Spaces:
Sleeping
Sleeping
import warnings | |
from collections import OrderedDict, abc as container_abcs | |
from itertools import chain, islice | |
import operator | |
import torch | |
from .module import Module | |
from ..parameter import Parameter | |
from torch._jit_internal import _copy_to_script_wrapper | |
from typing import Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union | |
from typing_extensions import Self | |
__all__ = ['Container', 'Sequential', 'ModuleList', 'ModuleDict', 'ParameterList', 'ParameterDict'] | |
T = TypeVar('T', bound=Module) | |
# Copied from torch.nn.modules.module, required for a custom __repr__ for ModuleList | |
def _addindent(s_, numSpaces): | |
s = s_.split('\n') | |
# don't do anything for single-line stuff | |
if len(s) == 1: | |
return s_ | |
first = s.pop(0) | |
s = [(numSpaces * ' ') + line for line in s] | |
s = '\n'.join(s) | |
s = first + '\n' + s | |
return s | |
class Container(Module): | |
def __init__(self, **kwargs: Any) -> None: | |
super().__init__() | |
# DeprecationWarning is ignored by default <sigh> | |
warnings.warn("nn.Container is deprecated. All of it's functionality " | |
"is now implemented in nn.Module. Subclass that instead.") | |
for key, value in kwargs.items(): | |
self.add_module(key, value) | |
class Sequential(Module): | |
r"""A sequential container. | |
Modules will be added to it in the order they are passed in the | |
constructor. Alternatively, an ``OrderedDict`` of modules can be | |
passed in. The ``forward()`` method of ``Sequential`` accepts any | |
input and forwards it to the first module it contains. It then | |
"chains" outputs to inputs sequentially for each subsequent module, | |
finally returning the output of the last module. | |
The value a ``Sequential`` provides over manually calling a sequence | |
of modules is that it allows treating the whole container as a | |
single module, such that performing a transformation on the | |
``Sequential`` applies to each of the modules it stores (which are | |
each a registered submodule of the ``Sequential``). | |
What's the difference between a ``Sequential`` and a | |
:class:`torch.nn.ModuleList`? A ``ModuleList`` is exactly what it | |
sounds like--a list for storing ``Module`` s! On the other hand, | |
the layers in a ``Sequential`` are connected in a cascading way. | |
Example:: | |
# Using Sequential to create a small model. When `model` is run, | |
# input will first be passed to `Conv2d(1,20,5)`. The output of | |
# `Conv2d(1,20,5)` will be used as the input to the first | |
# `ReLU`; the output of the first `ReLU` will become the input | |
# for `Conv2d(20,64,5)`. Finally, the output of | |
# `Conv2d(20,64,5)` will be used as input to the second `ReLU` | |
model = nn.Sequential( | |
nn.Conv2d(1,20,5), | |
nn.ReLU(), | |
nn.Conv2d(20,64,5), | |
nn.ReLU() | |
) | |
# Using Sequential with OrderedDict. This is functionally the | |
# same as the above code | |
model = nn.Sequential(OrderedDict([ | |
('conv1', nn.Conv2d(1,20,5)), | |
('relu1', nn.ReLU()), | |
('conv2', nn.Conv2d(20,64,5)), | |
('relu2', nn.ReLU()) | |
])) | |
""" | |
_modules: Dict[str, Module] # type: ignore[assignment] | |
def __init__(self, *args: Module) -> None: | |
... | |
def __init__(self, arg: 'OrderedDict[str, Module]') -> None: | |
... | |
def __init__(self, *args): | |
super().__init__() | |
if len(args) == 1 and isinstance(args[0], OrderedDict): | |
for key, module in args[0].items(): | |
self.add_module(key, module) | |
else: | |
for idx, module in enumerate(args): | |
self.add_module(str(idx), module) | |
def _get_item_by_idx(self, iterator, idx) -> T: # type: ignore[misc, type-var] | |
"""Get the idx-th item of the iterator.""" | |
size = len(self) | |
idx = operator.index(idx) | |
if not -size <= idx < size: | |
raise IndexError(f'index {idx} is out of range') | |
idx %= size | |
return next(islice(iterator, idx, None)) | |
def __getitem__(self, idx: Union[slice, int]) -> Union['Sequential', T]: | |
if isinstance(idx, slice): | |
return self.__class__(OrderedDict(list(self._modules.items())[idx])) | |
else: | |
return self._get_item_by_idx(self._modules.values(), idx) | |
def __setitem__(self, idx: int, module: Module) -> None: | |
key: str = self._get_item_by_idx(self._modules.keys(), idx) | |
return setattr(self, key, module) | |
def __delitem__(self, idx: Union[slice, int]) -> None: | |
if isinstance(idx, slice): | |
for key in list(self._modules.keys())[idx]: | |
delattr(self, key) | |
else: | |
key = self._get_item_by_idx(self._modules.keys(), idx) | |
delattr(self, key) | |
# To preserve numbering | |
str_indices = [str(i) for i in range(len(self._modules))] | |
self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) | |
def __len__(self) -> int: | |
return len(self._modules) | |
def __add__(self, other) -> 'Sequential': | |
if isinstance(other, Sequential): | |
ret = Sequential() | |
for layer in self: | |
ret.append(layer) | |
for layer in other: | |
ret.append(layer) | |
return ret | |
else: | |
raise ValueError('add operator supports only objects ' | |
f'of Sequential class, but {str(type(other))} is given.') | |
def pop(self, key: Union[int, slice]) -> Module: | |
v = self[key] | |
del self[key] | |
return v | |
def __iadd__(self, other) -> Self: | |
if isinstance(other, Sequential): | |
offset = len(self) | |
for i, module in enumerate(other): | |
self.add_module(str(i + offset), module) | |
return self | |
else: | |
raise ValueError('add operator supports only objects ' | |
f'of Sequential class, but {str(type(other))} is given.') | |
def __mul__(self, other: int) -> 'Sequential': | |
if not isinstance(other, int): | |
raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") | |
elif (other <= 0): | |
raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") | |
else: | |
combined = Sequential() | |
offset = 0 | |
for _ in range(other): | |
for module in self: | |
combined.add_module(str(offset), module) | |
offset += 1 | |
return combined | |
def __rmul__(self, other: int) -> 'Sequential': | |
return self.__mul__(other) | |
def __imul__(self, other: int) -> Self: | |
if not isinstance(other, int): | |
raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") | |
elif (other <= 0): | |
raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") | |
else: | |
len_original = len(self) | |
offset = len(self) | |
for _ in range(other - 1): | |
for i in range(len_original): | |
self.add_module(str(i + offset), self._modules[str(i)]) | |
offset += len_original | |
return self | |
def __dir__(self): | |
keys = super().__dir__() | |
keys = [key for key in keys if not key.isdigit()] | |
return keys | |
def __iter__(self) -> Iterator[Module]: | |
return iter(self._modules.values()) | |
# NB: We can't really type check this function as the type of input | |
# may change dynamically (as is tested in | |
# TestScript.test_sequential_intermediary_types). Cannot annotate | |
# with Any as TorchScript expects a more precise type | |
def forward(self, input): | |
for module in self: | |
input = module(input) | |
return input | |
def append(self, module: Module) -> 'Sequential': | |
r"""Append a given module to the end. | |
Args: | |
module (nn.Module): module to append | |
""" | |
self.add_module(str(len(self)), module) | |
return self | |
def insert(self, index: int, module: Module) -> 'Sequential': | |
if not isinstance(module, Module): | |
raise AssertionError( | |
f'module should be of type: {Module}') | |
n = len(self._modules) | |
if not (-n <= index <= n): | |
raise IndexError( | |
f'Index out of range: {index}') | |
if index < 0: | |
index += n | |
for i in range(n, index, -1): | |
self._modules[str(i)] = self._modules[str(i - 1)] | |
self._modules[str(index)] = module | |
return self | |
def extend(self, sequential) -> 'Sequential': | |
for layer in sequential: | |
self.append(layer) | |
return self | |
class ModuleList(Module): | |
r"""Holds submodules in a list. | |
:class:`~torch.nn.ModuleList` can be indexed like a regular Python list, but | |
modules it contains are properly registered, and will be visible by all | |
:class:`~torch.nn.Module` methods. | |
Args: | |
modules (iterable, optional): an iterable of modules to add | |
Example:: | |
class MyModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) | |
def forward(self, x): | |
# ModuleList can act as an iterable, or be indexed using ints | |
for i, l in enumerate(self.linears): | |
x = self.linears[i // 2](x) + l(x) | |
return x | |
""" | |
_modules: Dict[str, Module] # type: ignore[assignment] | |
def __init__(self, modules: Optional[Iterable[Module]] = None) -> None: | |
super().__init__() | |
if modules is not None: | |
self += modules | |
def _get_abs_string_index(self, idx): | |
"""Get the absolute index for the list of modules.""" | |
idx = operator.index(idx) | |
if not (-len(self) <= idx < len(self)): | |
raise IndexError(f'index {idx} is out of range') | |
if idx < 0: | |
idx += len(self) | |
return str(idx) | |
def __getitem__(self, idx: Union[int, slice]) -> Union[Module, 'ModuleList']: | |
if isinstance(idx, slice): | |
return self.__class__(list(self._modules.values())[idx]) | |
else: | |
return self._modules[self._get_abs_string_index(idx)] | |
def __setitem__(self, idx: int, module: Module) -> None: | |
idx = self._get_abs_string_index(idx) | |
return setattr(self, str(idx), module) | |
def __delitem__(self, idx: Union[int, slice]) -> None: | |
if isinstance(idx, slice): | |
for k in range(len(self._modules))[idx]: | |
delattr(self, str(k)) | |
else: | |
delattr(self, self._get_abs_string_index(idx)) | |
# To preserve numbering, self._modules is being reconstructed with modules after deletion | |
str_indices = [str(i) for i in range(len(self._modules))] | |
self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) | |
def __len__(self) -> int: | |
return len(self._modules) | |
def __iter__(self) -> Iterator[Module]: | |
return iter(self._modules.values()) | |
def __iadd__(self, modules: Iterable[Module]) -> Self: | |
return self.extend(modules) | |
def __add__(self, other: Iterable[Module]) -> 'ModuleList': | |
combined = ModuleList() | |
for i, module in enumerate(chain(self, other)): | |
combined.add_module(str(i), module) | |
return combined | |
def __repr__(self): | |
"""Return a custom repr for ModuleList that compresses repeated module representations.""" | |
list_of_reprs = [repr(item) for item in self] | |
if len(list_of_reprs) == 0: | |
return self._get_name() + '()' | |
start_end_indices = [[0, 0]] | |
repeated_blocks = [list_of_reprs[0]] | |
for i, r in enumerate(list_of_reprs[1:], 1): | |
if r == repeated_blocks[-1]: | |
start_end_indices[-1][1] += 1 | |
continue | |
start_end_indices.append([i, i]) | |
repeated_blocks.append(r) | |
lines = [] | |
main_str = self._get_name() + '(' | |
for (start_id, end_id), b in zip(start_end_indices, repeated_blocks): | |
local_repr = f"({start_id}): {b}" # default repr | |
if start_id != end_id: | |
n = end_id - start_id + 1 | |
local_repr = f"({start_id}-{end_id}): {n} x {b}" | |
local_repr = _addindent(local_repr, 2) | |
lines.append(local_repr) | |
main_str += '\n ' + '\n '.join(lines) + '\n' | |
main_str += ')' | |
return main_str | |
def __dir__(self): | |
keys = super().__dir__() | |
keys = [key for key in keys if not key.isdigit()] | |
return keys | |
def insert(self, index: int, module: Module) -> None: | |
r"""Insert a given module before a given index in the list. | |
Args: | |
index (int): index to insert. | |
module (nn.Module): module to insert | |
""" | |
for i in range(len(self._modules), index, -1): | |
self._modules[str(i)] = self._modules[str(i - 1)] | |
self._modules[str(index)] = module | |
def append(self, module: Module) -> 'ModuleList': | |
r"""Append a given module to the end of the list. | |
Args: | |
module (nn.Module): module to append | |
""" | |
self.add_module(str(len(self)), module) | |
return self | |
def pop(self, key: Union[int, slice]) -> Module: | |
v = self[key] | |
del self[key] | |
return v | |
def extend(self, modules: Iterable[Module]) -> Self: | |
r"""Append modules from a Python iterable to the end of the list. | |
Args: | |
modules (iterable): iterable of modules to append | |
""" | |
if not isinstance(modules, container_abcs.Iterable): | |
raise TypeError("ModuleList.extend should be called with an " | |
"iterable, but got " + type(modules).__name__) | |
offset = len(self) | |
for i, module in enumerate(modules): | |
self.add_module(str(offset + i), module) | |
return self | |
# remove forward alltogether to fallback on Module's _forward_unimplemented | |
class ModuleDict(Module): | |
r"""Holds submodules in a dictionary. | |
:class:`~torch.nn.ModuleDict` can be indexed like a regular Python dictionary, | |
but modules it contains are properly registered, and will be visible by all | |
:class:`~torch.nn.Module` methods. | |
:class:`~torch.nn.ModuleDict` is an **ordered** dictionary that respects | |
* the order of insertion, and | |
* in :meth:`~torch.nn.ModuleDict.update`, the order of the merged | |
``OrderedDict``, ``dict`` (started from Python 3.6) or another | |
:class:`~torch.nn.ModuleDict` (the argument to | |
:meth:`~torch.nn.ModuleDict.update`). | |
Note that :meth:`~torch.nn.ModuleDict.update` with other unordered mapping | |
types (e.g., Python's plain ``dict`` before Python version 3.6) does not | |
preserve the order of the merged mapping. | |
Args: | |
modules (iterable, optional): a mapping (dictionary) of (string: module) | |
or an iterable of key-value pairs of type (string, module) | |
Example:: | |
class MyModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.choices = nn.ModuleDict({ | |
'conv': nn.Conv2d(10, 10, 3), | |
'pool': nn.MaxPool2d(3) | |
}) | |
self.activations = nn.ModuleDict([ | |
['lrelu', nn.LeakyReLU()], | |
['prelu', nn.PReLU()] | |
]) | |
def forward(self, x, choice, act): | |
x = self.choices[choice](x) | |
x = self.activations[act](x) | |
return x | |
""" | |
_modules: Dict[str, Module] # type: ignore[assignment] | |
def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None: | |
super().__init__() | |
if modules is not None: | |
self.update(modules) | |
def __getitem__(self, key: str) -> Module: | |
return self._modules[key] | |
def __setitem__(self, key: str, module: Module) -> None: | |
self.add_module(key, module) | |
def __delitem__(self, key: str) -> None: | |
del self._modules[key] | |
def __len__(self) -> int: | |
return len(self._modules) | |
def __iter__(self) -> Iterator[str]: | |
return iter(self._modules) | |
def __contains__(self, key: str) -> bool: | |
return key in self._modules | |
def clear(self) -> None: | |
"""Remove all items from the ModuleDict.""" | |
self._modules.clear() | |
def pop(self, key: str) -> Module: | |
r"""Remove key from the ModuleDict and return its module. | |
Args: | |
key (str): key to pop from the ModuleDict | |
""" | |
v = self[key] | |
del self[key] | |
return v | |
def keys(self) -> Iterable[str]: | |
r"""Return an iterable of the ModuleDict keys.""" | |
return self._modules.keys() | |
def items(self) -> Iterable[Tuple[str, Module]]: | |
r"""Return an iterable of the ModuleDict key/value pairs.""" | |
return self._modules.items() | |
def values(self) -> Iterable[Module]: | |
r"""Return an iterable of the ModuleDict values.""" | |
return self._modules.values() | |
def update(self, modules: Mapping[str, Module]) -> None: | |
r"""Update the :class:`~torch.nn.ModuleDict` with key-value pairs from a mapping, overwriting existing keys. | |
.. note:: | |
If :attr:`modules` is an ``OrderedDict``, a :class:`~torch.nn.ModuleDict`, or | |
an iterable of key-value pairs, the order of new elements in it is preserved. | |
Args: | |
modules (iterable): a mapping (dictionary) from string to :class:`~torch.nn.Module`, | |
or an iterable of key-value pairs of type (string, :class:`~torch.nn.Module`) | |
""" | |
if not isinstance(modules, container_abcs.Iterable): | |
raise TypeError("ModuleDict.update should be called with an " | |
"iterable of key/value pairs, but got " + | |
type(modules).__name__) | |
if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)): | |
for key, module in modules.items(): | |
self[key] = module | |
else: | |
# modules here can be a list with two items | |
for j, m in enumerate(modules): | |
if not isinstance(m, container_abcs.Iterable): | |
raise TypeError("ModuleDict update sequence element " | |
"#" + str(j) + " should be Iterable; is" + | |
type(m).__name__) | |
if not len(m) == 2: | |
raise ValueError("ModuleDict update sequence element " | |
"#" + str(j) + " has length " + str(len(m)) + | |
"; 2 is required") | |
# modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)] | |
# that's too cumbersome to type correctly with overloads, so we add an ignore here | |
self[m[0]] = m[1] # type: ignore[assignment] | |
# remove forward alltogether to fallback on Module's _forward_unimplemented | |
class ParameterList(Module): | |
r"""Holds parameters in a list. | |
:class:`~torch.nn.ParameterList` can be used like a regular Python | |
list, but Tensors that are :class:`~torch.nn.Parameter` are properly registered, | |
and will be visible by all :class:`~torch.nn.Module` methods. | |
Note that the constructor, assigning an element of the list, the | |
:meth:`~torch.nn.ParameterDict.append` method and the :meth:`~torch.nn.ParameterDict.extend` | |
method will convert any :class:`~torch.Tensor` into :class:`~torch.nn.Parameter`. | |
Args: | |
parameters (iterable, optional): an iterable of elements to add to the list. | |
Example:: | |
class MyModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)]) | |
def forward(self, x): | |
# ParameterList can act as an iterable, or be indexed using ints | |
for i, p in enumerate(self.params): | |
x = self.params[i // 2].mm(x) + p.mm(x) | |
return x | |
""" | |
def __init__(self, values: Optional[Iterable[Any]] = None) -> None: | |
super().__init__() | |
self._size = 0 | |
if values is not None: | |
self += values | |
def _get_abs_string_index(self, idx): | |
"""Get the absolute index for the list of modules.""" | |
idx = operator.index(idx) | |
if not (-len(self) <= idx < len(self)): | |
raise IndexError(f'index {idx} is out of range') | |
if idx < 0: | |
idx += len(self) | |
return str(idx) | |
def __getitem__(self, idx: int) -> Any: | |
... | |
def __getitem__(self: T, idx: slice) -> T: | |
... | |
def __getitem__(self, idx): | |
if isinstance(idx, slice): | |
start, stop, step = idx.indices(len(self)) | |
out = self.__class__() | |
for i in range(start, stop, step): | |
out.append(self[i]) | |
return out | |
else: | |
idx = self._get_abs_string_index(idx) | |
return getattr(self, str(idx)) | |
def __setitem__(self, idx: int, param: Any) -> None: | |
# Note that all other function that add an entry to the list part of | |
# the ParameterList end up here. So this is the only place where we need | |
# to wrap things into Parameter if needed. | |
# Objects added via setattr() are not in the list part and thus won't | |
# call into this function. | |
idx = self._get_abs_string_index(idx) | |
if isinstance(param, torch.Tensor) and not isinstance(param, Parameter): | |
param = Parameter(param) | |
return setattr(self, str(idx), param) | |
def __len__(self) -> int: | |
return self._size | |
def __iter__(self) -> Iterator[Any]: | |
return iter(self[i] for i in range(len(self))) | |
def __iadd__(self, parameters: Iterable[Any]) -> Self: | |
return self.extend(parameters) | |
def __dir__(self): | |
keys = super().__dir__() | |
keys = [key for key in keys if not key.isdigit()] | |
return keys | |
def append(self, value: Any) -> 'ParameterList': | |
"""Append a given value at the end of the list. | |
Args: | |
value (Any): value to append | |
""" | |
new_idx = len(self) | |
self._size += 1 | |
self[new_idx] = value | |
return self | |
def extend(self, values: Iterable[Any]) -> Self: | |
"""Append values from a Python iterable to the end of the list. | |
Args: | |
values (iterable): iterable of values to append | |
""" | |
# Tensor is an iterable but we never want to unpack it here | |
if not isinstance(values, container_abcs.Iterable) or isinstance(values, torch.Tensor): | |
raise TypeError("ParameterList.extend should be called with an " | |
"iterable, but got " + type(values).__name__) | |
for value in values: | |
self.append(value) | |
return self | |
def extra_repr(self) -> str: | |
child_lines = [] | |
for k, p in enumerate(self): | |
if isinstance(p, torch.Tensor): | |
size_str = 'x'.join(str(size) for size in p.size()) | |
if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]: | |
device_str = f' ({p.device})' | |
else: | |
device_str = '' | |
parastr = '{} containing: [{} of size {}{}]'.format( | |
"Parameter" if isinstance(p, Parameter) else "Tensor", | |
p.dtype, size_str, device_str) | |
child_lines.append(' (' + str(k) + '): ' + parastr) | |
else: | |
child_lines.append(' (' + str(k) + '): Object of type: ' + type(p).__name__) | |
tmpstr = '\n'.join(child_lines) | |
return tmpstr | |
def __call__(self, *args, **kwargs): | |
raise RuntimeError('ParameterList should not be called.') | |
class ParameterDict(Module): | |
r"""Holds parameters in a dictionary. | |
ParameterDict can be indexed like a regular Python dictionary, but Parameters it | |
contains are properly registered, and will be visible by all Module methods. | |
Other objects are treated as would be done by a regular Python dictionary | |
:class:`~torch.nn.ParameterDict` is an **ordered** dictionary. | |
:meth:`~torch.nn.ParameterDict.update` with other unordered mapping | |
types (e.g., Python's plain ``dict``) does not preserve the order of the | |
merged mapping. On the other hand, ``OrderedDict`` or another :class:`~torch.nn.ParameterDict` | |
will preserve their ordering. | |
Note that the constructor, assigning an element of the dictionary and the | |
:meth:`~torch.nn.ParameterDict.update` method will convert any :class:`~torch.Tensor` into | |
:class:`~torch.nn.Parameter`. | |
Args: | |
values (iterable, optional): a mapping (dictionary) of | |
(string : Any) or an iterable of key-value pairs | |
of type (string, Any) | |
Example:: | |
class MyModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.params = nn.ParameterDict({ | |
'left': nn.Parameter(torch.randn(5, 10)), | |
'right': nn.Parameter(torch.randn(5, 10)) | |
}) | |
def forward(self, x, choice): | |
x = self.params[choice].mm(x) | |
return x | |
""" | |
def __init__(self, parameters: Any = None) -> None: | |
super().__init__() | |
self._keys: Dict[str, None] = {} | |
if parameters is not None: | |
self.update(parameters) | |
def _key_to_attr(self, key: str) -> str: | |
if not isinstance(key, str): | |
raise TypeError("Index given to ParameterDict cannot be used as a key as it is " | |
f"not a string (type is '{type(key).__name__}'). Open an issue on " | |
"github if you need non-string keys.") | |
else: | |
# Use the key as-is so that `.named_parameters()` returns the right thing | |
return key | |
def __getitem__(self, key: str) -> Any: | |
attr = self._key_to_attr(key) | |
return getattr(self, attr) | |
def __setitem__(self, key: str, value: Any) -> None: | |
# Note that all other function that add an entry to the dictionary part of | |
# the ParameterDict end up here. So this is the only place where we need | |
# to wrap things into Parameter if needed. | |
# Objects added via setattr() are not in the dictionary part and thus won't | |
# call into this function. | |
self._keys[key] = None | |
attr = self._key_to_attr(key) | |
if isinstance(value, torch.Tensor) and not isinstance(value, Parameter): | |
value = Parameter(value) | |
setattr(self, attr, value) | |
def __delitem__(self, key: str) -> None: | |
del self._keys[key] | |
attr = self._key_to_attr(key) | |
delattr(self, attr) | |
def __len__(self) -> int: | |
return len(self._keys) | |
def __iter__(self) -> Iterator[str]: | |
return iter(self._keys) | |
def __reversed__(self) -> Iterator[str]: | |
return reversed(list(self._keys)) | |
def copy(self) -> 'ParameterDict': | |
"""Return a copy of this :class:`~torch.nn.ParameterDict` instance.""" | |
# We have to use an OrderedDict because the ParameterDict constructor | |
# behaves differently on plain dict vs OrderedDict | |
return ParameterDict(OrderedDict((k, self[k]) for k in self._keys)) | |
def __contains__(self, key: str) -> bool: | |
return key in self._keys | |
def setdefault(self, key: str, default: Optional[Any] = None) -> Any: | |
"""Set the default for a key in the Parameterdict. | |
If key is in the ParameterDict, return its value. | |
If not, insert `key` with a parameter `default` and return `default`. | |
`default` defaults to `None`. | |
Args: | |
key (str): key to set default for | |
default (Any): the parameter set to the key | |
""" | |
if key not in self: | |
self[key] = default | |
return self[key] | |
def clear(self) -> None: | |
"""Remove all items from the ParameterDict.""" | |
for k in self._keys.copy(): | |
del self[k] | |
def pop(self, key: str) -> Any: | |
r"""Remove key from the ParameterDict and return its parameter. | |
Args: | |
key (str): key to pop from the ParameterDict | |
""" | |
v = self[key] | |
del self[key] | |
return v | |
def popitem(self) -> Tuple[str, Any]: | |
"""Remove and return the last inserted `(key, parameter)` pair from the ParameterDict.""" | |
k, _ = self._keys.popitem() | |
# We need the key in the _keys to be able to access/del | |
self._keys[k] = None | |
val = self[k] | |
del self[k] | |
return k, val | |
def get(self, key: str, default: Optional[Any] = None) -> Any: | |
r"""Return the parameter associated with key if present. Otherwise return default if provided, None if not. | |
Args: | |
key (str): key to get from the ParameterDict | |
default (Parameter, optional): value to return if key not present | |
""" | |
return self[key] if key in self else default | |
def fromkeys(self, keys: Iterable[str], default: Optional[Any] = None) -> 'ParameterDict': | |
r"""Return a new ParameterDict with the keys provided. | |
Args: | |
keys (iterable, string): keys to make the new ParameterDict from | |
default (Parameter, optional): value to set for all keys | |
""" | |
return ParameterDict((k, default) for k in keys) | |
def keys(self) -> Iterable[str]: | |
r"""Return an iterable of the ParameterDict keys.""" | |
return self._keys.keys() | |
def items(self) -> Iterable[Tuple[str, Any]]: | |
r"""Return an iterable of the ParameterDict key/value pairs.""" | |
return ((k, self[k]) for k in self._keys) | |
def values(self) -> Iterable[Any]: | |
r"""Return an iterable of the ParameterDict values.""" | |
return (self[k] for k in self._keys) | |
def update(self, parameters: Union[Mapping[str, Any], 'ParameterDict']) -> None: | |
r"""Update the :class:`~torch.nn.ParameterDict` with key-value pairs from ``parameters``, overwriting existing keys. | |
.. note:: | |
If :attr:`parameters` is an ``OrderedDict``, a :class:`~torch.nn.ParameterDict`, or | |
an iterable of key-value pairs, the order of new elements in it is preserved. | |
Args: | |
parameters (iterable): a mapping (dictionary) from string to | |
:class:`~torch.nn.Parameter`, or an iterable of | |
key-value pairs of type (string, :class:`~torch.nn.Parameter`) | |
""" | |
if not isinstance(parameters, container_abcs.Iterable): | |
raise TypeError("ParametersDict.update should be called with an " | |
"iterable of key/value pairs, but got " + | |
type(parameters).__name__) | |
if isinstance(parameters, (OrderedDict, ParameterDict)): | |
for key, parameter in parameters.items(): | |
self[key] = parameter | |
elif isinstance(parameters, container_abcs.Mapping): | |
for key, parameter in sorted(parameters.items()): | |
self[key] = parameter | |
else: | |
for j, p in enumerate(parameters): | |
if not isinstance(p, container_abcs.Iterable): | |
raise TypeError("ParameterDict update sequence element " | |
"#" + str(j) + " should be Iterable; is" + | |
type(p).__name__) | |
if not len(p) == 2: | |
raise ValueError("ParameterDict update sequence element " | |
"#" + str(j) + " has length " + str(len(p)) + | |
"; 2 is required") | |
# parameters as length-2 list too cumbersome to type, see ModuleDict.update comment | |
self[p[0]] = p[1] # type: ignore[assignment] | |
def extra_repr(self) -> str: | |
child_lines = [] | |
for k, p in self.items(): | |
if isinstance(p, torch.Tensor): | |
size_str = 'x'.join(str(size) for size in p.size()) | |
if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]: | |
device_str = f' ({p.device})' | |
else: | |
device_str = '' | |
parastr = '{} containing: [{} of size {}{}]'.format( | |
"Parameter" if isinstance(p, Parameter) else "Tensor", | |
torch.typename(p), size_str, device_str) | |
child_lines.append(' (' + str(k) + '): ' + parastr) | |
else: | |
child_lines.append(' (' + str(k) + '): Object of type: ' + type(p).__name__) | |
tmpstr = '\n'.join(child_lines) | |
return tmpstr | |
def __call__(self, input): | |
raise RuntimeError('ParameterDict should not be called.') | |
def __or__(self, other: 'ParameterDict') -> 'ParameterDict': | |
copy = self.copy() | |
copy.update(other) | |
return copy | |
def __ror__(self, other: 'ParameterDict') -> 'ParameterDict': | |
copy = other.copy() | |
copy.update(self) | |
return copy | |
def __ior__(self, other : 'ParameterDict') -> Self: | |
self.update(other) | |
return self | |