch.empty(out_channels, **factory_kwargs))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
        # uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
        # For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            if fan_in != 0:
                bound = 1 / math.sqrt(fan_in)
                init.uniform_(self.bias, -bound, bound)

    def extra_repr(self):
        s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
             ', stride={stride}')
        if self.padding != (0,) * len(self.padding):
            s += ', padding={padding}'
        if self.dilation != (1,) * len(self.dilation):
            s += ', dilation={dilation}'
        if self.output_padding != (0,) * len(self.output_padding):
            s += ', output_padding={output_padding}'
        if self.groups != 1:
            s += ', groups={groups}'
        if self.bias is None:
            s += ', bias=False'
        if self.padding_mode != 'zeros':
            s += ', padding_mode={padding_mode}'
        return s.format(**self.__dict__)

    def __setstate__(self, state):
        super().__setstate__(state)
        if not hasattr(self, 'padding_mode'):
            self.padding_mode = 'zeros'


class Conv1d(_ConvNd):
    __doc__ = r"""Applies a 1D convolution over an input signal composed of several input

    planes.



    In the simplest case, the output value of the layer with input size

    :math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be

    precisely described as:



    .. math::

        \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +

        \sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k)

        \star \text{input}(N_i, k)



    where :math:`\star` is the valid `cross-correlation`_ operator,

    :math:`N` is a batch size, :math:`C` denotes a number of channels,

    :math:`L` is a length of signal sequence.

    """ + r"""



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation, a single

      number or a one-element tuple.



    * :attr:`padding` controls the amount of padding applied to the input. It

      can be either a string {{'valid', 'same'}} or a tuple of ints giving the

      amount of implicit padding applied on both sides.



    * :attr:`dilation` controls the spacing between the kernel points; also

      known as the à trous algorithm. It is harder to describe, but this `link`_

      has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    Note:

        {depthwise_separable_note}

    Note:

        {cudnn_reproducibility_note}



    Note:

        ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

        the input so the output has the shape as the input. However, this mode

        doesn't support any stride values other than 1.



    Note:

        This module supports complex data types i.e. ``complex32, complex64, complex128``.



    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int, tuple or str, optional): Padding added to both sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``,

            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel

            elements. Default: 1

        groups (int, optional): Number of blocked connections from input

            channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the

            output. Default: ``True``



    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`

        - Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where



          .. math::

              L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation}

                        \times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor



    Attributes:

        weight (Tensor): the learnable weights of the module of shape

            :math:`(\text{out\_channels},

            \frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`.

            The values of these weights are sampled from

            :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

            :math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`

        bias (Tensor):   the learnable bias of the module of shape

            (out_channels). If :attr:`bias` is ``True``, then the values of these weights are

            sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

            :math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`



    Examples::



        >>> m = nn.Conv1d(16, 33, 3, stride=2)

        >>> input = torch.randn(20, 16, 50)

        >>> output = m(input)



    .. _cross-correlation:

        https://en.wikipedia.org/wiki/Cross-correlation



    .. _link:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_1_t,

        stride: _size_1_t = 1,

        padding: Union[str, _size_1_t] = 0,

        dilation: _size_1_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',  # TODO: refine this type

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        # we create new variables below to make mypy happy since kernel_size has
        # type Union[int, Tuple[int]] and kernel_size_ has type Tuple[int]
        kernel_size_ = _single(kernel_size)
        stride_ = _single(stride)
        padding_ = padding if isinstance(padding, str) else _single(padding)
        dilation_ = _single(dilation)
        super().__init__(
            in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
            False, _single(0), groups, bias, padding_mode, **factory_kwargs)

    def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
        if self.padding_mode != 'zeros':
            return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
                            weight, bias, self.stride,
                            _single(0), self.dilation, self.groups)
        return F.conv1d(input, weight, bias, self.stride,
                        self.padding, self.dilation, self.groups)

    def forward(self, input: Tensor) -> Tensor:
        return self._conv_forward(input, self.weight, self.bias)


class Conv2d(_ConvNd):
    __doc__ = r"""Applies a 2D convolution over an input signal composed of several input

    planes.



    In the simplest case, the output value of the layer with input size

    :math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})`

    can be precisely described as:



    .. math::

        \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +

        \sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)





    where :math:`\star` is the valid 2D `cross-correlation`_ operator,

    :math:`N` is a batch size, :math:`C` denotes a number of channels,

    :math:`H` is a height of input planes in pixels, and :math:`W` is

    width in pixels.

    """ + r"""



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation, a single

      number or a tuple.



    * :attr:`padding` controls the amount of padding applied to the input. It

      can be either a string {{'valid', 'same'}} or an int / a tuple of ints giving the

      amount of implicit padding applied on both sides.



    * :attr:`dilation` controls the spacing between the kernel points; also

      known as the à trous algorithm. It is harder to describe, but this `link`_

      has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:



        - a single ``int`` -- in which case the same value is used for the height and width dimension

        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,

          and the second `int` for the width dimension



    Note:

        {depthwise_separable_note}



    Note:

        {cudnn_reproducibility_note}



    Note:

        ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

        the input so the output has the shape as the input. However, this mode

        doesn't support any stride values other than 1.



    Note:

        This module supports complex data types i.e. ``complex32, complex64, complex128``.



    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int, tuple or str, optional): Padding added to all four sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``,

            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

        groups (int, optional): Number of blocked connections from input

            channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the

            output. Default: ``True``

    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`

        - Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where



          .. math::

              H_{out} = \left\lfloor\frac{H_{in}  + 2 \times \text{padding}[0] - \text{dilation}[0]

                        \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor



          .. math::

              W_{out} = \left\lfloor\frac{W_{in}  + 2 \times \text{padding}[1] - \text{dilation}[1]

                        \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor



    Attributes:

        weight (Tensor): the learnable weights of the module of shape

            :math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`

            :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.

            The values of these weights are sampled from

            :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

            :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`

        bias (Tensor):   the learnable bias of the module of shape

            (out_channels). If :attr:`bias` is ``True``,

            then the values of these weights are

            sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

            :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`



    Examples:



        >>> # With square kernels and equal stride

        >>> m = nn.Conv2d(16, 33, 3, stride=2)

        >>> # non-square kernels and unequal stride and with padding

        >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))

        >>> # non-square kernels and unequal stride and with padding and dilation

        >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))

        >>> input = torch.randn(20, 16, 50, 100)

        >>> output = m(input)



    .. _cross-correlation:

        https://en.wikipedia.org/wiki/Cross-correlation



    .. _link:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_2_t,

        stride: _size_2_t = 1,

        padding: Union[str, _size_2_t] = 0,

        dilation: _size_2_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',  # TODO: refine this type

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size_ = _pair(kernel_size)
        stride_ = _pair(stride)
        padding_ = padding if isinstance(padding, str) else _pair(padding)
        dilation_ = _pair(dilation)
        super().__init__(
            in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
            False, _pair(0), groups, bias, padding_mode, **factory_kwargs)

    def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
        if self.padding_mode != 'zeros':
            return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
                            weight, bias, self.stride,
                            _pair(0), self.dilation, self.groups)
        return F.conv2d(input, weight, bias, self.stride,
                        self.padding, self.dilation, self.groups)

    def forward(self, input: Tensor) -> Tensor:
        return self._conv_forward(input, self.weight, self.bias)

class Conv3d(_ConvNd):
    __doc__ = r"""Applies a 3D convolution over an input signal composed of several input

    planes.



    In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)`

    and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as:



    .. math::

        out(N_i, C_{out_j}) = bias(C_{out_j}) +

                                \sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k)



    where :math:`\star` is the valid 3D `cross-correlation`_ operator

    """ + r"""



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation.



    * :attr:`padding` controls the amount of padding applied to the input. It

      can be either a string {{'valid', 'same'}} or a tuple of ints giving the

      amount of implicit padding applied on both sides.



    * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.

      It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:



        - a single ``int`` -- in which case the same value is used for the depth, height and width dimension

        - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,

          the second `int` for the height dimension and the third `int` for the width dimension



    Note:

        {depthwise_separable_note}



    Note:

        {cudnn_reproducibility_note}



    Note:

        ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

        the input so the output has the shape as the input. However, this mode

        doesn't support any stride values other than 1.



    Note:

        This module supports complex data types i.e. ``complex32, complex64, complex128``.



    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int, tuple or str, optional): Padding added to all six sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`

        - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`,

          where



          .. math::

              D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]

                    \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor



          .. math::

              H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]

                    \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor



          .. math::

              W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2]

                    \times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor



    Attributes:

        weight (Tensor): the learnable weights of the module of shape

                         :math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`

                         :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.

                         The values of these weights are sampled from

                         :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`

        bias (Tensor):   the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``,

                         then the values of these weights are

                         sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`



    Examples::



        >>> # With square kernels and equal stride

        >>> m = nn.Conv3d(16, 33, 3, stride=2)

        >>> # non-square kernels and unequal stride and with padding

        >>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))

        >>> input = torch.randn(20, 16, 10, 50, 100)

        >>> output = m(input)



    .. _cross-correlation:

        https://en.wikipedia.org/wiki/Cross-correlation



    .. _link:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_3_t,

        stride: _size_3_t = 1,

        padding: Union[str, _size_3_t] = 0,

        dilation: _size_3_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size_ = _triple(kernel_size)
        stride_ = _triple(stride)
        padding_ = padding if isinstance(padding, str) else _triple(padding)
        dilation_ = _triple(dilation)
        super().__init__(
            in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
            False, _triple(0), groups, bias, padding_mode, **factory_kwargs)

    def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
        if self.padding_mode != "zeros":
            return F.conv3d(
                F.pad(
                    input, self._reversed_padding_repeated_twice, mode=self.padding_mode
                ),
                weight,
                bias,
                self.stride,
                _triple(0),
                self.dilation,
                self.groups,
            )
        return F.conv3d(
            input, weight, bias, self.stride, self.padding, self.dilation, self.groups
        )

    def forward(self, input: Tensor) -> Tensor:
        return self._conv_forward(input, self.weight, self.bias)



class _ConvTransposeNd(_ConvNd):
    def __init__(self, in_channels, out_channels, kernel_size, stride,

                 padding, dilation, transposed, output_padding,

                 groups, bias, padding_mode, device=None, dtype=None) -> None:
        if padding_mode != 'zeros':
            raise ValueError(f'Only "zeros" padding mode is supported for {self.__class__.__name__}')

        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            in_channels, out_channels, kernel_size, stride,
            padding, dilation, transposed, output_padding,
            groups, bias, padding_mode, **factory_kwargs)

    # dilation being an optional parameter is for backwards
    # compatibility
    def _output_padding(self, input: Tensor, output_size: Optional[List[int]],

                        stride: List[int], padding: List[int], kernel_size: List[int],

                        num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]:
        if output_size is None:
            ret = _single(self.output_padding)  # converting to list if was not already
        else:
            has_batch_dim = input.dim() == num_spatial_dims + 2
            num_non_spatial_dims = 2 if has_batch_dim else 1
            if len(output_size) == num_non_spatial_dims + num_spatial_dims:
                output_size = output_size[num_non_spatial_dims:]
            if len(output_size) != num_spatial_dims:
                raise ValueError(
                    "ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
                    .format(num_spatial_dims, input.dim(), num_spatial_dims,
                            num_non_spatial_dims + num_spatial_dims, len(output_size)))

            min_sizes = torch.jit.annotate(List[int], [])
            max_sizes = torch.jit.annotate(List[int], [])
            for d in range(num_spatial_dims):
                dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] -
                            2 * padding[d] +
                            (dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1)
                min_sizes.append(dim_size)
                max_sizes.append(min_sizes[d] + stride[d] - 1)

            for i in range(len(output_size)):
                size = output_size[i]
                min_size = min_sizes[i]
                max_size = max_sizes[i]
                if size < min_size or size > max_size:
                    raise ValueError(
                        f"requested an output size of {output_size}, but valid sizes range "
                        f"from {min_sizes} to {max_sizes} (for an input of {input.size()[2:]})")

            res = torch.jit.annotate(List[int], [])
            for d in range(num_spatial_dims):
                res.append(output_size[d] - min_sizes[d])

            ret = res
        return ret


class ConvTranspose1d(_ConvTransposeNd):
    __doc__ = r"""Applies a 1D transposed convolution operator over an input image

    composed of several input planes.



    This module can be seen as the gradient of Conv1d with respect to its input.

    It is also known as a fractionally-strided convolution or

    a deconvolution (although it is not an actual deconvolution operation as it does

    not compute a true inverse of convolution). For more information, see the visualizations

    `here`_ and the `Deconvolutional Networks`_ paper.



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation.



    * :attr:`padding` controls the amount of implicit zero padding on both

      sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note

      below for details.



    * :attr:`output_padding` controls the additional size added to one side

      of the output shape. See note below for details.



    * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.

      It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    Note:

        The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``

        amount of zero padding to both sizes of the input. This is set so that

        when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d`

        are initialized with same parameters, they are inverses of each other in

        regard to the input and output shapes. However, when ``stride > 1``,

        :class:`~torch.nn.Conv1d` maps multiple input shapes to the same output

        shape. :attr:`output_padding` is provided to resolve this ambiguity by

        effectively increasing the calculated output shape on one side. Note

        that :attr:`output_padding` is only used to find output shape, but does

        not actually add zero-padding to output.



    Note:

        In some circumstances when using the CUDA backend with CuDNN, this operator

        may select a nondeterministic algorithm to increase performance. If this is

        undesirable, you can try to make the operation deterministic (potentially at

        a performance cost) by setting ``torch.backends.cudnn.deterministic =

        True``.

        Please see the notes on :doc:`/notes/randomness` for background.





    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`

        - Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where



          .. math::

              L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation}

                        \times (\text{kernel\_size} - 1) + \text{output\_padding} + 1



    Attributes:

        weight (Tensor): the learnable weights of the module of shape

                         :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`

                         :math:`\text{kernel\_size})`.

                         The values of these weights are sampled from

                         :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`

        bias (Tensor):   the learnable bias of the module of shape (out_channels).

                         If :attr:`bias` is ``True``, then the values of these weights are

                         sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`



    .. _`here`:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md



    .. _`Deconvolutional Networks`:

        https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_1_t,

        stride: _size_1_t = 1,

        padding: _size_1_t = 0,

        output_padding: _size_1_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: _size_1_t = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _single(kernel_size)
        stride = _single(stride)
        padding = _single(padding)
        dilation = _single(dilation)
        output_padding = _single(output_padding)
        super().__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            True, output_padding, groups, bias, padding_mode, **factory_kwargs)

    def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
        if self.padding_mode != 'zeros':
            raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')

        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
        num_spatial_dims = 1
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size,  # type: ignore[arg-type]
            num_spatial_dims, self.dilation)  # type: ignore[arg-type]
        return F.conv_transpose1d(
            input, self.weight, self.bias, self.stride, self.padding,
            output_padding, self.groups, self.dilation)


class ConvTranspose2d(_ConvTransposeNd):
    __doc__ = r"""Applies a 2D transposed convolution operator over an input image

    composed of several input planes.



    This module can be seen as the gradient of Conv2d with respect to its input.

    It is also known as a fractionally-strided convolution or

    a deconvolution (although it is not an actual deconvolution operation as it does

    not compute a true inverse of convolution). For more information, see the visualizations

    `here`_ and the `Deconvolutional Networks`_ paper.



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation.



    * :attr:`padding` controls the amount of implicit zero padding on both

      sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note

      below for details.



    * :attr:`output_padding` controls the additional size added to one side

      of the output shape. See note below for details.



    * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.

      It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`

    can either be:



        - a single ``int`` -- in which case the same value is used for the height and width dimensions

        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,

          and the second `int` for the width dimension



    Note:

        The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``

        amount of zero padding to both sizes of the input. This is set so that

        when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d`

        are initialized with same parameters, they are inverses of each other in

        regard to the input and output shapes. However, when ``stride > 1``,

        :class:`~torch.nn.Conv2d` maps multiple input shapes to the same output

        shape. :attr:`output_padding` is provided to resolve this ambiguity by

        effectively increasing the calculated output shape on one side. Note

        that :attr:`output_padding` is only used to find output shape, but does

        not actually add zero-padding to output.



    Note:

        {cudnn_reproducibility_note}



    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of each dimension in the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of each dimension in the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`

        - Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where



        .. math::

              H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]

                        \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1

        .. math::

              W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]

                        \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1



    Attributes:

        weight (Tensor): the learnable weights of the module of shape

                         :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`

                         :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.

                         The values of these weights are sampled from

                         :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`

        bias (Tensor):   the learnable bias of the module of shape (out_channels)

                         If :attr:`bias` is ``True``, then the values of these weights are

                         sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`



    Examples::



        >>> # With square kernels and equal stride

        >>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)

        >>> # non-square kernels and unequal stride and with padding

        >>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))

        >>> input = torch.randn(20, 16, 50, 100)

        >>> output = m(input)

        >>> # exact output size can be also specified as an argument

        >>> input = torch.randn(1, 16, 12, 12)

        >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)

        >>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)

        >>> h = downsample(input)

        >>> h.size()

        torch.Size([1, 16, 6, 6])

        >>> output = upsample(h, output_size=input.size())

        >>> output.size()

        torch.Size([1, 16, 12, 12])



    .. _`here`:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md



    .. _`Deconvolutional Networks`:

        https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_2_t,

        stride: _size_2_t = 1,

        padding: _size_2_t = 0,

        output_padding: _size_2_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: _size_2_t = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        output_padding = _pair(output_padding)
        super().__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            True, output_padding, groups, bias, padding_mode, **factory_kwargs)

    def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
        if self.padding_mode != 'zeros':
            raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d')

        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
        num_spatial_dims = 2
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size,  # type: ignore[arg-type]
            num_spatial_dims, self.dilation)  # type: ignore[arg-type]

        return F.conv_transpose2d(
            input, self.weight, self.bias, self.stride, self.padding,
            output_padding, self.groups, self.dilation)


class ConvTranspose3d(_ConvTransposeNd):
    __doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input

    planes.

    The transposed convolution operator multiplies each input value element-wise by a learnable kernel,

    and sums over the outputs from all input feature planes.



    This module can be seen as the gradient of Conv3d with respect to its input.

    It is also known as a fractionally-strided convolution or

    a deconvolution (although it is not an actual deconvolution operation as it does

    not compute a true inverse of convolution). For more information, see the visualizations

    `here`_ and the `Deconvolutional Networks`_ paper.



    This module supports :ref:`TensorFloat32<tf32_on_ampere>`.



    On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.



    * :attr:`stride` controls the stride for the cross-correlation.



    * :attr:`padding` controls the amount of implicit zero padding on both

      sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note

      below for details.



    * :attr:`output_padding` controls the additional size added to one side

      of the output shape. See note below for details.



    * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.

      It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.



    {groups_note}



    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`

    can either be:



        - a single ``int`` -- in which case the same value is used for the depth, height and width dimensions

        - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,

          the second `int` for the height dimension and the third `int` for the width dimension



    Note:

        The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``

        amount of zero padding to both sizes of the input. This is set so that

        when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d`

        are initialized with same parameters, they are inverses of each other in

        regard to the input and output shapes. However, when ``stride > 1``,

        :class:`~torch.nn.Conv3d` maps multiple input shapes to the same output

        shape. :attr:`output_padding` is provided to resolve this ambiguity by

        effectively increasing the calculated output shape on one side. Note

        that :attr:`output_padding` is only used to find output shape, but does

        not actually add zero-padding to output.



    Note:

        {cudnn_reproducibility_note}



    Args:

        in_channels (int): Number of channels in the input image

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of each dimension in the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of each dimension in the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    """.format(**reproducibility_notes, **convolution_notes) + r"""



    Shape:

        - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`

        - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or

          :math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where



        .. math::

              D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]

                        \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1

        .. math::

              H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]

                        \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1

        .. math::

              W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2]

                        \times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1





    Attributes:

        weight (Tensor): the learnable weights of the module of shape

                         :math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`

                         :math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.

                         The values of these weights are sampled from

                         :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`

        bias (Tensor):   the learnable bias of the module of shape (out_channels)

                         If :attr:`bias` is ``True``, then the values of these weights are

                         sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where

                         :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`



    Examples::



        >>> # With square kernels and equal stride

        >>> m = nn.ConvTranspose3d(16, 33, 3, stride=2)

        >>> # non-square kernels and unequal stride and with padding

        >>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2))

        >>> input = torch.randn(20, 16, 10, 50, 100)

        >>> output = m(input)



    .. _`here`:

        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md



    .. _`Deconvolutional Networks`:

        https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf

    """

    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        kernel_size: _size_3_t,

        stride: _size_3_t = 1,

        padding: _size_3_t = 0,

        output_padding: _size_3_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: _size_3_t = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        kernel_size = _triple(kernel_size)
        stride = _triple(stride)
        padding = _triple(padding)
        dilation = _triple(dilation)
        output_padding = _triple(output_padding)
        super().__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            True, output_padding, groups, bias, padding_mode, **factory_kwargs)

    def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
        if self.padding_mode != 'zeros':
            raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d')

        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
        num_spatial_dims = 3
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size,  # type: ignore[arg-type]
            num_spatial_dims, self.dilation)  # type: ignore[arg-type]

        return F.conv_transpose3d(
            input, self.weight, self.bias, self.stride, self.padding,
            output_padding, self.groups, self.dilation)


# TODO: Deprecate and remove the following alias `_ConvTransposeMixin`.
#
# `_ConvTransposeMixin` was a mixin that was removed.  It is meant to be used
# with `_ConvNd` to construct actual module classes that implements conv
# transpose ops:
#
#   class MyConvTranspose(_ConvNd, _ConvTransposeMixin):
#       ...
#
# In PyTorch, it has been replaced by `_ConvTransposeNd`, which is a proper
# subclass of `_ConvNd`.  However, some user code in the wild still (incorrectly)
# use the internal class `_ConvTransposeMixin`.  Hence, we provide this alias
# for BC, because it is cheap and easy for us to do so, even though that
# `_ConvTransposeNd` is really not a mixin anymore (but multiple inheritance as
# above would still work).
class _ConvTransposeMixin(_ConvTransposeNd):
    def __init__(self, *args, **kwargs):
        warnings.warn(
            "_ConvTransposeMixin is a deprecated internal class. "
            "Please consider using public APIs.")
        super().__init__(*args, **kwargs)


# TODO: Conv2dLocal
# TODO: Conv2dMap
# TODO: ConvTranspose2dMap


class _LazyConvXdMixin(LazyModuleMixin):
    groups: int
    transposed: bool
    in_channels: int
    out_channels: int
    kernel_size: Tuple[int, ...]
    weight: UninitializedParameter
    bias: UninitializedParameter

    def reset_parameters(self) -> None:
        # has_uninitialized_params is defined in parent class and it is using a protocol on self
        if not self.has_uninitialized_params() and self.in_channels != 0:  # type: ignore[misc]
            # "type:ignore[..]" is required because mypy thinks that "reset_parameters" is undefined
            # in super class. Turns out that it is defined in _ConvND which is inherited by any class
            # that also inherits _LazyConvXdMixin
            super().reset_parameters()  # type: ignore[misc]

    # Signature of "initialize_parameters" is incompatible with the definition in supertype LazyModuleMixin
    def initialize_parameters(self, input) -> None:  # type: ignore[override]
        # defined by parent class but using a protocol
        if self.has_uninitialized_params():  # type: ignore[misc]
            self.in_channels = self._get_in_channels(input)
            if self.in_channels % self.groups != 0:
                raise ValueError('in_channels must be divisible by groups')
            assert isinstance(self.weight, UninitializedParameter)
            if self.transposed:
                self.weight.materialize((
                    self.in_channels, self.out_channels // self.groups, *self.kernel_size))
            else:
                self.weight.materialize((
                    self.out_channels, self.in_channels // self.groups, *self.kernel_size))
            if self.bias is not None:
                assert isinstance(self.bias, UninitializedParameter)
                self.bias.materialize((self.out_channels,))
            self.reset_parameters()

    # Function to extract in_channels from first input.
    def _get_in_channels(self, input: Tensor) -> int:
        num_spatial_dims = self._get_num_spatial_dims()
        num_dims_no_batch = num_spatial_dims + 1  # +1 for channels dim
        num_dims_batch = num_dims_no_batch + 1
        if input.dim() not in (num_dims_no_batch, num_dims_batch):
            raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but "
                               "got input of size: {}".format(num_dims_no_batch, num_dims_batch,
                                                              self.__class__.__name__, input.shape))
        return input.shape[1] if input.dim() == num_dims_batch else input.shape[0]

    # Function to return the number of spatial dims expected for inputs to the module.
    # This is expected to be implemented by subclasses.
    def _get_num_spatial_dims(self) -> int:
        raise NotImplementedError()


# LazyConv1d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConv1d(_LazyConvXdMixin, Conv1d):  # type: ignore[misc]
    r"""A :class:`torch.nn.Conv1d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`Conv1d` is inferred from the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): Zero-padding added to both sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``,

            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel

            elements. Default: 1

        groups (int, optional): Number of blocked connections from input

            channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the

            output. Default: ``True``



    .. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = Conv1d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_1_t,

        stride: _size_1_t = 1,

        padding: _size_1_t = 0,

        dilation: _size_1_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 1


# LazyConv2d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConv2d(_LazyConvXdMixin, Conv2d):  # type: ignore[misc]
    r"""A :class:`torch.nn.Conv2d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`Conv2d` that is inferred from the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): Zero-padding added to both sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``,

            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel

            elements. Default: 1

        groups (int, optional): Number of blocked connections from input

            channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the

            output. Default: ``True``



    .. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = Conv2d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_2_t,

        stride: _size_2_t = 1,

        padding: _size_2_t = 0,

        dilation: _size_2_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',  # TODO: refine this type

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 2


# LazyConv3d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConv3d(_LazyConvXdMixin, Conv3d):  # type: ignore[misc]
    r"""A :class:`torch.nn.Conv3d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`Conv3d` that is inferred from

    the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): Zero-padding added to both sides of

            the input. Default: 0

        padding_mode (str, optional): ``'zeros'``, ``'reflect'``,

            ``'replicate'`` or ``'circular'``. Default: ``'zeros'``

        dilation (int or tuple, optional): Spacing between kernel

            elements. Default: 1

        groups (int, optional): Number of blocked connections from input

            channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the

            output. Default: ``True``



    .. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = Conv3d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_3_t,

        stride: _size_3_t = 1,

        padding: _size_3_t = 0,

        dilation: _size_3_t = 1,

        groups: int = 1,

        bias: bool = True,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 3


# LazyConvTranspose1d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d):  # type: ignore[misc]
    r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from

    the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1



    .. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = ConvTranspose1d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_1_t,

        stride: _size_1_t = 1,

        padding: _size_1_t = 0,

        output_padding: _size_1_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: _size_1_t = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            output_padding,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            dilation,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 1


# LazyConvTranspose2d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d):  # type: ignore[misc]
    r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`ConvTranspose2d` is inferred from

    the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of each dimension in the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of each dimension in the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1



    .. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = ConvTranspose2d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_2_t,

        stride: _size_2_t = 1,

        padding: _size_2_t = 0,

        output_padding: _size_2_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: int = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            output_padding,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            dilation,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 2


# LazyConvTranspose3d defines weight as a Tensor but derived class defines it as UnitializeParameter
class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d):  # type: ignore[misc]
    r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of the ``in_channels`` argument.



    The ``in_channels`` argument of the :class:`ConvTranspose3d` is inferred from

    the ``input.size(1)``.

    The attributes that will be lazily initialized are `weight` and `bias`.



    Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation

    on lazy modules and their limitations.



    Args:

        out_channels (int): Number of channels produced by the convolution

        kernel_size (int or tuple): Size of the convolving kernel

        stride (int or tuple, optional): Stride of the convolution. Default: 1

        padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding

            will be added to both sides of each dimension in the input. Default: 0

        output_padding (int or tuple, optional): Additional size added to one side

            of each dimension in the output shape. Default: 0

        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``

        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1



    .. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`

    """

    # super class define this variable as None. "type: ignore[..] is required
    # since we are redefining the variable.
    cls_to_become = ConvTranspose3d  # type: ignore[assignment]

    def __init__(

        self,

        out_channels: int,

        kernel_size: _size_3_t,

        stride: _size_3_t = 1,

        padding: _size_3_t = 0,

        output_padding: _size_3_t = 0,

        groups: int = 1,

        bias: bool = True,

        dilation: _size_3_t = 1,

        padding_mode: str = 'zeros',

        device=None,

        dtype=None

    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__(
            0,
            0,
            kernel_size,
            stride,
            padding,
            output_padding,
            groups,
            # bias is hardcoded to False to avoid creating tensor
            # that will soon be overwritten.
            False,
            dilation,
            padding_mode,
            **factory_kwargs
        )
        self.weight = UninitializedParameter(**factory_kwargs)
        self.out_channels = out_channels
        if bias:
            self.bias = UninitializedParameter(**factory_kwargs)

    def _get_num_spatial_dims(self) -> int:
        return 3