File size: 35,311 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import warnings
from collections import OrderedDict, abc as container_abcs
from itertools import chain, islice
import operator

import torch
from .module import Module
from ..parameter import Parameter
from torch._jit_internal import _copy_to_script_wrapper

from typing import Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union
from typing_extensions import Self

__all__ = ['Container', 'Sequential', 'ModuleList', 'ModuleDict', 'ParameterList', 'ParameterDict']

T = TypeVar('T', bound=Module)


# Copied from torch.nn.modules.module, required for a custom __repr__ for ModuleList
def _addindent(s_, numSpaces):
    s = s_.split('\n')
    # don't do anything for single-line stuff
    if len(s) == 1:
        return s_
    first = s.pop(0)
    s = [(numSpaces * ' ') + line for line in s]
    s = '\n'.join(s)
    s = first + '\n' + s
    return s


class Container(Module):

    def __init__(self, **kwargs: Any) -> None:
        super().__init__()
        # DeprecationWarning is ignored by default <sigh>
        warnings.warn("nn.Container is deprecated. All of it's functionality "
                      "is now implemented in nn.Module. Subclass that instead.")
        for key, value in kwargs.items():
            self.add_module(key, value)


class Sequential(Module):
    r"""A sequential container.



    Modules will be added to it in the order they are passed in the

    constructor. Alternatively, an ``OrderedDict`` of modules can be

    passed in. The ``forward()`` method of ``Sequential`` accepts any

    input and forwards it to the first module it contains. It then

    "chains" outputs to inputs sequentially for each subsequent module,

    finally returning the output of the last module.



    The value a ``Sequential`` provides over manually calling a sequence

    of modules is that it allows treating the whole container as a

    single module, such that performing a transformation on the

    ``Sequential`` applies to each of the modules it stores (which are

    each a registered submodule of the ``Sequential``).



    What's the difference between a ``Sequential`` and a

    :class:`torch.nn.ModuleList`? A ``ModuleList`` is exactly what it

    sounds like--a list for storing ``Module`` s! On the other hand,

    the layers in a ``Sequential`` are connected in a cascading way.



    Example::



        # Using Sequential to create a small model. When `model` is run,

        # input will first be passed to `Conv2d(1,20,5)`. The output of

        # `Conv2d(1,20,5)` will be used as the input to the first

        # `ReLU`; the output of the first `ReLU` will become the input

        # for `Conv2d(20,64,5)`. Finally, the output of

        # `Conv2d(20,64,5)` will be used as input to the second `ReLU`

        model = nn.Sequential(

                  nn.Conv2d(1,20,5),

                  nn.ReLU(),

                  nn.Conv2d(20,64,5),

                  nn.ReLU()

                )



        # Using Sequential with OrderedDict. This is functionally the

        # same as the above code

        model = nn.Sequential(OrderedDict([

                  ('conv1', nn.Conv2d(1,20,5)),

                  ('relu1', nn.ReLU()),

                  ('conv2', nn.Conv2d(20,64,5)),

                  ('relu2', nn.ReLU())

                ]))

    """

    _modules: Dict[str, Module]  # type: ignore[assignment]

    @overload
    def __init__(self, *args: Module) -> None:
        ...

    @overload
    def __init__(self, arg: 'OrderedDict[str, Module]') -> None:
        ...

    def __init__(self, *args):
        super().__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict):
            for key, module in args[0].items():
                self.add_module(key, module)
        else:
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)

    def _get_item_by_idx(self, iterator, idx) -> T:  # type: ignore[misc, type-var]
        """Get the idx-th item of the iterator."""
        size = len(self)
        idx = operator.index(idx)
        if not -size <= idx < size:
            raise IndexError(f'index {idx} is out of range')
        idx %= size
        return next(islice(iterator, idx, None))

    @_copy_to_script_wrapper
    def __getitem__(self, idx: Union[slice, int]) -> Union['Sequential', T]:
        if isinstance(idx, slice):
            return self.__class__(OrderedDict(list(self._modules.items())[idx]))
        else:
            return self._get_item_by_idx(self._modules.values(), idx)

    def __setitem__(self, idx: int, module: Module) -> None:
        key: str = self._get_item_by_idx(self._modules.keys(), idx)
        return setattr(self, key, module)

    def __delitem__(self, idx: Union[slice, int]) -> None:
        if isinstance(idx, slice):
            for key in list(self._modules.keys())[idx]:
                delattr(self, key)
        else:
            key = self._get_item_by_idx(self._modules.keys(), idx)
            delattr(self, key)
        # To preserve numbering
        str_indices = [str(i) for i in range(len(self._modules))]
        self._modules = OrderedDict(list(zip(str_indices, self._modules.values())))

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    def __add__(self, other) -> 'Sequential':
        if isinstance(other, Sequential):
            ret = Sequential()
            for layer in self:
                ret.append(layer)
            for layer in other:
                ret.append(layer)
            return ret
        else:
            raise ValueError('add operator supports only objects '
                             f'of Sequential class, but {str(type(other))} is given.')

    def pop(self, key: Union[int, slice]) -> Module:
        v = self[key]
        del self[key]
        return v

    def __iadd__(self, other) -> Self:
        if isinstance(other, Sequential):
            offset = len(self)
            for i, module in enumerate(other):
                self.add_module(str(i + offset), module)
            return self
        else:
            raise ValueError('add operator supports only objects '
                             f'of Sequential class, but {str(type(other))} is given.')

    def __mul__(self, other: int) -> 'Sequential':
        if not isinstance(other, int):
            raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}")
        elif (other <= 0):
            raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}")
        else:
            combined = Sequential()
            offset = 0
            for _ in range(other):
                for module in self:
                    combined.add_module(str(offset), module)
                    offset += 1
            return combined

    def __rmul__(self, other: int) -> 'Sequential':
        return self.__mul__(other)

    def __imul__(self, other: int) -> Self:
        if not isinstance(other, int):
            raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}")
        elif (other <= 0):
            raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}")
        else:
            len_original = len(self)
            offset = len(self)
            for _ in range(other - 1):
                for i in range(len_original):
                    self.add_module(str(i + offset), self._modules[str(i)])
                offset += len_original
            return self

    @_copy_to_script_wrapper
    def __dir__(self):
        keys = super().__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[Module]:
        return iter(self._modules.values())

    # NB: We can't really type check this function as the type of input
    # may change dynamically (as is tested in
    # TestScript.test_sequential_intermediary_types).  Cannot annotate
    # with Any as TorchScript expects a more precise type
    def forward(self, input):
        for module in self:
            input = module(input)
        return input

    def append(self, module: Module) -> 'Sequential':
        r"""Append a given module to the end.



        Args:

            module (nn.Module): module to append

        """
        self.add_module(str(len(self)), module)
        return self

    def insert(self, index: int, module: Module) -> 'Sequential':
        if not isinstance(module, Module):
            raise AssertionError(
                f'module should be of type: {Module}')
        n = len(self._modules)
        if not (-n <= index <= n):
            raise IndexError(
                f'Index out of range: {index}')
        if index < 0:
            index += n
        for i in range(n, index, -1):
            self._modules[str(i)] = self._modules[str(i - 1)]
        self._modules[str(index)] = module
        return self

    def extend(self, sequential) -> 'Sequential':
        for layer in sequential:
            self.append(layer)
        return self


class ModuleList(Module):
    r"""Holds submodules in a list.



    :class:`~torch.nn.ModuleList` can be indexed like a regular Python list, but

    modules it contains are properly registered, and will be visible by all

    :class:`~torch.nn.Module` methods.



    Args:

        modules (iterable, optional): an iterable of modules to add



    Example::



        class MyModule(nn.Module):

            def __init__(self):

                super().__init__()

                self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])



            def forward(self, x):

                # ModuleList can act as an iterable, or be indexed using ints

                for i, l in enumerate(self.linears):

                    x = self.linears[i // 2](x) + l(x)

                return x

    """

    _modules: Dict[str, Module]  # type: ignore[assignment]

    def __init__(self, modules: Optional[Iterable[Module]] = None) -> None:
        super().__init__()
        if modules is not None:
            self += modules

    def _get_abs_string_index(self, idx):
        """Get the absolute index for the list of modules."""
        idx = operator.index(idx)
        if not (-len(self) <= idx < len(self)):
            raise IndexError(f'index {idx} is out of range')
        if idx < 0:
            idx += len(self)
        return str(idx)

    @_copy_to_script_wrapper
    def __getitem__(self, idx: Union[int, slice]) -> Union[Module, 'ModuleList']:
        if isinstance(idx, slice):
            return self.__class__(list(self._modules.values())[idx])
        else:
            return self._modules[self._get_abs_string_index(idx)]

    def __setitem__(self, idx: int, module: Module) -> None:
        idx = self._get_abs_string_index(idx)
        return setattr(self, str(idx), module)

    def __delitem__(self, idx: Union[int, slice]) -> None:
        if isinstance(idx, slice):
            for k in range(len(self._modules))[idx]:
                delattr(self, str(k))
        else:
            delattr(self, self._get_abs_string_index(idx))
        # To preserve numbering, self._modules is being reconstructed with modules after deletion
        str_indices = [str(i) for i in range(len(self._modules))]
        self._modules = OrderedDict(list(zip(str_indices, self._modules.values())))

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[Module]:
        return iter(self._modules.values())

    def __iadd__(self, modules: Iterable[Module]) -> Self:
        return self.extend(modules)

    def __add__(self, other: Iterable[Module]) -> 'ModuleList':
        combined = ModuleList()
        for i, module in enumerate(chain(self, other)):
            combined.add_module(str(i), module)
        return combined

    def __repr__(self):
        """Return a custom repr for ModuleList that compresses repeated module representations."""
        list_of_reprs = [repr(item) for item in self]
        if len(list_of_reprs) == 0:
            return self._get_name() + '()'

        start_end_indices = [[0, 0]]
        repeated_blocks = [list_of_reprs[0]]
        for i, r in enumerate(list_of_reprs[1:], 1):
            if r == repeated_blocks[-1]:
                start_end_indices[-1][1] += 1
                continue

            start_end_indices.append([i, i])
            repeated_blocks.append(r)

        lines = []
        main_str = self._get_name() + '('
        for (start_id, end_id), b in zip(start_end_indices, repeated_blocks):
            local_repr = f"({start_id}): {b}"  # default repr

            if start_id != end_id:
                n = end_id - start_id + 1
                local_repr = f"({start_id}-{end_id}): {n} x {b}"

            local_repr = _addindent(local_repr, 2)
            lines.append(local_repr)

        main_str += '\n  ' + '\n  '.join(lines) + '\n'
        main_str += ')'
        return main_str

    @_copy_to_script_wrapper
    def __dir__(self):
        keys = super().__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    def insert(self, index: int, module: Module) -> None:
        r"""Insert a given module before a given index in the list.



        Args:

            index (int): index to insert.

            module (nn.Module): module to insert

        """
        for i in range(len(self._modules), index, -1):
            self._modules[str(i)] = self._modules[str(i - 1)]
        self._modules[str(index)] = module

    def append(self, module: Module) -> 'ModuleList':
        r"""Append a given module to the end of the list.



        Args:

            module (nn.Module): module to append

        """
        self.add_module(str(len(self)), module)
        return self

    def pop(self, key: Union[int, slice]) -> Module:
        v = self[key]
        del self[key]
        return v

    def extend(self, modules: Iterable[Module]) -> Self:
        r"""Append modules from a Python iterable to the end of the list.



        Args:

            modules (iterable): iterable of modules to append

        """
        if not isinstance(modules, container_abcs.Iterable):
            raise TypeError("ModuleList.extend should be called with an "
                            "iterable, but got " + type(modules).__name__)
        offset = len(self)
        for i, module in enumerate(modules):
            self.add_module(str(offset + i), module)
        return self

    # remove forward alltogether to fallback on Module's _forward_unimplemented


class ModuleDict(Module):
    r"""Holds submodules in a dictionary.



    :class:`~torch.nn.ModuleDict` can be indexed like a regular Python dictionary,

    but modules it contains are properly registered, and will be visible by all

    :class:`~torch.nn.Module` methods.



    :class:`~torch.nn.ModuleDict` is an **ordered** dictionary that respects



    * the order of insertion, and



    * in :meth:`~torch.nn.ModuleDict.update`, the order of the merged

      ``OrderedDict``, ``dict`` (started from Python 3.6) or another

      :class:`~torch.nn.ModuleDict` (the argument to

      :meth:`~torch.nn.ModuleDict.update`).



    Note that :meth:`~torch.nn.ModuleDict.update` with other unordered mapping

    types (e.g., Python's plain ``dict`` before Python version 3.6) does not

    preserve the order of the merged mapping.



    Args:

        modules (iterable, optional): a mapping (dictionary) of (string: module)

            or an iterable of key-value pairs of type (string, module)



    Example::



        class MyModule(nn.Module):

            def __init__(self):

                super().__init__()

                self.choices = nn.ModuleDict({

                        'conv': nn.Conv2d(10, 10, 3),

                        'pool': nn.MaxPool2d(3)

                })

                self.activations = nn.ModuleDict([

                        ['lrelu', nn.LeakyReLU()],

                        ['prelu', nn.PReLU()]

                ])



            def forward(self, x, choice, act):

                x = self.choices[choice](x)

                x = self.activations[act](x)

                return x

    """

    _modules: Dict[str, Module]  # type: ignore[assignment]

    def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None:
        super().__init__()
        if modules is not None:
            self.update(modules)

    @_copy_to_script_wrapper
    def __getitem__(self, key: str) -> Module:
        return self._modules[key]

    def __setitem__(self, key: str, module: Module) -> None:
        self.add_module(key, module)

    def __delitem__(self, key: str) -> None:
        del self._modules[key]

    @_copy_to_script_wrapper
    def __len__(self) -> int:
        return len(self._modules)

    @_copy_to_script_wrapper
    def __iter__(self) -> Iterator[str]:
        return iter(self._modules)

    @_copy_to_script_wrapper
    def __contains__(self, key: str) -> bool:
        return key in self._modules

    def clear(self) -> None:
        """Remove all items from the ModuleDict."""
        self._modules.clear()

    def pop(self, key: str) -> Module:
        r"""Remove key from the ModuleDict and return its module.



        Args:

            key (str): key to pop from the ModuleDict

        """
        v = self[key]
        del self[key]
        return v

    @_copy_to_script_wrapper
    def keys(self) -> Iterable[str]:
        r"""Return an iterable of the ModuleDict keys."""
        return self._modules.keys()

    @_copy_to_script_wrapper
    def items(self) -> Iterable[Tuple[str, Module]]:
        r"""Return an iterable of the ModuleDict key/value pairs."""
        return self._modules.items()

    @_copy_to_script_wrapper
    def values(self) -> Iterable[Module]:
        r"""Return an iterable of the ModuleDict values."""
        return self._modules.values()

    def update(self, modules: Mapping[str, Module]) -> None:
        r"""Update the :class:`~torch.nn.ModuleDict` with key-value pairs from a mapping, overwriting existing keys.



        .. note::

            If :attr:`modules` is an ``OrderedDict``, a :class:`~torch.nn.ModuleDict`, or

            an iterable of key-value pairs, the order of new elements in it is preserved.



        Args:

            modules (iterable): a mapping (dictionary) from string to :class:`~torch.nn.Module`,

                or an iterable of key-value pairs of type (string, :class:`~torch.nn.Module`)

        """
        if not isinstance(modules, container_abcs.Iterable):
            raise TypeError("ModuleDict.update should be called with an "
                            "iterable of key/value pairs, but got " +
                            type(modules).__name__)

        if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)):
            for key, module in modules.items():
                self[key] = module
        else:
            # modules here can be a list with two items
            for j, m in enumerate(modules):
                if not isinstance(m, container_abcs.Iterable):
                    raise TypeError("ModuleDict update sequence element "
                                    "#" + str(j) + " should be Iterable; is" +
                                    type(m).__name__)
                if not len(m) == 2:
                    raise ValueError("ModuleDict update sequence element "
                                     "#" + str(j) + " has length " + str(len(m)) +
                                     "; 2 is required")
                # modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)]
                # that's too cumbersome to type correctly with overloads, so we add an ignore here
                self[m[0]] = m[1]  # type: ignore[assignment]

    # remove forward alltogether to fallback on Module's _forward_unimplemented


class ParameterList(Module):
    r"""Holds parameters in a list.



    :class:`~torch.nn.ParameterList` can be used like a regular Python

    list, but Tensors that are :class:`~torch.nn.Parameter` are properly registered,

    and will be visible by all :class:`~torch.nn.Module` methods.



    Note that the constructor, assigning an element of the list, the

    :meth:`~torch.nn.ParameterDict.append` method and the :meth:`~torch.nn.ParameterDict.extend`

    method will convert any :class:`~torch.Tensor` into :class:`~torch.nn.Parameter`.



    Args:

        parameters (iterable, optional): an iterable of elements to add to the list.



    Example::



        class MyModule(nn.Module):

            def __init__(self):

                super().__init__()

                self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])



            def forward(self, x):

                # ParameterList can act as an iterable, or be indexed using ints

                for i, p in enumerate(self.params):

                    x = self.params[i // 2].mm(x) + p.mm(x)

                return x

    """

    def __init__(self, values: Optional[Iterable[Any]] = None) -> None:
        super().__init__()
        self._size = 0
        if values is not None:
            self += values

    def _get_abs_string_index(self, idx):
        """Get the absolute index for the list of modules."""
        idx = operator.index(idx)
        if not (-len(self) <= idx < len(self)):
            raise IndexError(f'index {idx} is out of range')
        if idx < 0:
            idx += len(self)
        return str(idx)

    @overload
    def __getitem__(self, idx: int) -> Any:
        ...

    @overload
    def __getitem__(self: T, idx: slice) -> T:
        ...

    def __getitem__(self, idx):
        if isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            out = self.__class__()
            for i in range(start, stop, step):
                out.append(self[i])
            return out
        else:
            idx = self._get_abs_string_index(idx)
            return getattr(self, str(idx))

    def __setitem__(self, idx: int, param: Any) -> None:
        # Note that all other function that add an entry to the list part of
        # the ParameterList end up here. So this is the only place where we need
        # to wrap things into Parameter if needed.
        # Objects added via setattr() are not in the list part and thus won't
        # call into this function.
        idx = self._get_abs_string_index(idx)
        if isinstance(param, torch.Tensor) and not isinstance(param, Parameter):
            param = Parameter(param)
        return setattr(self, str(idx), param)

    def __len__(self) -> int:
        return self._size

    def __iter__(self) -> Iterator[Any]:
        return iter(self[i] for i in range(len(self)))

    def __iadd__(self, parameters: Iterable[Any]) -> Self:
        return self.extend(parameters)

    def __dir__(self):
        keys = super().__dir__()
        keys = [key for key in keys if not key.isdigit()]
        return keys

    def append(self, value: Any) -> 'ParameterList':
        """Append a given value at the end of the list.



        Args:

            value (Any): value to append

        """
        new_idx = len(self)
        self._size += 1
        self[new_idx] = value
        return self

    def extend(self, values: Iterable[Any]) -> Self:
        """Append values from a Python iterable to the end of the list.



        Args:

            values (iterable): iterable of values to append

        """
        # Tensor is an iterable but we never want to unpack it here
        if not isinstance(values, container_abcs.Iterable) or isinstance(values, torch.Tensor):
            raise TypeError("ParameterList.extend should be called with an "
                            "iterable, but got " + type(values).__name__)
        for value in values:
            self.append(value)
        return self

    def extra_repr(self) -> str:
        child_lines = []
        for k, p in enumerate(self):
            if isinstance(p, torch.Tensor):
                size_str = 'x'.join(str(size) for size in p.size())
                if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]:
                    device_str = f' ({p.device})'
                else:
                    device_str = ''
                parastr = '{} containing: [{} of size {}{}]'.format(
                    "Parameter" if isinstance(p, Parameter) else "Tensor",
                    p.dtype, size_str, device_str)
                child_lines.append('  (' + str(k) + '): ' + parastr)
            else:
                child_lines.append('  (' + str(k) + '): Object of type: ' + type(p).__name__)

        tmpstr = '\n'.join(child_lines)
        return tmpstr

    def __call__(self, *args, **kwargs):
        raise RuntimeError('ParameterList should not be called.')


class ParameterDict(Module):
    r"""Holds parameters in a dictionary.



    ParameterDict can be indexed like a regular Python dictionary, but Parameters it

    contains are properly registered, and will be visible by all Module methods.

    Other objects are treated as would be done by a regular Python dictionary



    :class:`~torch.nn.ParameterDict` is an **ordered** dictionary.

    :meth:`~torch.nn.ParameterDict.update` with other unordered mapping

    types (e.g., Python's plain ``dict``) does not preserve the order of the

    merged mapping. On the other hand, ``OrderedDict`` or another :class:`~torch.nn.ParameterDict`

    will preserve their ordering.



    Note that the constructor, assigning an element of the dictionary and the

    :meth:`~torch.nn.ParameterDict.update` method will convert any :class:`~torch.Tensor` into

    :class:`~torch.nn.Parameter`.



    Args:

        values (iterable, optional): a mapping (dictionary) of

            (string : Any) or an iterable of key-value pairs

            of type (string, Any)



    Example::



        class MyModule(nn.Module):

            def __init__(self):

                super().__init__()

                self.params = nn.ParameterDict({

                        'left': nn.Parameter(torch.randn(5, 10)),

                        'right': nn.Parameter(torch.randn(5, 10))

                })



            def forward(self, x, choice):

                x = self.params[choice].mm(x)

                return x

    """

    def __init__(self, parameters: Any = None) -> None:
        super().__init__()
        self._keys: Dict[str, None] = {}
        if parameters is not None:
            self.update(parameters)

    def _key_to_attr(self, key: str) -> str:
        if not isinstance(key, str):
            raise TypeError("Index given to ParameterDict cannot be used as a key as it is "
                            f"not a string (type is '{type(key).__name__}'). Open an issue on "
                            "github if you need non-string keys.")
        else:
            # Use the key as-is so that `.named_parameters()` returns the right thing
            return key

    def __getitem__(self, key: str) -> Any:
        attr = self._key_to_attr(key)
        return getattr(self, attr)

    def __setitem__(self, key: str, value: Any) -> None:
        # Note that all other function that add an entry to the dictionary part of
        # the ParameterDict end up here. So this is the only place where we need
        # to wrap things into Parameter if needed.
        # Objects added via setattr() are not in the dictionary part and thus won't
        # call into this function.
        self._keys[key] = None
        attr = self._key_to_attr(key)
        if isinstance(value, torch.Tensor) and not isinstance(value, Parameter):
            value = Parameter(value)
        setattr(self, attr, value)

    def __delitem__(self, key: str) -> None:
        del self._keys[key]
        attr = self._key_to_attr(key)
        delattr(self, attr)

    def __len__(self) -> int:
        return len(self._keys)

    def __iter__(self) -> Iterator[str]:
        return iter(self._keys)

    def __reversed__(self) -> Iterator[str]:
        return reversed(list(self._keys))

    def copy(self) -> 'ParameterDict':
        """Return a copy of this :class:`~torch.nn.ParameterDict` instance."""
        # We have to use an OrderedDict because the ParameterDict constructor
        # behaves differently on plain dict vs OrderedDict
        return ParameterDict(OrderedDict((k, self[k]) for k in self._keys))

    def __contains__(self, key: str) -> bool:
        return key in self._keys

    def setdefault(self, key: str, default: Optional[Any] = None) -> Any:
        """Set the default for a key in the Parameterdict.



        If key is in the ParameterDict, return its value.

        If not, insert `key` with a parameter `default` and return `default`.

        `default` defaults to `None`.



        Args:

            key (str): key to set default for

            default (Any): the parameter set to the key

        """
        if key not in self:
            self[key] = default
        return self[key]

    def clear(self) -> None:
        """Remove all items from the ParameterDict."""
        for k in self._keys.copy():
            del self[k]

    def pop(self, key: str) -> Any:
        r"""Remove key from the ParameterDict and return its parameter.



        Args:

            key (str): key to pop from the ParameterDict

        """
        v = self[key]
        del self[key]
        return v

    def popitem(self) -> Tuple[str, Any]:
        """Remove and return the last inserted `(key, parameter)` pair from the ParameterDict."""
        k, _ = self._keys.popitem()
        # We need the key in the _keys to be able to access/del
        self._keys[k] = None
        val = self[k]
        del self[k]
        return k, val

    def get(self, key: str, default: Optional[Any] = None) -> Any:
        r"""Return the parameter associated with key if present. Otherwise return default if provided, None if not.



        Args:

            key (str): key to get from the ParameterDict

            default (Parameter, optional): value to return if key not present

        """
        return self[key] if key in self else default

    def fromkeys(self, keys: Iterable[str], default: Optional[Any] = None) -> 'ParameterDict':
        r"""Return a new ParameterDict with the keys provided.



        Args:

            keys (iterable, string): keys to make the new ParameterDict from

            default (Parameter, optional): value to set for all keys

        """
        return ParameterDict((k, default) for k in keys)

    def keys(self) -> Iterable[str]:
        r"""Return an iterable of the ParameterDict keys."""
        return self._keys.keys()

    def items(self) -> Iterable[Tuple[str, Any]]:
        r"""Return an iterable of the ParameterDict key/value pairs."""
        return ((k, self[k]) for k in self._keys)

    def values(self) -> Iterable[Any]:
        r"""Return an iterable of the ParameterDict values."""
        return (self[k] for k in self._keys)

    def update(self, parameters: Union[Mapping[str, Any], 'ParameterDict']) -> None:
        r"""Update the :class:`~torch.nn.ParameterDict` with key-value pairs from ``parameters``, overwriting existing keys.



        .. note::

            If :attr:`parameters` is an ``OrderedDict``, a :class:`~torch.nn.ParameterDict`, or

            an iterable of key-value pairs, the order of new elements in it is preserved.



        Args:

            parameters (iterable): a mapping (dictionary) from string to

                :class:`~torch.nn.Parameter`, or an iterable of

                key-value pairs of type (string, :class:`~torch.nn.Parameter`)

        """
        if not isinstance(parameters, container_abcs.Iterable):
            raise TypeError("ParametersDict.update should be called with an "
                            "iterable of key/value pairs, but got " +
                            type(parameters).__name__)

        if isinstance(parameters, (OrderedDict, ParameterDict)):
            for key, parameter in parameters.items():
                self[key] = parameter
        elif isinstance(parameters, container_abcs.Mapping):
            for key, parameter in sorted(parameters.items()):
                self[key] = parameter
        else:
            for j, p in enumerate(parameters):
                if not isinstance(p, container_abcs.Iterable):
                    raise TypeError("ParameterDict update sequence element "
                                    "#" + str(j) + " should be Iterable; is" +
                                    type(p).__name__)
                if not len(p) == 2:
                    raise ValueError("ParameterDict update sequence element "
                                     "#" + str(j) + " has length " + str(len(p)) +
                                     "; 2 is required")
                # parameters as length-2 list too cumbersome to type, see ModuleDict.update comment
                self[p[0]] = p[1]  # type: ignore[assignment]

    def extra_repr(self) -> str:
        child_lines = []
        for k, p in self.items():
            if isinstance(p, torch.Tensor):
                size_str = 'x'.join(str(size) for size in p.size())
                if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]:
                    device_str = f' ({p.device})'
                else:
                    device_str = ''
                parastr = '{} containing: [{} of size {}{}]'.format(
                    "Parameter" if isinstance(p, Parameter) else "Tensor",
                    torch.typename(p), size_str, device_str)
                child_lines.append('  (' + str(k) + '): ' + parastr)
            else:
                child_lines.append('  (' + str(k) + '): Object of type: ' + type(p).__name__)
        tmpstr = '\n'.join(child_lines)
        return tmpstr

    def __call__(self, input):
        raise RuntimeError('ParameterDict should not be called.')

    def __or__(self, other: 'ParameterDict') -> 'ParameterDict':
        copy = self.copy()
        copy.update(other)
        return copy

    def __ror__(self, other: 'ParameterDict') -> 'ParameterDict':
        copy = other.copy()
        copy.update(self)
        return copy

    def __ior__(self, other : 'ParameterDict') -> Self:
        self.update(other)
        return self