Spaces:
Sleeping
Sleeping
"""Functional interface.""" | |
from typing import Callable, List, Optional, Tuple, Union | |
import math | |
import warnings | |
import importlib | |
try: | |
import numpy as np | |
except ModuleNotFoundError: | |
np = None | |
import torch | |
from torch import _VF | |
from torch import sym_int as _sym_int | |
from torch._C import _infer_size, _add_docstr | |
from torch._torch_docs import reproducibility_notes, tf32_notes, sparse_support_notes | |
# A workaround to support both TorchScript and MyPy: | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from torch.types import _dtype as DType | |
else: | |
# The JIT doesn't understand Union, nor torch.dtype here | |
DType = int | |
from .._jit_internal import boolean_dispatch, _overload, BroadcastingList1, BroadcastingList2, BroadcastingList3 | |
from ..overrides import ( | |
has_torch_function, has_torch_function_unary, has_torch_function_variadic, | |
handle_torch_function) | |
from . import _reduction as _Reduction | |
from . import grad # noqa: F401 | |
from .modules import utils | |
from .modules.utils import _single, _pair, _triple, _list_with_default | |
Tensor = torch.Tensor | |
conv1d = _add_docstr( | |
torch.conv1d, | |
r""" | |
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor | |
Applies a 1D convolution over an input signal composed of several input | |
planes. | |
{tf32_note} | |
See :class:`~torch.nn.Conv1d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
This operator supports complex data types i.e. ``complex32, complex64, complex128``. | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` | |
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)` | |
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None`` | |
stride: the stride of the convolving kernel. Can be a single number or | |
a one-element tuple `(sW,)`. Default: 1 | |
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, | |
single number or a one-element tuple `(padW,)`. Default: 0 | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the same shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
.. warning:: | |
For ``padding='same'``, if the ``weight`` is even-length and | |
``dilation`` is odd in any dimension, a full :func:`pad` operation | |
may be needed internally. Lowering performance. | |
dilation: the spacing between kernel elements. Can be a single number or | |
a one-element tuple `(dW,)`. Default: 1 | |
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by | |
the number of groups. Default: 1 | |
Examples:: | |
>>> inputs = torch.randn(33, 16, 30) | |
>>> filters = torch.randn(20, 16, 5) | |
>>> F.conv1d(inputs, filters) | |
""", | |
) | |
conv2d = _add_docstr( | |
torch.conv2d, | |
r""" | |
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor | |
Applies a 2D convolution over an input image composed of several input | |
planes. | |
{tf32_note} | |
See :class:`~torch.nn.Conv2d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
This operator supports complex data types i.e. ``complex32, complex64, complex128``. | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` | |
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)` | |
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None`` | |
stride: the stride of the convolving kernel. Can be a single number or a | |
tuple `(sH, sW)`. Default: 1 | |
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, | |
single number or a tuple `(padH, padW)`. Default: 0 | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the same shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
.. warning:: | |
For ``padding='same'``, if the ``weight`` is even-length and | |
``dilation`` is odd in any dimension, a full :func:`pad` operation | |
may be needed internally. Lowering performance. | |
dilation: the spacing between kernel elements. Can be a single number or | |
a tuple `(dH, dW)`. Default: 1 | |
groups: split input into groups, both :math:`\text{in\_channels}` and :math:`\text{out\_channels}` | |
should be divisible by the number of groups. Default: 1 | |
Examples:: | |
>>> # With square kernels and equal stride | |
>>> filters = torch.randn(8, 4, 3, 3) | |
>>> inputs = torch.randn(1, 4, 5, 5) | |
>>> F.conv2d(inputs, filters, padding=1) | |
""", | |
) # noqa: E501 | |
conv3d = _add_docstr( | |
torch.conv3d, | |
r""" | |
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor | |
Applies a 3D convolution over an input image composed of several input | |
planes. | |
{tf32_note} | |
See :class:`~torch.nn.Conv3d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
This operator supports complex data types i.e. ``complex32, complex64, complex128``. | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)` | |
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)` | |
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None | |
stride: the stride of the convolving kernel. Can be a single number or a | |
tuple `(sT, sH, sW)`. Default: 1 | |
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, | |
single number or a tuple `(padT, padH, padW)`. Default: 0 | |
``padding='valid'`` is the same as no padding. ``padding='same'`` pads | |
the input so the output has the same shape as the input. However, this mode | |
doesn't support any stride values other than 1. | |
.. warning:: | |
For ``padding='same'``, if the ``weight`` is even-length and | |
``dilation`` is odd in any dimension, a full :func:`pad` operation | |
may be needed internally. Lowering performance. | |
dilation: the spacing between kernel elements. Can be a single number or | |
a tuple `(dT, dH, dW)`. Default: 1 | |
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by | |
the number of groups. Default: 1 | |
Examples:: | |
>>> filters = torch.randn(33, 16, 3, 3, 3) | |
>>> inputs = torch.randn(20, 16, 50, 10, 20) | |
>>> F.conv3d(inputs, filters) | |
""", | |
) # noqa: E501 | |
conv_transpose1d = _add_docstr( | |
torch.conv_transpose1d, | |
r""" | |
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor | |
Applies a 1D transposed convolution operator over an input signal | |
composed of several input planes, sometimes also called "deconvolution". | |
{tf32_note} | |
See :class:`~torch.nn.ConvTranspose1d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` | |
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)` | |
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None | |
stride: the stride of the convolving kernel. Can be a single number or a | |
tuple ``(sW,)``. Default: 1 | |
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both | |
sides of each dimension in the input. Can be a single number or a tuple | |
``(padW,)``. Default: 0 | |
output_padding: additional size added to one side of each dimension in the | |
output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0 | |
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the | |
number of groups. Default: 1 | |
dilation: the spacing between kernel elements. Can be a single number or | |
a tuple ``(dW,)``. Default: 1 | |
Examples:: | |
>>> inputs = torch.randn(20, 16, 50) | |
>>> weights = torch.randn(16, 33, 5) | |
>>> F.conv_transpose1d(inputs, weights) | |
""", | |
) | |
conv_transpose2d = _add_docstr( | |
torch.conv_transpose2d, | |
r""" | |
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor | |
Applies a 2D transposed convolution operator over an input image | |
composed of several input planes, sometimes also called "deconvolution". | |
{tf32_note} | |
See :class:`~torch.nn.ConvTranspose2d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` | |
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)` | |
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None | |
stride: the stride of the convolving kernel. Can be a single number or a | |
tuple ``(sH, sW)``. Default: 1 | |
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both | |
sides of each dimension in the input. Can be a single number or a tuple | |
``(padH, padW)``. Default: 0 | |
output_padding: additional size added to one side of each dimension in the | |
output shape. Can be a single number or a tuple ``(out_padH, out_padW)``. | |
Default: 0 | |
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the | |
number of groups. Default: 1 | |
dilation: the spacing between kernel elements. Can be a single number or | |
a tuple ``(dH, dW)``. Default: 1 | |
Examples:: | |
>>> # With square kernels and equal stride | |
>>> inputs = torch.randn(1, 4, 5, 5) | |
>>> weights = torch.randn(4, 8, 3, 3) | |
>>> F.conv_transpose2d(inputs, weights, padding=1) | |
""", | |
) # noqa: E501 | |
conv_transpose3d = _add_docstr( | |
torch.conv_transpose3d, | |
r""" | |
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor | |
Applies a 3D transposed convolution operator over an input image | |
composed of several input planes, sometimes also called "deconvolution" | |
{tf32_note} | |
See :class:`~torch.nn.ConvTranspose3d` for details and output shape. | |
Note: | |
{cudnn_reproducibility_note} | |
""".format( | |
**reproducibility_notes, **tf32_notes | |
) | |
+ r""" | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)` | |
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)` | |
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None | |
stride: the stride of the convolving kernel. Can be a single number or a | |
tuple ``(sT, sH, sW)``. Default: 1 | |
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both | |
sides of each dimension in the input. Can be a single number or a tuple | |
``(padT, padH, padW)``. Default: 0 | |
output_padding: additional size added to one side of each dimension in the | |
output shape. Can be a single number or a tuple | |
``(out_padT, out_padH, out_padW)``. Default: 0 | |
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the | |
number of groups. Default: 1 | |
dilation: the spacing between kernel elements. Can be a single number or | |
a tuple `(dT, dH, dW)`. Default: 1 | |
Examples:: | |
>>> inputs = torch.randn(20, 16, 50, 10, 20) | |
>>> weights = torch.randn(16, 33, 3, 3, 3) | |
>>> F.conv_transpose3d(inputs, weights) | |
""", | |
) # noqa: E501 | |
conv_tbc = _add_docstr( | |
torch.conv_tbc, | |
r""" | |
Applies a 1-dimensional sequence convolution over an input sequence. | |
Input and output dimensions are (Time, Batch, Channels) - hence TBC. | |
Args: | |
input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})` | |
weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`) | |
bias: bias of shape (:math:`\text{out\_channels}`) | |
pad: number of timesteps to pad. Default: 0 | |
""", | |
) | |
# Pooling | |
avg_pool1d = _add_docstr( | |
torch.avg_pool1d, | |
r""" | |
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor | |
Applies a 1D average pooling over an input signal composed of several | |
input planes. | |
See :class:`~torch.nn.AvgPool1d` for details and output shape. | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` | |
kernel_size: the size of the window. Can be a single number or a | |
tuple `(kW,)` | |
stride: the stride of the window. Can be a single number or a tuple | |
`(sW,)`. Default: :attr:`kernel_size` | |
padding: implicit zero paddings on both sides of the input. Can be a | |
single number or a tuple `(padW,)`. Default: 0 | |
ceil_mode: when True, will use `ceil` instead of `floor` to compute the | |
output shape. Default: ``False`` | |
count_include_pad: when True, will include the zero-padding in the | |
averaging calculation. Default: ``True`` | |
Examples:: | |
>>> # pool of square window of size=3, stride=2 | |
>>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32) | |
>>> F.avg_pool1d(input, kernel_size=3, stride=2) | |
tensor([[[ 2., 4., 6.]]]) | |
""", | |
) | |
avg_pool2d = _add_docstr( | |
torch._C._nn.avg_pool2d, | |
r""" | |
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor | |
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size | |
:math:`sH \times sW` steps. The number of output features is equal to the number of | |
input planes. | |
See :class:`~torch.nn.AvgPool2d` for details and output shape. | |
Args: | |
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` | |
kernel_size: size of the pooling region. Can be a single number or a | |
tuple `(kH, kW)` | |
stride: stride of the pooling operation. Can be a single number or a | |
tuple `(sH, sW)`. Default: :attr:`kernel_size` | |
padding: implicit zero paddings on both sides of the input. Can be a | |
single number or a tuple `(padH, padW)`. Default: 0 | |
ceil_mode: when True, will use `ceil` instead of `floor` in the formula | |
to compute the output shape. Default: ``False`` | |
count_include_pad: when True, will include the zero-padding in the | |
averaging calculation. Default: ``True`` | |
divisor_override: if specified, it will be used as divisor, otherwise | |
size of the pooling region will be used. Default: None | |
""", | |
) | |
avg_pool3d = _add_docstr( | |
torch._C._nn.avg_pool3d, | |
r""" | |
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor | |
Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step | |
size :math:`sT \times sH \times sW` steps. The number of output features is equal to | |
:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`. | |
See :class:`~torch.nn.AvgPool3d` for details and output shape. | |
Args: | |
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)` | |
kernel_size: size of the pooling region. Can be a single number or a | |
tuple `(kT, kH, kW)` | |
stride: stride of the pooling operation. Can be a single number or a | |
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size` | |
padding: implicit zero paddings on both sides of the input. Can be a | |
single number or a tuple `(padT, padH, padW)`, Default: 0 | |
ceil_mode: when True, will use `ceil` instead of `floor` in the formula | |
to compute the output shape | |
count_include_pad: when True, will include the zero-padding in the | |
averaging calculation | |
divisor_override: if specified, it will be used as divisor, otherwise | |
size of the pooling region will be used. Default: None | |
""", | |
) | |
def fractional_max_pool2d_with_indices( | |
input: Tensor, kernel_size: BroadcastingList2[int], | |
output_size: Optional[BroadcastingList2[int]] = None, | |
output_ratio: Optional[BroadcastingList2[float]] = None, | |
return_indices: bool = False, | |
_random_samples: Optional[Tensor] = None | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
fractional_max_pool2d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None) | |
Applies 2D fractional max pooling over an input signal composed of several input planes. | |
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham | |
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic | |
step size determined by the target output size. | |
The number of output features is equal to the number of input planes. | |
Args: | |
kernel_size: the size of the window to take a max over. | |
Can be a single number :math:`k` (for a square kernel of :math:`k \times k`) | |
or a tuple `(kH, kW)` | |
output_size: the target output size of the image of the form :math:`oH \times oW`. | |
Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH` | |
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. | |
This has to be a number or tuple in the range (0, 1) | |
return_indices: if ``True``, will return the indices along with the outputs. | |
Useful to pass to :func:`~torch.nn.functional.max_unpool2d`. | |
Examples:: | |
>>> input = torch.randn(20, 16, 50, 32) | |
>>> # pool of square window of size=3, and target output size 13x12 | |
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12)) | |
>>> # pool of square window and target output size being half of input image size | |
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5)) | |
.. _Fractional MaxPooling: | |
http://arxiv.org/abs/1412.6071 | |
""" | |
if has_torch_function_variadic(input, _random_samples): | |
return handle_torch_function( | |
fractional_max_pool2d_with_indices, | |
(input, _random_samples), | |
input, | |
kernel_size, | |
output_size=output_size, | |
output_ratio=output_ratio, | |
return_indices=return_indices, | |
_random_samples=_random_samples, | |
) | |
if output_size is None and output_ratio is None: | |
raise ValueError("fractional_max_pool2d requires specifying either an output_size or an output_ratio") | |
if output_size is None: | |
assert output_ratio is not None | |
if len(output_ratio) > 2: | |
raise ValueError("fractional_max_pool2d requires output_ratio to either be a single Int or tuple of Ints.") | |
_output_ratio = _pair(output_ratio) | |
output_size = [int(input.size(-2) * _output_ratio[0]), int(input.size(-1) * _output_ratio[1])] | |
if _random_samples is None: | |
n_batch = 1 if input.dim() == 3 else input.size(0) | |
_random_samples = torch.rand(n_batch, input.size(-3), 2, dtype=input.dtype, device=input.device) | |
return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples) | |
def _fractional_max_pool2d( | |
input: Tensor, kernel_size: BroadcastingList2[int], | |
output_size: Optional[BroadcastingList2[int]] = None, | |
output_ratio: Optional[BroadcastingList2[float]] = None, | |
return_indices: bool = False, | |
_random_samples: Optional[Tensor] = None | |
) -> Tensor: | |
if has_torch_function_variadic(input, _random_samples): | |
return handle_torch_function( | |
fractional_max_pool2d, | |
(input, _random_samples), | |
input, | |
kernel_size, | |
output_size=output_size, | |
output_ratio=output_ratio, | |
return_indices=return_indices, | |
_random_samples=_random_samples, | |
) | |
return fractional_max_pool2d_with_indices( | |
input, kernel_size, output_size, output_ratio, return_indices, _random_samples | |
)[0] | |
fractional_max_pool2d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=4, | |
default=False, | |
if_true=fractional_max_pool2d_with_indices, | |
if_false=_fractional_max_pool2d, | |
module_name=__name__, | |
func_name="fractional_max_pool2d", | |
) | |
def fractional_max_pool3d_with_indices( | |
input: Tensor, kernel_size: BroadcastingList3[int], | |
output_size: Optional[BroadcastingList3[int]] = None, | |
output_ratio: Optional[BroadcastingList3[float]] = None, | |
return_indices: bool = False, | |
_random_samples: Optional[Tensor] = None | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
fractional_max_pool3d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None) | |
Applies 3D fractional max pooling over an input signal composed of several input planes. | |
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham | |
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic | |
step size determined by the target output size. | |
The number of output features is equal to the number of input planes. | |
Args: | |
kernel_size: the size of the window to take a max over. | |
Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`) | |
or a tuple `(kT, kH, kW)` | |
output_size: the target output size of the form :math:`oT \times oH \times oW`. | |
Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output | |
:math:`oH \times oH \times oH` | |
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. | |
This has to be a number or tuple in the range (0, 1) | |
return_indices: if ``True``, will return the indices along with the outputs. | |
Useful to pass to :func:`~torch.nn.functional.max_unpool3d`. | |
Shape: | |
- Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`. | |
- Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where | |
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or | |
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})` | |
Examples:: | |
>>> input = torch.randn(20, 16, 50, 32, 16) | |
>>> # pool of cubic window of size=3, and target output size 13x12x11 | |
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11)) | |
>>> # pool of cubic window and target output size being half of input size | |
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5)) | |
.. _Fractional MaxPooling: | |
http://arxiv.org/abs/1412.6071 | |
""" | |
if has_torch_function_variadic(input, _random_samples): | |
return handle_torch_function( | |
fractional_max_pool3d_with_indices, | |
(input, _random_samples), | |
input, | |
kernel_size, | |
output_size=output_size, | |
output_ratio=output_ratio, | |
return_indices=return_indices, | |
_random_samples=_random_samples, | |
) | |
if output_size is None and output_ratio is None: | |
raise ValueError("fractional_max_pool3d requires specifying either an output_size or an output_ratio") | |
if output_size is None: | |
assert output_ratio is not None | |
_output_ratio = _triple(output_ratio) | |
output_size = [ | |
int(input.size(-3) * _output_ratio[0]), | |
int(input.size(-2) * _output_ratio[1]), | |
int(input.size(-1) * _output_ratio[2]), | |
] | |
if _random_samples is None: | |
n_batch = 1 if input.dim() == 4 else input.size(0) | |
_random_samples = torch.rand(n_batch, input.size(-4), 3, dtype=input.dtype, device=input.device) | |
return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples) | |
def _fractional_max_pool3d( | |
input: Tensor, kernel_size: BroadcastingList3[int], | |
output_size: Optional[BroadcastingList3[int]] = None, | |
output_ratio: Optional[BroadcastingList3[float]] = None, | |
return_indices: bool = False, | |
_random_samples: Optional[Tensor] = None | |
) -> Tensor: | |
if has_torch_function_variadic(input, _random_samples): | |
return handle_torch_function( | |
fractional_max_pool3d, | |
(input, _random_samples), | |
input, | |
kernel_size, | |
output_size=output_size, | |
output_ratio=output_ratio, | |
return_indices=return_indices, | |
_random_samples=_random_samples, | |
) | |
return fractional_max_pool3d_with_indices( | |
input, kernel_size, output_size, output_ratio, return_indices, _random_samples | |
)[0] | |
fractional_max_pool3d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=4, | |
default=False, | |
if_true=fractional_max_pool3d_with_indices, | |
if_false=_fractional_max_pool3d, | |
module_name=__name__, | |
func_name="fractional_max_pool3d", | |
) | |
def max_pool1d_with_indices( | |
input: Tensor, kernel_size: BroadcastingList1[int], | |
stride: Optional[BroadcastingList1[int]] = None, | |
padding: BroadcastingList1[int] = 0, | |
dilation: BroadcastingList1[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) | |
Applies a 1D max pooling over an input signal composed of several input | |
planes. | |
.. note:: | |
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from | |
what seen in :class:`~torch.nn.MaxPool1d`, and will change in a future release. | |
See :class:`~torch.nn.MaxPool1d` for details. | |
Args: | |
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`, minibatch dim optional. | |
kernel_size: the size of the window. Can be a single number or a | |
tuple `(kW,)` | |
stride: the stride of the window. Can be a single number or a tuple | |
`(sW,)`. Default: :attr:`kernel_size` | |
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. | |
dilation: The stride between elements within a sliding window, must be > 0. | |
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This | |
ensures that every element in the input tensor is covered by a sliding window. | |
return_indices: If ``True``, will return the argmax along with the max values. | |
Useful for :class:`torch.nn.functional.max_unpool1d` later | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool1d_with_indices, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch.max_pool1d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) | |
def _max_pool1d( | |
input: Tensor, kernel_size: BroadcastingList1[int], | |
stride: Optional[BroadcastingList1[int]] = None, | |
padding: BroadcastingList1[int] = 0, | |
dilation: BroadcastingList1[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool1d, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode) | |
max_pool1d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=6, | |
default=False, | |
if_true=max_pool1d_with_indices, | |
if_false=_max_pool1d, | |
module_name=__name__, | |
func_name="max_pool1d", | |
) | |
def max_pool2d_with_indices( | |
input: Tensor, kernel_size: BroadcastingList2[int], | |
stride: Optional[BroadcastingList2[int]] = None, | |
padding: BroadcastingList2[int] = 0, | |
dilation: BroadcastingList2[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) | |
Applies a 2D max pooling over an input signal composed of several input | |
planes. | |
.. note:: | |
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from | |
what seen in :class:`~torch.nn.MaxPool2d`, and will change in a future release. | |
See :class:`~torch.nn.MaxPool2d` for details. | |
Args: | |
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`, minibatch dim optional. | |
kernel_size: size of the pooling region. Can be a single number or a | |
tuple `(kH, kW)` | |
stride: stride of the pooling operation. Can be a single number or a | |
tuple `(sH, sW)`. Default: :attr:`kernel_size` | |
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. | |
dilation: The stride between elements within a sliding window, must be > 0. | |
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This | |
ensures that every element in the input tensor is covered by a sliding window. | |
return_indices: If ``True``, will return the argmax along with the max values. | |
Useful for :class:`torch.nn.functional.max_unpool2d` later | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool2d_with_indices, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) | |
def _max_pool2d( | |
input: Tensor, kernel_size: BroadcastingList2[int], | |
stride: Optional[BroadcastingList2[int]] = None, | |
padding: BroadcastingList2[int] = 0, | |
dilation: BroadcastingList2[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool2d, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) | |
max_pool2d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=6, | |
default=False, | |
if_true=max_pool2d_with_indices, | |
if_false=_max_pool2d, | |
module_name=__name__, | |
func_name="max_pool2d", | |
) | |
def max_pool3d_with_indices( | |
input: Tensor, kernel_size: BroadcastingList3[int], | |
stride: Optional[BroadcastingList3[int]] = None, | |
padding: BroadcastingList3[int] = 0, | |
dilation: BroadcastingList3[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False) | |
Applies a 3D max pooling over an input signal composed of several input | |
planes. | |
.. note:: | |
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from | |
what seen in :class:`~torch.nn.MaxPool3d`, and will change in a future release. | |
See :class:`~torch.nn.MaxPool3d` for details. | |
Args: | |
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iD, iH , iW)`, minibatch dim optional. | |
kernel_size: size of the pooling region. Can be a single number or a | |
tuple `(kT, kH, kW)` | |
stride: stride of the pooling operation. Can be a single number or a | |
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size` | |
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. | |
dilation: The stride between elements within a sliding window, must be > 0. | |
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This | |
ensures that every element in the input tensor is covered by a sliding window. | |
return_indices: If ``True``, will return the argmax along with the max values. | |
Useful for :class:`torch.nn.functional.max_unpool3d` later | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool3d_with_indices, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch._C._nn.max_pool3d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode) | |
def _max_pool3d( | |
input: Tensor, kernel_size: BroadcastingList3[int], | |
stride: Optional[BroadcastingList3[int]] = None, | |
padding: BroadcastingList3[int] = 0, | |
dilation: BroadcastingList3[int] = 1, | |
ceil_mode: bool = False, | |
return_indices: bool = False | |
) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_pool3d, | |
(input,), | |
input, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
ceil_mode=ceil_mode, | |
return_indices=return_indices, | |
) | |
if stride is None: | |
stride = torch.jit.annotate(List[int], []) | |
return torch.max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode) | |
max_pool3d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=6, | |
default=False, | |
if_true=max_pool3d_with_indices, | |
if_false=_max_pool3d, | |
module_name=__name__, | |
func_name="max_pool3d", | |
) | |
def _unpool_output_size( | |
input: Tensor, kernel_size: List[int], stride: List[int], padding: List[int], output_size: Optional[List[int]] | |
) -> List[int]: | |
input_size = input.size() | |
default_size = torch.jit.annotate(List[int], []) | |
for d in range(len(kernel_size)): | |
default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d] + kernel_size[d] - 2 * padding[d]) | |
if output_size is None: | |
ret = default_size | |
else: | |
if len(output_size) == len(kernel_size) + 2: | |
output_size = output_size[2:] | |
if len(output_size) != len(kernel_size): | |
raise ValueError( | |
"output_size should be a sequence containing " | |
f"{len(kernel_size)} or {len(kernel_size) + 2} elements, but it has a length of '{len(output_size)}'" | |
) | |
for d in range(len(kernel_size)): | |
min_size = default_size[d] - stride[d] | |
max_size = default_size[d] + stride[d] | |
if not (min_size < output_size[d] < max_size): | |
raise ValueError( | |
f'invalid output_size "{output_size}" (dim {d} must be between {min_size} and {max_size})' | |
) | |
ret = output_size | |
return ret | |
def max_unpool1d( | |
input: Tensor, indices: Tensor, | |
kernel_size: BroadcastingList1[int], | |
stride: Optional[BroadcastingList1[int]] = None, | |
padding: BroadcastingList1[int] = 0, | |
output_size: Optional[BroadcastingList1[int]] = None | |
) -> Tensor: | |
r"""Compute a partial inverse of :class:`MaxPool1d`. | |
See :class:`~torch.nn.MaxUnpool1d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_unpool1d, | |
(input,), | |
input, | |
indices, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
output_size=output_size, | |
) | |
kernel_size = _single(kernel_size) | |
if stride is not None: | |
_stride = _single(stride) | |
else: | |
_stride = kernel_size | |
padding = _single(padding) | |
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) | |
if isinstance(output_size, list): | |
output_size = output_size + [1] | |
else: | |
output_size = output_size + (1,) | |
return torch._C._nn.max_unpool2d(input.unsqueeze(-1), indices.unsqueeze(-1), output_size).squeeze(-1) | |
def max_unpool2d( | |
input: Tensor, indices: Tensor, | |
kernel_size: BroadcastingList2[int], | |
stride: Optional[BroadcastingList2[int]] = None, | |
padding: BroadcastingList2[int] = 0, | |
output_size: Optional[BroadcastingList2[int]] = None | |
) -> Tensor: | |
r"""Compute a partial inverse of :class:`MaxPool2d`. | |
See :class:`~torch.nn.MaxUnpool2d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_unpool2d, | |
(input,), | |
input, | |
indices, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
output_size=output_size, | |
) | |
kernel_size = _pair(kernel_size) | |
if stride is not None: | |
_stride = _pair(stride) | |
else: | |
_stride = kernel_size | |
padding = _pair(padding) | |
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) | |
return torch._C._nn.max_unpool2d(input, indices, output_size) | |
def max_unpool3d( | |
input: Tensor, indices: Tensor, | |
kernel_size: BroadcastingList3[int], | |
stride: Optional[BroadcastingList3[int]] = None, | |
padding: BroadcastingList3[int] = 0, | |
output_size: Optional[BroadcastingList3[int]] = None | |
) -> Tensor: | |
r"""Compute a partial inverse of :class:`MaxPool3d`. | |
See :class:`~torch.nn.MaxUnpool3d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
max_unpool3d, | |
(input,), | |
input, | |
indices, | |
kernel_size, | |
stride=stride, | |
padding=padding, | |
output_size=output_size, | |
) | |
kernel_size = _triple(kernel_size) | |
if stride is not None: | |
_stride = _triple(stride) | |
else: | |
_stride = kernel_size | |
padding = _triple(padding) | |
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size) | |
return torch._C._nn.max_unpool3d(input, indices, output_size, _stride, padding) | |
def lp_pool3d( | |
input: Tensor, norm_type: Union[int, float], | |
kernel_size: BroadcastingList3[int], | |
stride: Optional[BroadcastingList3[int]] = None, | |
ceil_mode: bool = False | |
) -> Tensor: | |
r""" | |
Apply a 3D power-average pooling over an input signal composed of several input planes. | |
If the sum of all inputs to the power of `p` is | |
zero, the gradient is set to zero as well. | |
See :class:`~torch.nn.LPPool3d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
lp_pool3d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode | |
) | |
kd, kw, kh = utils._triple(kernel_size) | |
if stride is not None: | |
out = avg_pool3d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) | |
else: | |
out = avg_pool3d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode) | |
return (torch.sign(out) * relu(torch.abs(out))).mul(kd * kw * kh).pow(1.0 / norm_type) | |
def lp_pool2d( | |
input: Tensor, norm_type: Union[int, float], | |
kernel_size: BroadcastingList2[int], | |
stride: Optional[BroadcastingList2[int]] = None, | |
ceil_mode: bool = False | |
) -> Tensor: | |
r""" | |
Apply a 2D power-average pooling over an input signal composed of several input planes. | |
If the sum of all inputs to the power of `p` is | |
zero, the gradient is set to zero as well. | |
See :class:`~torch.nn.LPPool2d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode | |
) | |
kw, kh = utils._pair(kernel_size) | |
if stride is not None: | |
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) | |
else: | |
out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode) | |
return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1.0 / norm_type) | |
def lp_pool1d( | |
input: Tensor, norm_type: Union[int, float], | |
kernel_size: int, | |
stride: Optional[BroadcastingList1[int]] = None, | |
ceil_mode: bool = False | |
) -> Tensor: | |
r"""Apply a 1D power-average pooling over an input signal composed of several input planes. | |
If the sum of all inputs to the power of `p` is | |
zero, the gradient is set to zero as well. | |
See :class:`~torch.nn.LPPool1d` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode | |
) | |
if stride is not None: | |
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode) | |
else: | |
out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode) | |
return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1.0 / norm_type) | |
def adaptive_max_pool1d_with_indices( | |
input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
adaptive_max_pool1d(input, output_size, return_indices=False) | |
Applies a 1D adaptive max pooling over an input signal composed of | |
several input planes. | |
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer) | |
return_indices: whether to return pooling indices. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool1d_with_indices, (input,), input, output_size, return_indices=return_indices | |
) | |
return torch.adaptive_max_pool1d(input, output_size) | |
def _adaptive_max_pool1d(input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool1d, (input,), input, output_size, return_indices=return_indices | |
) | |
return adaptive_max_pool1d_with_indices(input, output_size)[0] | |
adaptive_max_pool1d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=2, | |
default=False, | |
if_true=adaptive_max_pool1d_with_indices, | |
if_false=_adaptive_max_pool1d, | |
module_name=__name__, | |
func_name="adaptive_max_pool1d", | |
) | |
def adaptive_max_pool2d_with_indices( | |
input: Tensor, output_size: BroadcastingList2[int], | |
return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r"""adaptive_max_pool2d(input, output_size, return_indices=False) | |
Applies a 2D adaptive max pooling over an input signal composed of | |
several input planes. | |
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer or | |
double-integer tuple) | |
return_indices: whether to return pooling indices. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool2d_with_indices, (input,), input, output_size, return_indices=return_indices | |
) | |
output_size = _list_with_default(output_size, input.size()) | |
return torch._C._nn.adaptive_max_pool2d(input, output_size) | |
def _adaptive_max_pool2d(input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool2d, (input,), input, output_size, return_indices=return_indices | |
) | |
return adaptive_max_pool2d_with_indices(input, output_size)[0] | |
adaptive_max_pool2d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=2, | |
default=False, | |
if_true=adaptive_max_pool2d_with_indices, | |
if_false=_adaptive_max_pool2d, | |
module_name=__name__, | |
func_name="adaptive_max_pool2d", | |
) | |
def adaptive_max_pool3d_with_indices( | |
input: Tensor, output_size: BroadcastingList3[int], | |
return_indices: bool = False | |
) -> Tuple[Tensor, Tensor]: # noqa: D400 | |
r""" | |
adaptive_max_pool3d(input, output_size, return_indices=False) | |
Applies a 3D adaptive max pooling over an input signal composed of | |
several input planes. | |
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer or | |
triple-integer tuple) | |
return_indices: whether to return pooling indices. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool3d_with_indices, (input,), input, output_size, return_indices=return_indices | |
) | |
output_size = _list_with_default(output_size, input.size()) | |
return torch._C._nn.adaptive_max_pool3d(input, output_size) | |
def _adaptive_max_pool3d(input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False) -> Tensor: | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
adaptive_max_pool3d, (input,), input, output_size, return_indices=return_indices | |
) | |
return adaptive_max_pool3d_with_indices(input, output_size)[0] | |
adaptive_max_pool3d = boolean_dispatch( | |
arg_name="return_indices", | |
arg_index=2, | |
default=False, | |
if_true=adaptive_max_pool3d_with_indices, | |
if_false=_adaptive_max_pool3d, | |
module_name=__name__, | |
func_name="adaptive_max_pool3d", | |
) | |
adaptive_avg_pool1d = _add_docstr( | |
torch.adaptive_avg_pool1d, | |
r""" | |
adaptive_avg_pool1d(input, output_size) -> Tensor | |
Applies a 1D adaptive average pooling over an input signal composed of | |
several input planes. | |
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer) | |
""", | |
) | |
def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: | |
r"""Apply a 2D adaptive average pooling over an input signal composed of several input planes. | |
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer or | |
double-integer tuple) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(adaptive_avg_pool2d, (input,), input, output_size) | |
_output_size = _list_with_default(output_size, input.size()) | |
return torch._C._nn.adaptive_avg_pool2d(input, _output_size) | |
def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList3[int]) -> Tensor: | |
r"""Apply a 3D adaptive average pooling over an input signal composed of several input planes. | |
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape. | |
Args: | |
output_size: the target output size (single integer or | |
triple-integer tuple) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(adaptive_avg_pool3d, (input,), input, output_size) | |
_output_size = _list_with_default(output_size, input.size()) | |
return torch._C._nn.adaptive_avg_pool3d(input, _output_size) | |
# Activation functions | |
def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: | |
r"""During training, randomly zeroes some elements of the input tensor with probability :attr:`p`. | |
Uses samples from a Bernoulli distribution. | |
See :class:`~torch.nn.Dropout` for details. | |
Args: | |
p: probability of an element to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training) | |
def alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor: | |
r"""Apply alpha dropout to the input. | |
See :class:`~torch.nn.AlphaDropout` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(alpha_dropout, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
return _VF.alpha_dropout_(input, p, training) if inplace else _VF.alpha_dropout(input, p, training) | |
def dropout1d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: | |
r"""Randomly zero out entire channels (a channel is a 1D feature map). | |
For example, the :math:`j`-th channel of the :math:`i`-th sample in the | |
batched input is a 1D tensor :math:`\text{input}[i, j]` of the input tensor. | |
Each channel will be zeroed out independently on every forward call with | |
probability :attr:`p` using samples from a Bernoulli distribution. | |
See :class:`~torch.nn.Dropout1d` for details. | |
Args: | |
p: probability of a channel to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(dropout1d, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
inp_dim = input.dim() | |
if inp_dim not in (2, 3): | |
raise RuntimeError(f"dropout1d: Expected 2D or 3D input, but received a {inp_dim}D input. " | |
"Note that dropout1d exists to provide channel-wise dropout on inputs with 1 " | |
"spatial dimension, a channel dimension, and an optional batch dimension " | |
"(i.e. 2D or 3D inputs).") | |
is_batched = inp_dim == 3 | |
if not is_batched: | |
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0) | |
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) | |
if not is_batched: | |
result = result.squeeze_(0) if inplace else result.squeeze(0) | |
return result | |
def dropout2d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: | |
r"""Randomly zero out entire channels (a channel is a 2D feature map). | |
For example, the :math:`j`-th channel of the :math:`i`-th sample in the | |
batched input is a 2D tensor :math:`\text{input}[i, j]` of the input tensor. | |
Each channel will be zeroed out independently on every forward call with | |
probability :attr:`p` using samples from a Bernoulli distribution. | |
See :class:`~torch.nn.Dropout2d` for details. | |
Args: | |
p: probability of a channel to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(dropout2d, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
inp_dim = input.dim() | |
if inp_dim not in (3, 4): | |
warn_msg = (f"dropout2d: Received a {inp_dim}-D input to dropout2d, which is deprecated " | |
"and will result in an error in a future release. To retain the behavior " | |
"and silence this warning, please use dropout instead. Note that dropout2d " | |
"exists to provide channel-wise dropout on inputs with 2 spatial dimensions, " | |
"a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).") | |
warnings.warn(warn_msg) | |
# TODO: Properly support no-batch-dim inputs. For now, these are NOT supported; passing | |
# a 3D input will perform dropout1d behavior instead. This was done historically and the | |
# behavior is maintained here for now. | |
# See https://github.com/pytorch/pytorch/issues/77081 | |
if inp_dim == 3: | |
warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise " | |
"1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C " | |
"is the channel dim. This behavior will change in a future release to interpret the " | |
"input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D " | |
"channel-wise dropout behavior, please switch to using dropout1d instead.") | |
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) | |
return result | |
def dropout3d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor: | |
r"""Randomly zero out entire channels (a channel is a 3D feature map). | |
For example, the :math:`j`-th channel of the :math:`i`-th sample in the | |
batched input is a 3D tensor :math:`\text{input}[i, j]` of the input tensor. | |
Each channel will be zeroed out independently on every forward call with | |
probability :attr:`p` using samples from a Bernoulli distribution. | |
See :class:`~torch.nn.Dropout3d` for details. | |
Args: | |
p: probability of a channel to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(dropout3d, (input,), input, p=p, training=training, inplace=inplace) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
inp_dim = input.dim() | |
if inp_dim not in (4, 5): | |
warn_msg = (f"dropout3d: Received a {inp_dim}-D input to dropout3d, which is deprecated " | |
"and will result in an error in a future release. To retain the behavior " | |
"and silence this warning, please use dropout instead. Note that dropout3d " | |
"exists to provide channel-wise dropout on inputs with 3 spatial dimensions, " | |
"a channel dimension, and an optional batch dimension (i.e. 4D or 5D inputs).") | |
warnings.warn(warn_msg) | |
is_batched = inp_dim == 5 | |
if not is_batched: | |
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0) | |
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training) | |
if not is_batched: | |
result = result.squeeze_(0) if inplace else result.squeeze(0) | |
return result | |
def feature_alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor: | |
r"""Randomly masks out entire channels (a channel is a feature map). | |
For example, the :math:`j`-th channel of the :math:`i`-th sample in the batch input | |
is a tensor :math:`\text{input}[i, j]` of the input tensor. Instead of | |
setting activations to zero, as in regular Dropout, the activations are set | |
to the negative saturation value of the SELU activation function. | |
Each element will be masked independently on every forward call with | |
probability :attr:`p` using samples from a Bernoulli distribution. | |
The elements to be masked are randomized on every forward call, and scaled | |
and shifted to maintain zero mean and unit variance. | |
See :class:`~torch.nn.FeatureAlphaDropout` for details. | |
Args: | |
p: dropout probability of a channel to be zeroed. Default: 0.5 | |
training: apply dropout if is ``True``. Default: ``True`` | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
feature_alpha_dropout, (input,), input, p=p, training=training, inplace=inplace | |
) | |
if p < 0.0 or p > 1.0: | |
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}") | |
return _VF.feature_alpha_dropout_(input, p, training) if inplace else _VF.feature_alpha_dropout(input, p, training) | |
def _threshold(input: Tensor, threshold: float, value: float, inplace: bool = False) -> Tensor: | |
r"""Apply a threshold to each element of the input Tensor. | |
See :class:`~torch.nn.Threshold` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(_threshold, (input,), input, threshold, value, inplace=inplace) | |
if inplace: | |
result = _VF.threshold_(input, threshold, value) | |
else: | |
result = _VF.threshold(input, threshold, value) | |
return result | |
# We define this function as _threshold because it takes an argument | |
# named threshold, which clobbers the recursive reference to the | |
# function needed for __torch_function__ support | |
threshold = _threshold | |
threshold_ = _add_docstr( | |
_VF.threshold_, | |
r""" | |
threshold_(input, threshold, value) -> Tensor | |
In-place version of :func:`~threshold`. | |
""", | |
) | |
def relu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r"""relu(input, inplace=False) -> Tensor | |
Applies the rectified linear unit function element-wise. See | |
:class:`~torch.nn.ReLU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(relu, (input,), input, inplace=inplace) | |
if inplace: | |
result = torch.relu_(input) | |
else: | |
result = torch.relu(input) | |
return result | |
relu_ = _add_docstr( | |
torch.relu_, | |
r""" | |
relu_(input) -> Tensor | |
In-place version of :func:`~relu`. | |
""", | |
) | |
def glu(input: Tensor, dim: int = -1) -> Tensor: # noqa: D400,D402 | |
r""" | |
glu(input, dim=-1) -> Tensor | |
The gated linear unit. Computes: | |
.. math :: | |
\text{GLU}(a, b) = a \otimes \sigma(b) | |
where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma` | |
is the sigmoid function and :math:`\otimes` is the element-wise product between matrices. | |
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_. | |
Args: | |
input (Tensor): input tensor | |
dim (int): dimension on which to split the input. Default: -1 | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(glu, (input,), input, dim=dim) | |
if input.dim() == 0: | |
raise RuntimeError("glu does not support scalars because halving size must be even") | |
return torch._C._nn.glu(input, dim) | |
def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r""" | |
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor | |
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more | |
details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(hardtanh, (input,), input, min_val=min_val, max_val=max_val, inplace=inplace) | |
if inplace: | |
result = torch._C._nn.hardtanh_(input, min_val, max_val) | |
else: | |
result = torch._C._nn.hardtanh(input, min_val, max_val) | |
return result | |
hardtanh_ = _add_docstr( | |
torch._C._nn.hardtanh_, | |
r""" | |
hardtanh_(input, min_val=-1., max_val=1.) -> Tensor | |
In-place version of :func:`~hardtanh`. | |
""", | |
) | |
def relu6(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r"""relu6(input, inplace=False) -> Tensor | |
Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`. | |
See :class:`~torch.nn.ReLU6` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(relu6, (input,), input, inplace=inplace) | |
if inplace: | |
result = torch._C._nn.relu6_(input) | |
else: | |
result = torch._C._nn.relu6(input) | |
return result | |
def elu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: | |
r"""Apply the Exponential Linear Unit (ELU) function element-wise. | |
See :class:`~torch.nn.ELU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(elu, (input,), input, alpha=alpha, inplace=inplace) | |
if inplace: | |
result = torch._C._nn.elu_(input, alpha) | |
else: | |
result = torch._C._nn.elu(input, alpha) | |
return result | |
elu_ = _add_docstr( | |
torch._C._nn.elu_, | |
r""" | |
elu_(input, alpha=1.) -> Tensor | |
In-place version of :func:`~elu`. | |
""", | |
) | |
def selu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r"""selu(input, inplace=False) -> Tensor | |
Applies element-wise, | |
:math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`, | |
with :math:`\alpha=1.6732632423543772848170429916717` and | |
:math:`scale=1.0507009873554804934193349852946`. | |
See :class:`~torch.nn.SELU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(selu, (input,), input, inplace=inplace) | |
if inplace: | |
result = torch.selu_(input) | |
else: | |
result = torch.selu(input) | |
return result | |
selu_ = _add_docstr( | |
torch.selu_, | |
r""" | |
selu_(input) -> Tensor | |
In-place version of :func:`~selu`. | |
""", | |
) | |
def celu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r"""celu(input, alpha=1., inplace=False) -> Tensor | |
Applies element-wise, | |
:math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`. | |
See :class:`~torch.nn.CELU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(celu, (input,), input, alpha=alpha, inplace=inplace) | |
if inplace: | |
result = torch.celu_(input, alpha) | |
else: | |
result = torch.celu(input, alpha) | |
return result | |
celu_ = _add_docstr( | |
torch.celu_, | |
r""" | |
celu_(input, alpha=1.) -> Tensor | |
In-place version of :func:`~celu`. | |
""", | |
) | |
def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor: # noqa: D400,D402 | |
r""" | |
leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor | |
Applies element-wise, | |
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)` | |
See :class:`~torch.nn.LeakyReLU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(leaky_relu, (input,), input, negative_slope=negative_slope, inplace=inplace) | |
if inplace: | |
result = torch._C._nn.leaky_relu_(input, negative_slope) | |
else: | |
result = torch._C._nn.leaky_relu(input, negative_slope) | |
return result | |
leaky_relu_ = _add_docstr( | |
torch._C._nn.leaky_relu_, | |
r""" | |
leaky_relu_(input, negative_slope=0.01) -> Tensor | |
In-place version of :func:`~leaky_relu`. | |
""", | |
) | |
prelu = _add_docstr( | |
torch.prelu, | |
r"""prelu(input, weight) -> Tensor | |
Applies element-wise the function | |
:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a | |
learnable parameter. | |
.. note:: | |
`weight` is expected to be a scalar or 1-D tensor. If `weight` is 1-D, | |
its size must match the number of input channels, determined by | |
`input.size(1)` when `input.dim() >= 2`, otherwise 1. | |
In the 1-D case, note that when `input` has dim > 2, `weight` can be expanded | |
to the shape of `input` in a way that is not possible using normal | |
:ref:`broadcasting semantics<broadcasting-semantics>`. | |
See :class:`~torch.nn.PReLU` for more details. | |
""") | |
def rrelu( | |
input: Tensor, lower: float = 1.0 / 8, upper: float = 1.0 / 3, training: bool = False, inplace: bool = False | |
) -> Tensor: # noqa: D400,D402 | |
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor | |
Randomized leaky ReLU. | |
See :class:`~torch.nn.RReLU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
rrelu, (input,), input, lower=lower, upper=upper, training=training, inplace=inplace | |
) | |
if inplace: | |
result = torch.rrelu_(input, lower, upper, training) | |
else: | |
result = torch.rrelu(input, lower, upper, training) | |
return result | |
rrelu_ = _add_docstr( | |
torch.rrelu_, | |
r""" | |
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor | |
In-place version of :func:`~rrelu`. | |
""", | |
) | |
logsigmoid = _add_docstr( | |
torch._C._nn.log_sigmoid, | |
r""" | |
logsigmoid(input) -> Tensor | |
Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)` | |
See :class:`~torch.nn.LogSigmoid` for more details. | |
""", | |
) | |
gelu = _add_docstr( | |
torch._C._nn.gelu, | |
r""" | |
gelu(input, approximate = 'none') -> Tensor | |
When the approximate argument is 'none', it applies element-wise the function | |
:math:`\text{GELU}(x) = x * \Phi(x)` | |
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution. | |
When the approximate argument is 'tanh', Gelu is estimated with | |
.. math:: | |
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3))) | |
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_. | |
""") | |
hardshrink = _add_docstr( | |
torch.hardshrink, | |
r""" | |
hardshrink(input, lambd=0.5) -> Tensor | |
Applies the hard shrinkage function element-wise | |
See :class:`~torch.nn.Hardshrink` for more details. | |
""") | |
def tanhshrink(input): # noqa: D400,D402 | |
r"""tanhshrink(input) -> Tensor | |
Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)` | |
See :class:`~torch.nn.Tanhshrink` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(tanhshrink, (input,), input) | |
return input - input.tanh() | |
def softsign(input): # noqa: D400,D402 | |
r"""softsign(input) -> Tensor | |
Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}` | |
See :class:`~torch.nn.Softsign` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(softsign, (input,), input) | |
return input / (input.abs() + 1) | |
softplus = _add_docstr( | |
torch._C._nn.softplus, | |
r""" | |
softplus(input, beta=1, threshold=20) -> Tensor | |
Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`. | |
For numerical stability the implementation reverts to the linear function | |
when :math:`input \times \beta > threshold`. | |
See :class:`~torch.nn.Softplus` for more details. | |
""", | |
) | |
def _get_softmax_dim(name: str, ndim: int, stacklevel: int) -> int: | |
warnings.warn( | |
f"Implicit dimension choice for {name} has been deprecated. Change the call to include dim=X as an argument.", | |
stacklevel=stacklevel, | |
) | |
if ndim == 0 or ndim == 1 or ndim == 3: | |
ret = 0 | |
else: | |
ret = 1 | |
return ret | |
def softmin(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: | |
r"""Apply a softmin function. | |
Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula. | |
See :class:`~torch.nn.Softmin` for more details. | |
Args: | |
input (Tensor): input | |
dim (int): A dimension along which softmin will be computed (so every slice | |
along dim will sum to 1). | |
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. | |
If specified, the input tensor is casted to :attr:`dtype` before the operation | |
is performed. This is useful for preventing data type overflows. Default: None. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) | |
if dim is None: | |
dim = _get_softmax_dim("softmin", input.dim(), _stacklevel) | |
if dtype is None: | |
ret = (-input).softmax(dim) | |
else: | |
ret = (-input).softmax(dim, dtype=dtype) | |
return ret | |
def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: | |
r"""Apply a softmax function. | |
Softmax is defined as: | |
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` | |
It is applied to all slices along dim, and will re-scale them so that the elements | |
lie in the range `[0, 1]` and sum to 1. | |
See :class:`~torch.nn.Softmax` for more details. | |
Args: | |
input (Tensor): input | |
dim (int): A dimension along which softmax will be computed. | |
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. | |
If specified, the input tensor is casted to :attr:`dtype` before the operation | |
is performed. This is useful for preventing data type overflows. Default: None. | |
.. note:: | |
This function doesn't work directly with NLLLoss, | |
which expects the Log to be computed between the Softmax and itself. | |
Use log_softmax instead (it's faster and has better numerical properties). | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) | |
if dim is None: | |
dim = _get_softmax_dim("softmax", input.dim(), _stacklevel) | |
if dtype is None: | |
ret = input.softmax(dim) | |
else: | |
ret = input.softmax(dim, dtype=dtype) | |
return ret | |
def gumbel_softmax(logits: Tensor, tau: float = 1, hard: bool = False, eps: float = 1e-10, dim: int = -1) -> Tensor: | |
r""" | |
Sample from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretize. | |
Args: | |
logits: `[..., num_features]` unnormalized log probabilities | |
tau: non-negative scalar temperature | |
hard: if ``True``, the returned samples will be discretized as one-hot vectors, | |
but will be differentiated as if it is the soft sample in autograd | |
dim (int): A dimension along which softmax will be computed. Default: -1. | |
Returns: | |
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. | |
If ``hard=True``, the returned samples will be one-hot, otherwise they will | |
be probability distributions that sum to 1 across `dim`. | |
.. note:: | |
This function is here for legacy reasons, may be removed from nn.Functional in the future. | |
.. note:: | |
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft` | |
It achieves two things: | |
- makes the output value exactly one-hot | |
(since we add then subtract y_soft value) | |
- makes the gradient equal to y_soft gradient | |
(since we strip all other gradients) | |
Examples:: | |
>>> logits = torch.randn(20, 32) | |
>>> # Sample soft categorical using reparametrization trick: | |
>>> F.gumbel_softmax(logits, tau=1, hard=False) | |
>>> # Sample hard categorical using "Straight-through" trick: | |
>>> F.gumbel_softmax(logits, tau=1, hard=True) | |
.. _Link 1: | |
https://arxiv.org/abs/1611.00712 | |
.. _Link 2: | |
https://arxiv.org/abs/1611.01144 | |
""" | |
if has_torch_function_unary(logits): | |
return handle_torch_function(gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim) | |
if eps != 1e-10: | |
warnings.warn("`eps` parameter is deprecated and has no effect.") | |
gumbels = ( | |
-torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log() | |
) # ~Gumbel(0,1) | |
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) | |
y_soft = gumbels.softmax(dim) | |
if hard: | |
# Straight through. | |
index = y_soft.max(dim, keepdim=True)[1] | |
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) | |
ret = y_hard - y_soft.detach() + y_soft | |
else: | |
# Reparametrization trick. | |
ret = y_soft | |
return ret | |
def log_softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor: | |
r"""Apply a softmax followed by a logarithm. | |
While mathematically equivalent to log(softmax(x)), doing these two | |
operations separately is slower and numerically unstable. This function | |
uses an alternative formulation to compute the output and gradient correctly. | |
See :class:`~torch.nn.LogSoftmax` for more details. | |
Args: | |
input (Tensor): input | |
dim (int): A dimension along which log_softmax will be computed. | |
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. | |
If specified, the input tensor is cast to :attr:`dtype` before the operation | |
is performed. This is useful for preventing data type overflows. Default: None. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype) | |
if dim is None: | |
dim = _get_softmax_dim("log_softmax", input.dim(), _stacklevel) | |
if dtype is None: | |
ret = input.log_softmax(dim) | |
else: | |
ret = input.log_softmax(dim, dtype=dtype) | |
return ret | |
softshrink = _add_docstr( | |
torch._C._nn.softshrink, | |
r""" | |
softshrink(input, lambd=0.5) -> Tensor | |
Applies the soft shrinkage function elementwise | |
See :class:`~torch.nn.Softshrink` for more details. | |
""", | |
) | |
def tanh(input): # noqa: D400,D402 | |
r"""tanh(input) -> Tensor | |
Applies element-wise, | |
:math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}` | |
See :class:`~torch.nn.Tanh` for more details. | |
""" | |
return input.tanh() | |
def sigmoid(input): # noqa: D400,D402 | |
r"""sigmoid(input) -> Tensor | |
Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}` | |
See :class:`~torch.nn.Sigmoid` for more details. | |
""" | |
return input.sigmoid() | |
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: | |
r"""Apply the Hardsigmoid function element-wise. | |
.. math:: | |
\text{Hardsigmoid}(x) = \begin{cases} | |
0 & \text{if~} x \le -3, \\ | |
1 & \text{if~} x \ge +3, \\ | |
x / 6 + 1 / 2 & \text{otherwise} | |
\end{cases} | |
Args: | |
inplace: If set to ``True``, will do this operation in-place. Default: ``False`` | |
See :class:`~torch.nn.Hardsigmoid` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace) | |
if inplace: | |
return torch._C._nn.hardsigmoid_(input) | |
return torch._C._nn.hardsigmoid(input) | |
linear = _add_docstr( | |
torch._C._nn.linear, | |
r""" | |
linear(input, weight, bias=None) -> Tensor | |
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`. | |
This operation supports 2-D :attr:`weight` with :ref:`sparse layout<sparse-docs>` | |
{sparse_beta_warning} | |
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`. | |
Shape: | |
- Input: :math:`(*, in\_features)` where `*` means any number of | |
additional dimensions, including none | |
- Weight: :math:`(out\_features, in\_features)` or :math:`(in\_features)` | |
- Bias: :math:`(out\_features)` or :math:`()` | |
- Output: :math:`(*, out\_features)` or :math:`(*)`, based on the shape of the weight | |
""".format(**sparse_support_notes)) | |
bilinear = _add_docstr( | |
torch.bilinear, | |
r""" | |
bilinear(input1, input2, weight, bias=None) -> Tensor | |
Applies a bilinear transformation to the incoming data: | |
:math:`y = x_1^T A x_2 + b` | |
Shape: | |
- input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` | |
and :math:`*` means any number of additional dimensions. | |
All but the last dimension of the inputs should be the same. | |
- input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}` | |
- weight: :math:`(\text{out\_features}, \text{in1\_features}, | |
\text{in2\_features})` | |
- bias: :math:`(\text{out\_features})` | |
- output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}` | |
and all but the last dimension are the same shape as the input. | |
""") | |
def silu(input: Tensor, inplace: bool = False) -> Tensor: | |
r"""Apply the Sigmoid Linear Unit (SiLU) function, element-wise. | |
The SiLU function is also known as the swish function. | |
.. math:: | |
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} | |
.. note:: | |
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_ | |
where the SiLU (Sigmoid Linear Unit) was originally coined, and see | |
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation | |
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish: | |
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_ | |
where the SiLU was experimented with later. | |
See :class:`~torch.nn.SiLU` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(silu, (input,), input, inplace=inplace) | |
if inplace: | |
return torch._C._nn.silu_(input) | |
return torch._C._nn.silu(input) | |
def mish(input: Tensor, inplace: bool = False) -> Tensor: | |
r"""Apply the Mish function, element-wise. | |
Mish: A Self Regularized Non-Monotonic Neural Activation Function. | |
.. math:: | |
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) | |
.. note:: | |
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ | |
See :class:`~torch.nn.Mish` for more details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(mish, (input,), input, inplace=inplace) | |
if inplace: | |
return torch._C._nn.mish_(input) | |
return torch._C._nn.mish(input) | |
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: | |
r"""Apply hardswish function, element-wise. | |
Follows implementation as described in the paper: | |
`Searching for MobileNetV3`_. | |
.. math:: | |
\text{Hardswish}(x) = \begin{cases} | |
0 & \text{if~} x \le -3, \\ | |
x & \text{if~} x \ge +3, \\ | |
x \cdot (x + 3) /6 & \text{otherwise} | |
\end{cases} | |
See :class:`~torch.nn.Hardswish` for more details. | |
.. _`Searching for MobileNetV3`: | |
https://arxiv.org/abs/1905.02244 | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(hardswish, (input,), input, inplace=inplace) | |
if inplace: | |
return torch._C._nn.hardswish_(input) | |
return torch._C._nn.hardswish(input) | |
def _no_grad_embedding_renorm_(weight: Tensor, input: Tensor, max_norm: float, norm_type: float) -> Tuple[Tensor, Tensor]: | |
torch.embedding_renorm_(weight.detach(), input, max_norm, norm_type) | |
def embedding( | |
input: Tensor, | |
weight: Tensor, | |
padding_idx: Optional[int] = None, | |
max_norm: Optional[float] = None, | |
norm_type: float = 2.0, | |
scale_grad_by_freq: bool = False, | |
sparse: bool = False, | |
) -> Tensor: | |
r"""Generate a simple lookup table that looks up embeddings in a fixed dictionary and size. | |
This module is often used to retrieve word embeddings using indices. | |
The input to the module is a list of indices, and the embedding matrix, | |
and the output is the corresponding word embeddings. | |
See :class:`torch.nn.Embedding` for more details. | |
.. note:: | |
Note that the analytical gradients of this function with respect to | |
entries in :attr:`weight` at the row specified by :attr:`padding_idx` | |
are expected to differ from the numerical ones. | |
.. note:: | |
Note that `:class:`torch.nn.Embedding` differs from this function in | |
that it initializes the row of :attr:`weight` specified by | |
:attr:`padding_idx` to all zeros on construction. | |
Args: | |
input (LongTensor): Tensor containing indices into the embedding matrix | |
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1, | |
and number of columns equal to the embedding size | |
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient; | |
therefore, the embedding vector at :attr:`padding_idx` is not updated during training, | |
i.e. it remains as a fixed "pad". | |
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` | |
is renormalized to have norm :attr:`max_norm`. | |
Note: this will modify :attr:`weight` in-place. | |
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``. | |
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of | |
the words in the mini-batch. Default ``False``. | |
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under | |
:class:`torch.nn.Embedding` for more details regarding sparse gradients. | |
Shape: | |
- Input: LongTensor of arbitrary shape containing the indices to extract | |
- Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`, | |
where V = maximum index + 1 and embedding_dim = the embedding size | |
- Output: `(*, embedding_dim)`, where `*` is the input shape | |
Examples:: | |
>>> # a batch of 2 samples of 4 indices each | |
>>> input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) | |
>>> # an embedding matrix containing 10 tensors of size 3 | |
>>> embedding_matrix = torch.rand(10, 3) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> F.embedding(input, embedding_matrix) | |
tensor([[[ 0.8490, 0.9625, 0.6753], | |
[ 0.9666, 0.7761, 0.6108], | |
[ 0.6246, 0.9751, 0.3618], | |
[ 0.4161, 0.2419, 0.7383]], | |
[[ 0.6246, 0.9751, 0.3618], | |
[ 0.0237, 0.7794, 0.0528], | |
[ 0.9666, 0.7761, 0.6108], | |
[ 0.3385, 0.8612, 0.1867]]]) | |
>>> # example with padding_idx | |
>>> weights = torch.rand(10, 3) | |
>>> weights[0, :].zero_() | |
>>> embedding_matrix = weights | |
>>> input = torch.tensor([[0, 2, 0, 5]]) | |
>>> F.embedding(input, embedding_matrix, padding_idx=0) | |
tensor([[[ 0.0000, 0.0000, 0.0000], | |
[ 0.5609, 0.5384, 0.8720], | |
[ 0.0000, 0.0000, 0.0000], | |
[ 0.6262, 0.2438, 0.7471]]]) | |
""" | |
if has_torch_function_variadic(input, weight): | |
return handle_torch_function( | |
embedding, | |
(input, weight), | |
input, | |
weight, | |
padding_idx=padding_idx, | |
max_norm=max_norm, | |
norm_type=norm_type, | |
scale_grad_by_freq=scale_grad_by_freq, | |
sparse=sparse, | |
) | |
if padding_idx is not None: | |
if padding_idx > 0: | |
assert padding_idx < weight.size(0), "Padding_idx must be within num_embeddings" | |
elif padding_idx < 0: | |
assert padding_idx >= -weight.size(0), "Padding_idx must be within num_embeddings" | |
padding_idx = weight.size(0) + padding_idx | |
else: | |
padding_idx = -1 | |
if max_norm is not None: | |
# Note [embedding_renorm contiguous] | |
# `embedding_renorm_` will call .contiguous() on input anyways, so we | |
# call it here and take advantage of the improved locality in the | |
# `embedding` call below too. | |
input = input.contiguous() | |
# Note [embedding_renorm set_grad_enabled] | |
# XXX: equivalent to | |
# with torch.no_grad(): | |
# torch.embedding_renorm_ | |
# remove once script supports set_grad_enabled | |
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type) | |
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) | |
def embedding_bag( | |
input: Tensor, | |
weight: Tensor, | |
offsets: Optional[Tensor] = None, | |
max_norm: Optional[float] = None, | |
norm_type: float = 2, | |
scale_grad_by_freq: bool = False, | |
mode: str = "mean", | |
sparse: bool = False, | |
per_sample_weights: Optional[Tensor] = None, | |
include_last_offset: bool = False, | |
padding_idx: Optional[int] = None, | |
) -> Tensor: | |
r"""Compute sums, means or maxes of `bags` of embeddings. | |
Calculation is done without instantiating the intermediate embeddings. | |
See :class:`torch.nn.EmbeddingBag` for more details. | |
Note: | |
{backward_reproducibility_note} | |
Args: | |
input (LongTensor): Tensor containing bags of indices into the embedding matrix | |
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1, | |
and number of columns equal to the embedding size | |
offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines | |
the starting index position of each bag (sequence) in :attr:`input`. | |
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm` | |
is renormalized to have norm :attr:`max_norm`. | |
Note: this will modify :attr:`weight` in-place. | |
norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option. | |
Default ``2``. | |
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of | |
the words in the mini-batch. Default ``False``. | |
Note: this option is not supported when ``mode="max"``. | |
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag. | |
Default: ``"mean"`` | |
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under | |
:class:`torch.nn.Embedding` for more details regarding sparse gradients. | |
Note: this option is not supported when ``mode="max"``. | |
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None | |
to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights` | |
must have exactly the same shape as input and is treated as having the same | |
:attr:`offsets`, if those are not None. | |
include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1. | |
The last element is the size of the input, or the ending index position of the last bag (sequence). | |
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the | |
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated | |
during training, i.e. it remains as a fixed "pad". Note that the embedding | |
vector at :attr:`padding_idx` is excluded from the reduction. | |
Shape: | |
- :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional) | |
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences) | |
each of fixed length ``N``, and this will return ``B`` values aggregated in a way | |
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case. | |
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of | |
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing | |
the starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` | |
of shape `(B)`, :attr:`input` will be viewed as having ``B`` bags. | |
Empty bags (i.e., having 0-length) will have returned vectors filled by zeros. | |
- :attr:`weight` (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)` | |
- :attr:`per_sample_weights` (Tensor, optional). Has the same shape as :attr:`input`. | |
- :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)` | |
Examples:: | |
>>> # an Embedding module containing 10 tensors of size 3 | |
>>> embedding_matrix = torch.rand(10, 3) | |
>>> # a batch of 2 samples of 4 indices each | |
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]) | |
>>> offsets = torch.tensor([0, 4]) | |
>>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
>>> F.embedding_bag(input, embedding_matrix, offsets) | |
tensor([[ 0.3397, 0.3552, 0.5545], | |
[ 0.5893, 0.4386, 0.5882]]) | |
>>> # example with padding_idx | |
>>> embedding_matrix = torch.rand(10, 3) | |
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9]) | |
>>> offsets = torch.tensor([0, 4]) | |
>>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum') | |
tensor([[ 0.0000, 0.0000, 0.0000], | |
[-0.7082, 3.2145, -2.6251]]) | |
""" | |
if has_torch_function_variadic(input, weight, offsets, per_sample_weights): | |
return handle_torch_function( | |
embedding_bag, | |
(input, weight, offsets, per_sample_weights), | |
input, | |
weight, | |
offsets=offsets, | |
max_norm=max_norm, | |
norm_type=norm_type, | |
scale_grad_by_freq=scale_grad_by_freq, | |
mode=mode, | |
sparse=sparse, | |
per_sample_weights=per_sample_weights, | |
include_last_offset=include_last_offset, | |
padding_idx=padding_idx, | |
) | |
# Check for backward compatibility. | |
# Used to be embedding_bag(weight, input, ...) | |
# Now is embedding_bag(input, weight, ...) | |
if weight.dtype == torch.long and input.is_floating_point(): | |
warnings.warn( | |
"Argument order of nn.functional.embedding_bag was changed. " | |
"Usage `embedding_bag(weight, input, ...)` is deprecated, " | |
"and should now be `embedding_bag(input, weight, ...)`." | |
) | |
weight, input = input, weight | |
if per_sample_weights is not None and input.size() != per_sample_weights.size(): | |
raise ValueError( | |
f"embedding_bag: If per_sample_weights ({per_sample_weights.shape}) is not None, " | |
f"then it must have the same shape as the input ({input.shape})" | |
) | |
if not weight.dim() == 2: | |
raise ValueError( | |
f"weight has to be a 2D Tensor, but got Tensor of dimension {weight.dim()}" | |
) | |
if input.dim() == 2: | |
if offsets is not None: | |
type_str = "<unknown>" | |
# TODO: Remove this once script supports type() calls | |
if not torch.jit.is_scripting(): | |
type_str = str(type(offsets)) | |
raise ValueError( | |
"if input is 2D, then offsets has to be None" | |
", as input is treated is a mini-batch of" | |
" fixed length sequences. However, found " | |
f"offsets of type {type_str}" | |
) | |
offsets = torch.arange(0, input.numel(), input.size(1), dtype=input.dtype, device=input.device) | |
input = input.reshape(-1) | |
if per_sample_weights is not None: | |
per_sample_weights = per_sample_weights.reshape(-1) | |
elif input.dim() == 1: | |
if offsets is None: | |
raise ValueError("offsets has to be a 1D Tensor but got None") | |
if offsets.dim() != 1: | |
raise ValueError("offsets has to be a 1D Tensor") | |
else: | |
raise ValueError(f"input has to be 1D or 2D Tensor, but got Tensor of dimension {input.dim()}") | |
if mode == "sum": | |
mode_enum = 0 | |
elif mode == "mean": | |
mode_enum = 1 | |
elif mode == "max": | |
mode_enum = 2 | |
if scale_grad_by_freq: | |
raise ValueError("max mode does not support scaling the gradient by the frequency") | |
if sparse: | |
raise ValueError("max mode does not support sparse weights") | |
else: | |
raise ValueError("mode has to be one of sum, mean or max") | |
if max_norm is not None: | |
# XXX: equivalent to | |
# with torch.no_grad(): | |
# torch.nembedding_renorm_ | |
# remove once script supports set_grad_enabled | |
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type) | |
if per_sample_weights is not None and mode != "sum": | |
raise NotImplementedError( | |
"embedding_bag: per_sample_weights was not None. " | |
"per_sample_weights is only supported for mode='sum' " | |
f"(got mode='{mode}'). Please open a feature request on GitHub." | |
) | |
ret, _, _, _ = torch.embedding_bag( | |
weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights, include_last_offset, padding_idx | |
) | |
return ret | |
if embedding_bag.__doc__: | |
embedding_bag.__doc__ = embedding_bag.__doc__.format(**reproducibility_notes) | |
def _verify_batch_size(size: List[int]) -> None: | |
# XXX: JIT script does not support the reduce from functools, and mul op is a | |
# builtin, which cannot be used as a value to a func yet, so rewrite this size | |
# check to a simple equivalent for loop | |
# | |
# TODO: make use of reduce like below when JIT is ready with the missing features: | |
# from operator import mul | |
# from functools import reduce | |
# | |
# if reduce(mul, size[2:], size[0]) == 1 | |
size_prods = size[0] | |
for i in range(len(size) - 2): | |
size_prods *= size[i + 2] | |
if size_prods == 1: | |
raise ValueError(f"Expected more than 1 value per channel when training, got input size {size}") | |
def batch_norm( | |
input: Tensor, | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
weight: Optional[Tensor] = None, | |
bias: Optional[Tensor] = None, | |
training: bool = False, | |
momentum: float = 0.1, | |
eps: float = 1e-5, | |
) -> Tensor: | |
r"""Apply Batch Normalization for each channel across a batch of data. | |
See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`, | |
:class:`~torch.nn.BatchNorm3d` for details. | |
""" | |
if has_torch_function_variadic(input, running_mean, running_var, weight, bias): | |
return handle_torch_function( | |
batch_norm, | |
(input, running_mean, running_var, weight, bias), | |
input, | |
running_mean, | |
running_var, | |
weight=weight, | |
bias=bias, | |
training=training, | |
momentum=momentum, | |
eps=eps, | |
) | |
if training: | |
_verify_batch_size(input.size()) | |
return torch.batch_norm( | |
input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled | |
) | |
def _verify_spatial_size(size: List[int]) -> None: | |
# Verify that there is > 1 spatial element for instance norm calculation. | |
size_prods = 1 | |
for i in range(2, len(size)): | |
size_prods *= size[i] | |
if size_prods == 1: | |
raise ValueError(f"Expected more than 1 spatial element when training, got input size {size}") | |
def instance_norm( | |
input: Tensor, | |
running_mean: Optional[Tensor] = None, | |
running_var: Optional[Tensor] = None, | |
weight: Optional[Tensor] = None, | |
bias: Optional[Tensor] = None, | |
use_input_stats: bool = True, | |
momentum: float = 0.1, | |
eps: float = 1e-5, | |
) -> Tensor: | |
r"""Apply Instance Normalization independently for each channel in every data sample within a batch. | |
See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`, | |
:class:`~torch.nn.InstanceNorm3d` for details. | |
""" | |
if has_torch_function_variadic(input, running_mean, running_var, weight, bias): | |
return handle_torch_function( | |
instance_norm, | |
(input, running_mean, running_var, weight, bias), | |
input, | |
running_mean=running_mean, | |
running_var=running_var, | |
weight=weight, | |
bias=bias, | |
use_input_stats=use_input_stats, | |
momentum=momentum, | |
eps=eps, | |
) | |
if use_input_stats: | |
_verify_spatial_size(input.size()) | |
return torch.instance_norm( | |
input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, torch.backends.cudnn.enabled | |
) | |
def layer_norm( | |
input: Tensor, | |
normalized_shape: List[int], | |
weight: Optional[Tensor] = None, | |
bias: Optional[Tensor] = None, | |
eps: float = 1e-5, | |
) -> Tensor: | |
r"""Apply Layer Normalization for last certain number of dimensions. | |
See :class:`~torch.nn.LayerNorm` for details. | |
""" | |
if has_torch_function_variadic(input, weight, bias): | |
return handle_torch_function( | |
layer_norm, (input, weight, bias), input, normalized_shape, weight=weight, bias=bias, eps=eps | |
) | |
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled) | |
def group_norm( | |
input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5 | |
) -> Tensor: | |
r"""Apply Group Normalization for last certain number of dimensions. | |
See :class:`~torch.nn.GroupNorm` for details. | |
""" | |
if has_torch_function_variadic(input, weight, bias): | |
return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps) | |
if input.dim() < 2: | |
raise RuntimeError(f"Expected at least 2 dimensions for input tensor but received {input.dim()}") | |
_verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:])) | |
return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled) | |
def local_response_norm(input: Tensor, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0) -> Tensor: | |
r"""Apply local response normalization over an input signal. | |
The input signal is composed of several input planes, where channels occupy the second dimension. | |
Normalization is applied across channels. | |
See :class:`~torch.nn.LocalResponseNorm` for details. | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function(local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k) | |
dim = input.dim() | |
if dim < 3: | |
raise ValueError( | |
f"Expected 3D or higher dimensionality input (got {dim} dimensions)" | |
) | |
if input.numel() == 0: | |
return input | |
div = input.mul(input) | |
if dim == 3: | |
div = div.unsqueeze(1) | |
div = pad(div, (0, 0, size // 2, (size - 1) // 2)) | |
div = avg_pool2d(div, (size, 1), stride=1).squeeze(1) | |
else: | |
sizes = input.size() | |
div = div.view(sizes[0], 1, sizes[1], sizes[2], -1) | |
div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2)) | |
div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1) | |
div = div.view(sizes) | |
div = div.mul(alpha).add(k).pow(beta) | |
return input / div | |
# loss | |
def ctc_loss( | |
log_probs: Tensor, | |
targets: Tensor, | |
input_lengths: Tensor, | |
target_lengths: Tensor, | |
blank: int = 0, | |
reduction: str = "mean", | |
zero_infinity: bool = False, | |
) -> Tensor: | |
r"""Apply the Connectionist Temporal Classification loss. | |
See :class:`~torch.nn.CTCLoss` for details. | |
Note: | |
{cudnn_reproducibility_note} | |
Note: | |
{backward_reproducibility_note} | |
Args: | |
log_probs: :math:`(T, N, C)` or :math:`(T, C)` where `C = number of characters in alphabet including blank`, | |
`T = input length`, and `N = batch size`. | |
The logarithmized probabilities of the outputs | |
(e.g. obtained with :func:`torch.nn.functional.log_softmax`). | |
targets: :math:`(N, S)` or `(sum(target_lengths))`. | |
Targets cannot be blank. In the second form, the targets are assumed to be concatenated. | |
input_lengths: :math:`(N)` or :math:`()`. | |
Lengths of the inputs (must each be :math:`\leq T`) | |
target_lengths: :math:`(N)` or :math:`()`. | |
Lengths of the targets | |
blank (int, optional): | |
Blank label. Default :math:`0`. | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the output losses will be divided by the target lengths and | |
then the mean over the batch is taken, ``'sum'``: the output will be | |
summed. Default: ``'mean'`` | |
zero_infinity (bool, optional): | |
Whether to zero infinite losses and the associated gradients. | |
Default: ``False`` | |
Infinite losses mainly occur when the inputs are too short | |
to be aligned to the targets. | |
Example:: | |
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_() | |
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long) | |
>>> input_lengths = torch.full((16,), 50, dtype=torch.long) | |
>>> target_lengths = torch.randint(10, 30, (16,), dtype=torch.long) | |
>>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths) | |
>>> loss.backward() | |
""" | |
if has_torch_function_variadic(log_probs, targets, input_lengths, target_lengths): | |
return handle_torch_function( | |
ctc_loss, | |
(log_probs, targets, input_lengths, target_lengths), | |
log_probs, targets, input_lengths, target_lengths, | |
blank=blank, reduction=reduction, zero_infinity=zero_infinity | |
) | |
return torch.ctc_loss( | |
log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction), zero_infinity | |
) | |
if ctc_loss.__doc__: | |
ctc_loss.__doc__ = ctc_loss.__doc__.format(**reproducibility_notes) | |
def nll_loss( | |
input: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
ignore_index: int = -100, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: | |
r"""Compute the negative log likelihood loss. | |
See :class:`~torch.nn.NLLLoss` for details. | |
Args: | |
input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)` | |
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1` | |
in the case of K-dimensional loss. `input` is expected to be log-probabilities. | |
target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`, | |
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for | |
K-dimensional loss. | |
weight (Tensor, optional): a manual rescaling weight given to each | |
class. If given, has to be a Tensor of size `C` | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
ignore_index (int, optional): Specifies a target value that is ignored | |
and does not contribute to the input gradient. When :attr:`size_average` is | |
``True``, the loss is averaged over non-ignored targets. Default: -100 | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the sum of the output will be divided by the number of | |
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` | |
Example:: | |
>>> # input is of size N x C = 3 x 5 | |
>>> input = torch.randn(3, 5, requires_grad=True) | |
>>> # each element in target has to have 0 <= value < C | |
>>> target = torch.tensor([1, 0, 4]) | |
>>> output = F.nll_loss(F.log_softmax(input, dim=1), target) | |
>>> output.backward() | |
""" | |
if has_torch_function_variadic(input, target, weight): | |
return handle_torch_function( | |
nll_loss, | |
(input, target, weight), | |
input, | |
target, | |
weight=weight, | |
size_average=size_average, | |
ignore_index=ignore_index, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index) | |
def poisson_nll_loss( | |
input: Tensor, | |
target: Tensor, | |
log_input: bool = True, | |
full: bool = False, | |
size_average: Optional[bool] = None, | |
eps: float = 1e-8, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: | |
r"""Poisson negative log likelihood loss. | |
See :class:`~torch.nn.PoissonNLLLoss` for details. | |
Args: | |
input: expectation of underlying Poisson distribution. | |
target: random sample :math:`target \sim \text{Poisson}(input)`. | |
log_input: if ``True`` the loss is computed as | |
:math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is | |
:math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True`` | |
full: whether to compute full loss, i. e. to add the Stirling | |
approximation term. Default: ``False`` | |
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`. | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when | |
:attr:`log_input`\ =\ ``False``. Default: 1e-8 | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the sum of the output will be divided by the number of | |
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
poisson_nll_loss, | |
(input, target), | |
input, | |
target, | |
log_input=log_input, | |
full=full, | |
size_average=size_average, | |
eps=eps, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
if reduction != "none" and reduction != "mean" and reduction != "sum": | |
ret = input | |
raise ValueError(reduction + " is not a valid value for reduction") | |
ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction)) | |
return ret | |
def gaussian_nll_loss( | |
input: Tensor, | |
target: Tensor, | |
var: Tensor, | |
full: bool = False, | |
eps: float = 1e-6, | |
reduction: str = "mean", | |
) -> Tensor: | |
r"""Gaussian negative log likelihood loss. | |
See :class:`~torch.nn.GaussianNLLLoss` for details. | |
Args: | |
input: expectation of the Gaussian distribution. | |
target: sample from the Gaussian distribution. | |
var: tensor of positive variance(s), one for each of the expectations | |
in the input (heteroscedastic), or a single one (homoscedastic). | |
full (bool, optional): include the constant term in the loss calculation. Default: ``False``. | |
eps (float, optional): value added to var, for stability. Default: 1e-6. | |
reduction (str, optional): specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the output is the average of all batch member losses, | |
``'sum'``: the output is the sum of all batch member losses. | |
Default: ``'mean'``. | |
""" | |
if has_torch_function_variadic(input, target, var): | |
return handle_torch_function( | |
gaussian_nll_loss, | |
(input, target, var), | |
input, | |
target, | |
var, | |
full=full, | |
eps=eps, | |
reduction=reduction, | |
) | |
# Check var size | |
# If var.size == input.size, the case is heteroscedastic and no further checks are needed. | |
# Otherwise: | |
if var.size() != input.size(): | |
# If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case. | |
# e.g. input.size = (10, 2, 3), var.size = (10, 2) | |
# -> unsqueeze var so that var.shape = (10, 2, 1) | |
# this is done so that broadcasting can happen in the loss calculation | |
if input.size()[:-1] == var.size(): | |
var = torch.unsqueeze(var, -1) | |
# This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1. | |
# This is also a homoscedastic case. | |
# e.g. input.size = (10, 2, 3), var.size = (10, 2, 1) | |
elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1: # Heteroscedastic case | |
pass | |
# If none of the above pass, then the size of var is incorrect. | |
else: | |
raise ValueError("var is of incorrect size") | |
# Check validity of reduction mode | |
if reduction != 'none' and reduction != 'mean' and reduction != 'sum': | |
raise ValueError(reduction + " is not valid") | |
# Entries of var must be non-negative | |
if torch.any(var < 0): | |
raise ValueError("var has negative entry/entries") | |
# Clamp for stability | |
var = var.clone() | |
with torch.no_grad(): | |
var.clamp_(min=eps) | |
# Calculate the loss | |
loss = 0.5 * (torch.log(var) + (input - target)**2 / var) | |
if full: | |
loss += 0.5 * math.log(2 * math.pi) | |
if reduction == 'mean': | |
return loss.mean() | |
elif reduction == 'sum': | |
return loss.sum() | |
else: | |
return loss | |
def kl_div( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
log_target: bool = False, | |
) -> Tensor: | |
r"""Compute the KL Divergence loss. | |
Refer - The `Kullback-Leibler divergence Loss | |
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__ | |
See :class:`~torch.nn.KLDivLoss` for details. | |
Args: | |
input: Tensor of arbitrary shape in log-probabilities. | |
target: Tensor of the same shape as input. See :attr:`log_target` for | |
the target's interpretation. | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``. | |
``'none'``: no reduction will be applied | |
``'batchmean'``: the sum of the output will be divided by the batchsize | |
``'sum'``: the output will be summed | |
``'mean'``: the output will be divided by the number of elements in the output | |
Default: ``'mean'`` | |
log_target (bool): A flag indicating whether ``target`` is passed in the log space. | |
It is recommended to pass certain distributions (like ``softmax``) | |
in the log space to avoid numerical issues caused by explicit ``log``. | |
Default: ``False`` | |
.. note:: | |
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated, | |
and in the meantime, specifying either of those two args will override :attr:`reduction`. | |
.. warning:: | |
:attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use | |
:attr:`reduction` = ``'batchmean'`` which aligns with KL math definition. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
kl_div, | |
(input, target), | |
input, | |
target, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
log_target=log_target, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
if reduction == "mean": | |
warnings.warn( | |
"reduction: 'mean' divides the total loss by both the batch size and the support size." | |
"'batchmean' divides only by the batch size, and aligns with the KL div math definition." | |
"'mean' will be changed to behave the same as 'batchmean' in the next major release." | |
) | |
# special case for batchmean | |
if reduction == "batchmean": | |
reduction_enum = _Reduction.get_enum("sum") | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target) | |
if reduction == "batchmean" and input.dim() != 0: | |
reduced = reduced / input.size()[0] | |
return reduced | |
def cross_entropy( | |
input: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
ignore_index: int = -100, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
label_smoothing: float = 0.0, | |
) -> Tensor: | |
r"""Compute the cross entropy loss between input logits and target. | |
See :class:`~torch.nn.CrossEntropyLoss` for details. | |
Args: | |
input (Tensor) : Predicted unnormalized logits; | |
see Shape section below for supported shapes. | |
target (Tensor) : Ground truth class indices or class probabilities; | |
see Shape section below for supported shapes. | |
weight (Tensor, optional): a manual rescaling weight given to each | |
class. If given, has to be a Tensor of size `C` | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
ignore_index (int, optional): Specifies a target value that is ignored | |
and does not contribute to the input gradient. When :attr:`size_average` is | |
``True``, the loss is averaged over non-ignored targets. Note that | |
:attr:`ignore_index` is only applicable when the target contains class indices. | |
Default: -100 | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the sum of the output will be divided by the number of | |
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` | |
label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount | |
of smoothing when computing the loss, where 0.0 means no smoothing. The targets | |
become a mixture of the original ground truth and a uniform distribution as described in | |
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`. | |
Shape: | |
- Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` | |
in the case of `K`-dimensional loss. | |
- Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with | |
:math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`. | |
If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`. | |
where: | |
.. math:: | |
\begin{aligned} | |
C ={} & \text{number of classes} \\ | |
N ={} & \text{batch size} \\ | |
\end{aligned} | |
Examples:: | |
>>> # Example of target with class indices | |
>>> input = torch.randn(3, 5, requires_grad=True) | |
>>> target = torch.randint(5, (3,), dtype=torch.int64) | |
>>> loss = F.cross_entropy(input, target) | |
>>> loss.backward() | |
>>> | |
>>> # Example of target with class probabilities | |
>>> input = torch.randn(3, 5, requires_grad=True) | |
>>> target = torch.randn(3, 5).softmax(dim=1) | |
>>> loss = F.cross_entropy(input, target) | |
>>> loss.backward() | |
""" | |
if has_torch_function_variadic(input, target, weight): | |
return handle_torch_function( | |
cross_entropy, | |
(input, target, weight), | |
input, | |
target, | |
weight=weight, | |
size_average=size_average, | |
ignore_index=ignore_index, | |
reduce=reduce, | |
reduction=reduction, | |
label_smoothing=label_smoothing, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) | |
def binary_cross_entropy( | |
input: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: | |
r"""Measure Binary Cross Entropy between the target and input probabilities. | |
See :class:`~torch.nn.BCELoss` for details. | |
Args: | |
input: Tensor of arbitrary shape as probabilities. | |
target: Tensor of the same shape as input with values between 0 and 1. | |
weight (Tensor, optional): a manual rescaling weight | |
if provided it's repeated to match input tensor shape | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the sum of the output will be divided by the number of | |
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` | |
Examples:: | |
>>> input = torch.randn(3, 2, requires_grad=True) | |
>>> target = torch.rand(3, 2, requires_grad=False) | |
>>> loss = F.binary_cross_entropy(torch.sigmoid(input), target) | |
>>> loss.backward() | |
""" | |
if has_torch_function_variadic(input, target, weight): | |
return handle_torch_function( | |
binary_cross_entropy, | |
(input, target, weight), | |
input, | |
target, | |
weight=weight, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
if target.size() != input.size(): | |
raise ValueError( | |
"Using a target size ({}) that is different to the input size ({}) is deprecated. " | |
"Please ensure they have the same size.".format(target.size(), input.size()) | |
) | |
if weight is not None: | |
new_size = _infer_size(target.size(), weight.size()) | |
weight = weight.expand(new_size) | |
return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum) | |
def binary_cross_entropy_with_logits( | |
input: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
pos_weight: Optional[Tensor] = None, | |
) -> Tensor: | |
r"""Calculate Binary Cross Entropy between target and input logits. | |
See :class:`~torch.nn.BCEWithLogitsLoss` for details. | |
Args: | |
input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits). | |
target: Tensor of the same shape as input with values between 0 and 1 | |
weight (Tensor, optional): a manual rescaling weight | |
if provided it's repeated to match input tensor shape | |
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default, | |
the losses are averaged over each loss element in the batch. Note that for | |
some losses, there multiple elements per sample. If the field :attr:`size_average` | |
is set to ``False``, the losses are instead summed for each minibatch. Ignored | |
when reduce is ``False``. Default: ``True`` | |
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the | |
losses are averaged or summed over observations for each minibatch depending | |
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per | |
batch element instead and ignores :attr:`size_average`. Default: ``True`` | |
reduction (str, optional): Specifies the reduction to apply to the output: | |
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, | |
``'mean'``: the sum of the output will be divided by the number of | |
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average` | |
and :attr:`reduce` are in the process of being deprecated, and in the meantime, | |
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'`` | |
pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target. | |
Must be a tensor with equal size along the class dimension to the number of classes. | |
Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired | |
operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of | |
size [B, C, H, W] will apply different pos_weights to each element of the batch or | |
[C, H, W] the same pos_weights across the batch. To apply the same positive weight | |
along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1]. | |
Default: ``None`` | |
Examples:: | |
>>> input = torch.randn(3, requires_grad=True) | |
>>> target = torch.empty(3).random_(2) | |
>>> loss = F.binary_cross_entropy_with_logits(input, target) | |
>>> loss.backward() | |
""" | |
if has_torch_function_variadic(input, target, weight, pos_weight): | |
return handle_torch_function( | |
binary_cross_entropy_with_logits, | |
(input, target, weight, pos_weight), | |
input, | |
target, | |
weight=weight, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
pos_weight=pos_weight, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
if not (target.size() == input.size()): | |
raise ValueError(f"Target size ({target.size()}) must be the same as input size ({input.size()})") | |
return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum) | |
def smooth_l1_loss( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
beta: float = 1.0, | |
) -> Tensor: | |
r"""Compute the Smooth L1 loss. | |
Function uses a squared term if the absolute | |
element-wise error falls below beta and an L1 term otherwise. | |
See :class:`~torch.nn.SmoothL1Loss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
smooth_l1_loss, | |
(input, target), | |
input, | |
target, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
beta=beta, | |
) | |
if not (target.size() == input.size()): | |
warnings.warn( | |
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). " | |
"This will likely lead to incorrect results due to broadcasting. " | |
"Please ensure they have the same size.", | |
stacklevel=2, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
expanded_input, expanded_target = torch.broadcast_tensors(input, target) | |
if beta == 0.0: | |
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) | |
else: | |
return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta) | |
def huber_loss( | |
input: Tensor, | |
target: Tensor, | |
reduction: str = 'mean', | |
delta: float = 1.0, | |
) -> Tensor: | |
r"""Compute the Huber loss. | |
Function uses a squared term if the absolute | |
element-wise error falls below delta and a delta-scaled L1 term otherwise. | |
When delta equals 1, this loss is equivalent to SmoothL1Loss. | |
In general, Huber loss differs from SmoothL1Loss by a factor of delta (AKA beta in Smooth L1). | |
See :class:`~torch.nn.HuberLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
huber_loss, | |
(input, target), | |
input, | |
target, | |
reduction=reduction, | |
delta=delta, | |
) | |
if not (target.size() == input.size()): | |
warnings.warn(f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). " | |
"This will likely lead to incorrect results due to broadcasting. " | |
"Please ensure they have the same size.", | |
stacklevel=2) | |
expanded_input, expanded_target = torch.broadcast_tensors(input, target) | |
return torch._C._nn.huber_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), delta) | |
def l1_loss( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor | |
Function that takes the mean element-wise absolute value difference. | |
See :class:`~torch.nn.L1Loss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction | |
) | |
if not (target.size() == input.size()): | |
warnings.warn( | |
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). " | |
"This will likely lead to incorrect results due to broadcasting. " | |
"Please ensure they have the same size.", | |
stacklevel=2, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
expanded_input, expanded_target = torch.broadcast_tensors(input, target) | |
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) | |
def mse_loss( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor | |
Measures the element-wise mean squared error. | |
See :class:`~torch.nn.MSELoss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction | |
) | |
if not (target.size() == input.size()): | |
warnings.warn( | |
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). " | |
"This will likely lead to incorrect results due to broadcasting. " | |
"Please ensure they have the same size.", | |
stacklevel=2, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
expanded_input, expanded_target = torch.broadcast_tensors(input, target) | |
return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) | |
def margin_ranking_loss( | |
input1: Tensor, | |
input2: Tensor, | |
target: Tensor, | |
margin: float = 0, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.MarginRankingLoss` for details. | |
""" | |
if has_torch_function_variadic(input1, input2, target): | |
return handle_torch_function( | |
margin_ranking_loss, | |
(input1, input2, target), | |
input1, | |
input2, | |
target, | |
margin=margin, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
if (input1.dim() != input2.dim() or input1.dim() != target.dim()): | |
raise RuntimeError( | |
f"margin_ranking_loss : All input tensors should have same dimension but got sizes: " | |
f"input1: {input1.size()}, input2: {input2.size()}, target: {target.size()} " | |
) | |
return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum) | |
def hinge_embedding_loss( | |
input: Tensor, | |
target: Tensor, | |
margin: float = 1.0, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.HingeEmbeddingLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
hinge_embedding_loss, | |
(input, target), | |
input, | |
target, | |
margin=margin, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
return torch.hinge_embedding_loss(input, target, margin, reduction_enum) | |
def multilabel_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.MultiLabelMarginLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
multilabel_margin_loss, | |
(input, target), | |
input, | |
target, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum) | |
def soft_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r""" | |
soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.SoftMarginLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target): | |
return handle_torch_function( | |
soft_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
return torch._C._nn.soft_margin_loss(input, target, reduction_enum) | |
def multilabel_soft_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target, weight): | |
return handle_torch_function( | |
multilabel_soft_margin_loss, | |
(input, target, weight), | |
input, | |
target, | |
weight=weight, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction = _Reduction.legacy_get_string(size_average, reduce) | |
loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input)) | |
if weight is not None: | |
loss = loss * weight | |
class_dim = input.dim() - 1 | |
C = input.size(class_dim) | |
loss = loss.sum(dim=class_dim) / C # only return N loss values | |
if reduction == "none": | |
ret = loss | |
elif reduction == "mean": | |
ret = loss.mean() | |
elif reduction == "sum": | |
ret = loss.sum() | |
else: | |
ret = input | |
raise ValueError(reduction + " is not valid") | |
return ret | |
def cosine_embedding_loss( | |
input1: Tensor, | |
input2: Tensor, | |
target: Tensor, | |
margin: float = 0, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.CosineEmbeddingLoss` for details. | |
""" | |
if has_torch_function_variadic(input1, input2, target): | |
return handle_torch_function( | |
cosine_embedding_loss, | |
(input1, input2, target), | |
input1, | |
input2, | |
target, | |
margin=margin, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum) | |
def multi_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
p: int = 1, | |
margin: float = 1.0, | |
weight: Optional[Tensor] = None, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: # noqa: D400,D402 | |
r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor | |
See :class:`~torch.nn.MultiMarginLoss` for details. | |
""" | |
if has_torch_function_variadic(input, target, weight): | |
return handle_torch_function( | |
multi_margin_loss, | |
(input, target, weight), | |
input, | |
target, | |
p=p, | |
margin=margin, | |
weight=weight, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
if p != 1 and p != 2: | |
raise ValueError("only p == 1 and p == 2 supported") | |
if weight is not None: | |
if weight.dim() != 1: | |
raise ValueError("weight must be one-dimensional") | |
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum) | |
pixel_shuffle = _add_docstr( | |
torch.pixel_shuffle, | |
r""" | |
pixel_shuffle(input, upscale_factor) -> Tensor | |
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a | |
tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is the :attr:`upscale_factor`. | |
See :class:`~torch.nn.PixelShuffle` for details. | |
Args: | |
input (Tensor): the input tensor | |
upscale_factor (int): factor to increase spatial resolution by | |
Examples:: | |
>>> input = torch.randn(1, 9, 4, 4) | |
>>> output = torch.nn.functional.pixel_shuffle(input, 3) | |
>>> print(output.size()) | |
torch.Size([1, 1, 12, 12]) | |
""", | |
) | |
pixel_unshuffle = _add_docstr( | |
torch.pixel_unshuffle, | |
r""" | |
pixel_unshuffle(input, downscale_factor) -> Tensor | |
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements in a | |
tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape | |
:math:`(*, C \times r^2, H, W)`, where r is the :attr:`downscale_factor`. | |
See :class:`~torch.nn.PixelUnshuffle` for details. | |
Args: | |
input (Tensor): the input tensor | |
downscale_factor (int): factor to increase spatial resolution by | |
Examples:: | |
>>> input = torch.randn(1, 1, 12, 12) | |
>>> output = torch.nn.functional.pixel_unshuffle(input, 3) | |
>>> print(output.size()) | |
torch.Size([1, 9, 4, 4]) | |
""", | |
) | |
channel_shuffle = _add_docstr( | |
torch.channel_shuffle, | |
r""" | |
channel_shuffle(input, groups) -> Tensor | |
Divide the channels in a tensor of shape :math:`(*, C , H, W)` | |
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`, | |
while keeping the original tensor shape. | |
See :class:`~torch.nn.ChannelShuffle` for details. | |
Args: | |
input (Tensor): the input tensor | |
groups (int): number of groups to divide channels in and rearrange. | |
Examples:: | |
>>> input = torch.randn(1, 4, 2, 2) | |
>>> print(input) | |
[[[[1, 2], | |
[3, 4]], | |
[[5, 6], | |
[7, 8]], | |
[[9, 10], | |
[11, 12]], | |
[[13, 14], | |
[15, 16]], | |
]] | |
>>> output = torch.nn.functional.channel_shuffle(input, 2) | |
>>> print(output) | |
[[[[1, 2], | |
[3, 4]], | |
[[9, 10], | |
[11, 12]], | |
[[5, 6], | |
[7, 8]], | |
[[13, 14], | |
[15, 16]], | |
]] | |
""", | |
) | |
native_channel_shuffle = _add_docstr( | |
torch.native_channel_shuffle, | |
r""" | |
native_channel_shuffle(input, groups) -> Tensor | |
Native kernel level implementation of the `channel_shuffle`. | |
This function might become private in future releases, use with caution. | |
Divide the channels in a tensor of shape :math:`(*, C , H, W)` | |
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`, | |
while keeping the original tensor shape. | |
See :class:`~torch.nn.ChannelShuffle` for details. | |
Args: | |
input (Tensor): the input tensor | |
groups (int): number of groups to divide channels in and rearrange. | |
Examples:: | |
>>> input = torch.randn(1, 4, 2, 2) | |
>>> print(input) | |
[[[[1, 2], | |
[3, 4]], | |
[[5, 6], | |
[7, 8]], | |
[[9, 10], | |
[11, 12]], | |
[[13, 14], | |
[15, 16]], | |
]] | |
>>> output = torch.nn.functional.native_channel_shuffle(input, 2) | |
>>> print(output) | |
[[[[1, 2], | |
[3, 4]], | |
[[9, 10], | |
[11, 12]], | |
[[5, 6], | |
[7, 8]], | |
[[13, 14], | |
[15, 16]], | |
]] | |
""", | |
) | |
# noqa: F811 | |
def upsample(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950 | |
pass | |
# noqa: F811 | |
def upsample(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950 | |
pass | |
def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # noqa: F811 | |
r"""Upsample input. | |
Provided tensor is upsampled to either the given :attr:`size` or the given | |
:attr:`scale_factor` | |
.. warning:: | |
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. | |
This is equivalent with ``nn.functional.interpolate(...)``. | |
Note: | |
{backward_reproducibility_note} | |
The algorithm used for upsampling is determined by :attr:`mode`. | |
Currently temporal, spatial and volumetric upsampling are supported, i.e. | |
expected inputs are 3-D, 4-D or 5-D in shape. | |
The input dimensions are interpreted in the form: | |
`mini-batch x channels x [optional depth] x [optional height] x width`. | |
The modes available for upsampling are: `nearest`, `linear` (3D-only), | |
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only) | |
Args: | |
input (Tensor): the input tensor | |
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): | |
output spatial size. | |
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple. | |
mode (str): algorithm used for upsampling: | |
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | | |
``'trilinear'``. Default: ``'nearest'`` | |
align_corners (bool, optional): Geometrically, we consider the pixels of the | |
input and output as squares rather than points. | |
If set to ``True``, the input and output tensors are aligned by the | |
center points of their corner pixels, preserving the values at the corner pixels. | |
If set to ``False``, the input and output tensors are aligned by the corner | |
points of their corner pixels, and the interpolation uses edge value padding | |
for out-of-boundary values, making this operation *independent* of input size | |
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` | |
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``. | |
Default: ``False`` | |
.. note:: | |
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce | |
negative values or values greater than 255 for images. | |
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot | |
when displaying the image. | |
.. warning:: | |
With ``align_corners = True``, the linearly interpolating modes | |
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the | |
output and input pixels, and thus the output values can depend on the | |
input size. This was the default behavior for these modes up to version | |
0.3.1. Since then, the default behavior is ``align_corners = False``. | |
See :class:`~torch.nn.Upsample` for concrete examples on how this | |
affects the outputs. | |
""" | |
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.") | |
return interpolate(input, size, scale_factor, mode, align_corners) | |
if upsample.__doc__: | |
upsample.__doc__ = upsample.__doc__.format(**reproducibility_notes) | |
def _is_integer(x) -> bool: | |
r"""Type check the input number is an integer. | |
Will return True for int, SymInt, Numpy integers and Tensors with integer elements. | |
""" | |
if isinstance(x, (int, torch.SymInt)): | |
return True | |
if np is not None and isinstance(x, np.integer): | |
return True | |
return isinstance(x, Tensor) and not x.is_floating_point() | |
# noqa: F811 | |
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950 | |
pass | |
# noqa: F811 | |
def interpolate(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950 | |
pass | |
# noqa: F811 | |
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950 | |
pass | |
# noqa: F811 | |
def interpolate( # noqa: F811 | |
input: Tensor, | |
size: Optional[List[int]] = None, | |
scale_factor: Optional[float] = None, | |
mode: str = "nearest", | |
align_corners: Optional[bool] = None, | |
recompute_scale_factor: Optional[bool] = None, | |
antialias: bool = False, | |
) -> Tensor: # noqa: F811 | |
pass | |
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950 | |
r"""Down/up samples the input. | |
Tensor interpolated to either the given :attr:`size` or the given | |
:attr:`scale_factor` | |
The algorithm used for interpolation is determined by :attr:`mode`. | |
Currently temporal, spatial and volumetric sampling are supported, i.e. | |
expected inputs are 3-D, 4-D or 5-D in shape. | |
The input dimensions are interpreted in the form: | |
`mini-batch x channels x [optional depth] x [optional height] x width`. | |
The modes available for resizing are: `nearest`, `linear` (3D-only), | |
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`, `nearest-exact` | |
Args: | |
input (Tensor): the input tensor | |
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]): | |
output spatial size. | |
scale_factor (float or Tuple[float]): multiplier for spatial size. If `scale_factor` is a tuple, | |
its length has to match the number of spatial dimensions; `input.dim() - 2`. | |
mode (str): algorithm used for upsampling: | |
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | | |
``'trilinear'`` | ``'area'`` | ``'nearest-exact'``. Default: ``'nearest'`` | |
align_corners (bool, optional): Geometrically, we consider the pixels of the | |
input and output as squares rather than points. | |
If set to ``True``, the input and output tensors are aligned by the | |
center points of their corner pixels, preserving the values at the corner pixels. | |
If set to ``False``, the input and output tensors are aligned by the corner | |
points of their corner pixels, and the interpolation uses edge value padding | |
for out-of-boundary values, making this operation *independent* of input size | |
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode` | |
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``. | |
Default: ``False`` | |
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the | |
interpolation calculation. If `recompute_scale_factor` is ``True``, then | |
`scale_factor` must be passed in and `scale_factor` is used to compute the | |
output `size`. The computed output `size` will be used to infer new scales for | |
the interpolation. Note that when `scale_factor` is floating-point, it may differ | |
from the recomputed `scale_factor` due to rounding and precision issues. | |
If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will | |
be used directly for interpolation. Default: ``None``. | |
antialias (bool, optional): flag to apply anti-aliasing. Default: ``False``. Using anti-alias | |
option together with ``align_corners=False``, interpolation result would match Pillow | |
result for downsampling operation. Supported modes: ``'bilinear'``, ``'bicubic'``. | |
.. note:: | |
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce | |
negative values or values greater than 255 for images. | |
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot | |
when displaying the image. | |
.. note:: | |
Mode ``mode='nearest-exact'`` matches Scikit-Image and PIL nearest neighbours interpolation | |
algorithms and fixes known issues with ``mode='nearest'``. This mode is introduced to keep | |
backward compatibility. | |
Mode ``mode='nearest'`` matches buggy OpenCV's ``INTER_NEAREST`` interpolation algorithm. | |
.. note:: | |
The gradients for the dtype ``float16`` on CUDA may be inaccurate in the upsample operation | |
when using modes ``['linear', 'bilinear', 'bicubic', 'trilinear', 'area']``. | |
For more details, please refer to the discussion in | |
`issue#104157 <https://github.com/pytorch/pytorch/issues/104157>`_. | |
Note: | |
{backward_reproducibility_note} | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
interpolate, | |
(input,), | |
input, | |
size=size, | |
scale_factor=scale_factor, | |
mode=mode, | |
align_corners=align_corners, | |
recompute_scale_factor=recompute_scale_factor, | |
antialias=antialias | |
) | |
if mode in ("nearest", "area", "nearest-exact"): | |
if align_corners is not None: | |
raise ValueError( | |
"align_corners option can only be set with the " | |
"interpolating modes: linear | bilinear | bicubic | trilinear" | |
) | |
else: | |
if align_corners is None: | |
align_corners = False | |
dim = input.dim() - 2 # Number of spatial dimensions. | |
# Process size and scale_factor. Validate that exactly one is set. | |
# Validate its length if it is a list, or expand it if it is a scalar. | |
# After this block, exactly one of output_size and scale_factors will | |
# be non-None, and it will be a list (or tuple). | |
if size is not None and scale_factor is not None: | |
raise ValueError("only one of size or scale_factor should be defined") | |
elif size is not None: | |
assert scale_factor is None | |
scale_factors = None | |
if isinstance(size, (list, tuple)): | |
if len(size) != dim: | |
raise ValueError( | |
"Input and output must have the same number of spatial dimensions, but got " | |
f"input with spatial dimensions of {list(input.shape[2:])} and output size of {size}. " | |
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and " | |
"output size in (o1, o2, ...,oK) format." | |
) | |
if not torch.jit.is_scripting(): | |
if not all(_is_integer(x) for x in size): | |
raise TypeError( | |
"expected size to be one of int or Tuple[int] or Tuple[int, int] or " | |
f"Tuple[int, int, int], but got size with types {[type(x) for x in size]}" | |
) | |
output_size = size | |
else: | |
output_size = [size for _ in range(dim)] | |
elif scale_factor is not None: | |
assert size is None | |
output_size = None | |
if isinstance(scale_factor, (list, tuple)): | |
if len(scale_factor) != dim: | |
raise ValueError( | |
"Input and scale_factor must have the same number of spatial dimensions, but " | |
f"got input with spatial dimensions of {list(input.shape[2:])} and " | |
f"scale_factor of shape {scale_factor}. " | |
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and " | |
"scale_factor in (s1, s2, ...,sK) format." | |
) | |
scale_factors = scale_factor | |
else: | |
scale_factors = [scale_factor for _ in range(dim)] | |
else: | |
raise ValueError("either size or scale_factor should be defined") | |
if recompute_scale_factor is not None and recompute_scale_factor and size is not None: | |
raise ValueError("recompute_scale_factor is not meaningful with an explicit size.") | |
# "area" mode always requires an explicit size rather than scale factor. | |
# Re-use the recompute_scale_factor code path. | |
if mode == "area" and output_size is None: | |
recompute_scale_factor = True | |
if recompute_scale_factor is not None and recompute_scale_factor: | |
# We compute output_size here, then un-set scale_factors. | |
# The C++ code will recompute it based on the (integer) output size. | |
assert scale_factors is not None | |
if not torch.jit.is_scripting() and torch._C._get_tracing_state(): | |
# make scale_factor a tensor in tracing so constant doesn't get baked in | |
output_size = [ | |
(torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float())) | |
for i in range(dim) | |
] | |
elif torch.jit.is_scripting(): | |
output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i])) | |
for i in range(dim)] | |
else: | |
output_size = [ | |
_sym_int(input.size(i + 2) * scale_factors[i]) | |
for i in range(dim) | |
] | |
scale_factors = None | |
if antialias and not (mode in ("bilinear", "bicubic") and input.ndim == 4): | |
raise ValueError("Anti-alias option is restricted to bilinear and bicubic modes and requires a 4-D tensor as input") | |
if input.dim() == 3 and mode == "nearest": | |
return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors) | |
if input.dim() == 4 and mode == "nearest": | |
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors) | |
if input.dim() == 5 and mode == "nearest": | |
return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors) | |
if input.dim() == 3 and mode == "nearest-exact": | |
return torch._C._nn._upsample_nearest_exact1d(input, output_size, scale_factors) | |
if input.dim() == 4 and mode == "nearest-exact": | |
return torch._C._nn._upsample_nearest_exact2d(input, output_size, scale_factors) | |
if input.dim() == 5 and mode == "nearest-exact": | |
return torch._C._nn._upsample_nearest_exact3d(input, output_size, scale_factors) | |
if input.dim() == 3 and mode == "area": | |
assert output_size is not None | |
return adaptive_avg_pool1d(input, output_size) | |
if input.dim() == 4 and mode == "area": | |
assert output_size is not None | |
return adaptive_avg_pool2d(input, output_size) | |
if input.dim() == 5 and mode == "area": | |
assert output_size is not None | |
return adaptive_avg_pool3d(input, output_size) | |
if input.dim() == 3 and mode == "linear": | |
assert align_corners is not None | |
return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors) | |
if input.dim() == 4 and mode == "bilinear": | |
assert align_corners is not None | |
if antialias: | |
return torch._C._nn._upsample_bilinear2d_aa(input, output_size, align_corners, scale_factors) | |
# Two levels are necessary to prevent TorchScript from touching | |
# are_deterministic_algorithms_enabled. | |
if not torch.jit.is_scripting(): | |
if torch.are_deterministic_algorithms_enabled() and input.is_cuda: | |
# Use slow decomp whose backward will be in terms of index_put | |
# importlib is required because the import cannot be top level | |
# (cycle) and cannot be nested (TS doesn't support) | |
return importlib.import_module('torch._decomp.decompositions')._upsample_linear_vec( | |
input, output_size, align_corners, scale_factors) | |
return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors) | |
if input.dim() == 5 and mode == "trilinear": | |
assert align_corners is not None | |
return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors) | |
if input.dim() == 4 and mode == "bicubic": | |
assert align_corners is not None | |
if antialias: | |
return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors) | |
return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors) | |
if input.dim() == 3 and mode == "bilinear": | |
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input") | |
if input.dim() == 3 and mode == "trilinear": | |
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input") | |
if input.dim() == 4 and mode == "linear": | |
raise NotImplementedError("Got 4D input, but linear mode needs 3D input") | |
if input.dim() == 4 and mode == "trilinear": | |
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input") | |
if input.dim() == 5 and mode == "linear": | |
raise NotImplementedError("Got 5D input, but linear mode needs 3D input") | |
if input.dim() == 5 and mode == "bilinear": | |
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input") | |
raise NotImplementedError( | |
"Input Error: Only 3D, 4D and 5D input Tensors supported" | |
f" (got {input.dim()}D) for the modes: nearest | linear | bilinear | bicubic | trilinear | area | nearest-exact" | |
f" (got {mode})" | |
) | |
if interpolate.__doc__: | |
interpolate.__doc__ = interpolate.__doc__.format(**reproducibility_notes) | |
# noqa: F811 | |
def upsample_nearest(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811 | |
pass | |
# noqa: F811 | |
def upsample_nearest(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811 | |
pass | |
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811 | |
r"""Upsamples the input, using nearest neighbours' pixel values. | |
.. warning:: | |
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. | |
This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``. | |
Currently spatial and volumetric upsampling are supported (i.e. expected | |
inputs are 4 or 5 dimensional). | |
Args: | |
input (Tensor): input | |
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia | |
size. | |
scale_factor (int): multiplier for spatial size. Has to be an integer. | |
Note: | |
{backward_reproducibility_note} | |
""" | |
# DeprecationWarning is ignored by default | |
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.") | |
return interpolate(input, size, scale_factor, mode="nearest") | |
if upsample_nearest.__doc__: | |
upsample_nearest.__doc__ = upsample_nearest.__doc__.format(**reproducibility_notes) | |
# noqa: F811 | |
def upsample_bilinear( | |
input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None | |
) -> Tensor: # noqa: F811 | |
pass | |
# noqa: F811 | |
def upsample_bilinear( # noqa: F811 | |
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None | |
) -> Tensor: # noqa: F811 | |
pass | |
# noqa: F811 | |
def upsample_bilinear( # noqa: F811 | |
input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None | |
) -> Tensor: # noqa: F811 | |
pass | |
# noqa: F811 | |
def upsample_bilinear( # noqa: F811 | |
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None | |
) -> Tensor: # noqa: F811 | |
pass | |
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811 | |
r"""Upsamples the input, using bilinear upsampling. | |
.. warning:: | |
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`. | |
This is equivalent with | |
``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``. | |
Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo | |
volumetric (5 dimensional) inputs. | |
Args: | |
input (Tensor): input | |
size (int or Tuple[int, int]): output spatial size. | |
scale_factor (int or Tuple[int, int]): multiplier for spatial size | |
Note: | |
{backward_reproducibility_note} | |
""" | |
# DeprecationWarning is ignored by default | |
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.") | |
return interpolate(input, size, scale_factor, mode="bilinear", align_corners=True) | |
if upsample_bilinear.__doc__: | |
upsample_bilinear.__doc__ = upsample_bilinear.__doc__.format(**reproducibility_notes) | |
GRID_SAMPLE_INTERPOLATION_MODES = { | |
"bilinear": 0, | |
"nearest": 1, | |
"bicubic": 2, | |
} | |
GRID_SAMPLE_PADDING_MODES = { | |
"zeros": 0, | |
"border": 1, | |
"reflection": 2, | |
} | |
def grid_sample( | |
input: Tensor, | |
grid: Tensor, | |
mode: str = "bilinear", | |
padding_mode: str = "zeros", | |
align_corners: Optional[bool] = None, | |
) -> Tensor: | |
r"""Compute grid sample. | |
Given an :attr:`input` and a flow-field :attr:`grid`, computes the | |
``output`` using :attr:`input` values and pixel locations from :attr:`grid`. | |
Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are | |
supported. | |
In the spatial (4-D) case, for :attr:`input` with shape | |
:math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape | |
:math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape | |
:math:`(N, C, H_\text{out}, W_\text{out})`. | |
For each output location ``output[n, :, h, w]``, the size-2 vector | |
``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``, | |
which are used to interpolate the output value ``output[n, :, h, w]``. | |
In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the | |
``x``, ``y``, ``z`` pixel locations for interpolating | |
``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or | |
``bilinear`` interpolation method to sample the input pixels. | |
:attr:`grid` specifies the sampling pixel locations normalized by the | |
:attr:`input` spatial dimensions. Therefore, it should have most values in | |
the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the | |
left-top pixel of :attr:`input`, and values ``x = 1, y = 1`` is the | |
right-bottom pixel of :attr:`input`. | |
If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding | |
outputs are handled as defined by :attr:`padding_mode`. Options are | |
* ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations, | |
* ``padding_mode="border"``: use border values for out-of-bound grid locations, | |
* ``padding_mode="reflection"``: use values at locations reflected by | |
the border for out-of-bound grid locations. For location far away | |
from the border, it will keep being reflected until becoming in bound, | |
e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1`` | |
and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes | |
``x'' = -0.5``. | |
Note: | |
This function is often used in conjunction with :func:`affine_grid` | |
to build `Spatial Transformer Networks`_ . | |
Note: | |
When using the CUDA backend, this operation may induce nondeterministic | |
behaviour in its backward pass that is not easily switched off. | |
Please see the notes on :doc:`/notes/randomness` for background. | |
Note: | |
NaN values in :attr:`grid` would be interpreted as ``-1``. | |
Args: | |
input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case) | |
or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case) | |
grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case) | |
or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case) | |
mode (str): interpolation mode to calculate output values | |
``'bilinear'`` | ``'nearest'`` | ``'bicubic'``. Default: ``'bilinear'`` | |
Note: ``mode='bicubic'`` supports only 4-D input. | |
When ``mode='bilinear'`` and the input is 5-D, the interpolation mode | |
used internally will actually be trilinear. However, when the input is 4-D, | |
the interpolation mode will legitimately be bilinear. | |
padding_mode (str): padding mode for outside grid values | |
``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'`` | |
align_corners (bool, optional): Geometrically, we consider the pixels of the | |
input as squares rather than points. | |
If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring | |
to the center points of the input's corner pixels. If set to ``False``, they | |
are instead considered as referring to the corner points of the input's corner | |
pixels, making the sampling more resolution agnostic. | |
This option parallels the ``align_corners`` option in | |
:func:`interpolate`, and so whichever option is used here | |
should also be used there to resize the input image before grid sampling. | |
Default: ``False`` | |
Returns: | |
output (Tensor): output Tensor | |
.. _`Spatial Transformer Networks`: | |
https://arxiv.org/abs/1506.02025 | |
.. warning:: | |
When ``align_corners = True``, the grid positions depend on the pixel | |
size relative to the input image size, and so the locations sampled by | |
:func:`grid_sample` will differ for the same input given at different | |
resolutions (that is, after being upsampled or downsampled). | |
The default behavior up to version 1.2.0 was ``align_corners = True``. | |
Since then, the default behavior has been changed to ``align_corners = False``, | |
in order to bring it in line with the default for :func:`interpolate`. | |
.. note:: | |
``mode='bicubic'`` is implemented using the `cubic convolution algorithm`_ with :math:`\alpha=-0.75`. | |
The constant :math:`\alpha` might be different from packages to packages. | |
For example, `PIL`_ and `OpenCV`_ use -0.5 and -0.75 respectively. | |
This algorithm may "overshoot" the range of values it's interpolating. | |
For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255]. | |
Clamp the results with :func:`torch.clamp` to ensure they are within the valid range. | |
.. _`cubic convolution algorithm`: https://en.wikipedia.org/wiki/Bicubic_interpolation | |
.. _`PIL`: https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/src/libImaging/Resample.c#L51 | |
.. _`OpenCV`: https://github.com/opencv/opencv/blob/f345ed564a06178670750bad59526cfa4033be55/modules/imgproc/src/resize.cpp#L908 | |
""" | |
if has_torch_function_variadic(input, grid): | |
return handle_torch_function( | |
grid_sample, (input, grid), input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners | |
) | |
if mode != "bilinear" and mode != "nearest" and mode != "bicubic": | |
raise ValueError( | |
f"nn.functional.grid_sample(): expected mode to be 'bilinear', 'nearest' or 'bicubic', but got: '{mode}'" | |
) | |
if padding_mode != "zeros" and padding_mode != "border" and padding_mode != "reflection": | |
raise ValueError( | |
"nn.functional.grid_sample(): expected padding_mode " | |
"to be 'zeros', 'border', or 'reflection', " | |
f"but got: '{padding_mode}'" | |
) | |
if mode == "bilinear": | |
mode_enum = 0 | |
elif mode == "nearest": | |
mode_enum = 1 | |
else: # mode == 'bicubic' | |
mode_enum = 2 | |
if padding_mode == "zeros": | |
padding_mode_enum = 0 | |
elif padding_mode == "border": | |
padding_mode_enum = 1 | |
else: # padding_mode == 'reflection' | |
padding_mode_enum = 2 | |
if align_corners is None: | |
warnings.warn( | |
"Default grid_sample and affine_grid behavior has changed " | |
"to align_corners=False since 1.3.0. Please specify " | |
"align_corners=True if the old behavior is desired. " | |
"See the documentation of grid_sample for details." | |
) | |
align_corners = False | |
return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners) | |
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[bool] = None) -> Tensor: | |
r"""Generate 2D or 3D flow field (sampling grid), given a batch of affine matrices :attr:`theta`. | |
.. note:: | |
This function is often used in conjunction with :func:`grid_sample` | |
to build `Spatial Transformer Networks`_ . | |
Args: | |
theta (Tensor): input batch of affine matrices with shape | |
(:math:`N \times 2 \times 3`) for 2D or | |
(:math:`N \times 3 \times 4`) for 3D | |
size (torch.Size): the target output image size. | |
(:math:`N \times C \times H \times W` for 2D or | |
:math:`N \times C \times D \times H \times W` for 3D) | |
Example: torch.Size((32, 3, 24, 24)) | |
align_corners (bool, optional): if ``True``, consider ``-1`` and ``1`` | |
to refer to the centers of the corner pixels rather than the image corners. | |
Refer to :func:`grid_sample` for a more complete description. | |
A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample` | |
with the same setting for this option. | |
Default: ``False`` | |
Returns: | |
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`) | |
.. _`Spatial Transformer Networks`: | |
https://arxiv.org/abs/1506.02025 | |
.. warning:: | |
When ``align_corners = True``, the grid positions depend on the pixel | |
size relative to the input image size, and so the locations sampled by | |
:func:`grid_sample` will differ for the same input given at different | |
resolutions (that is, after being upsampled or downsampled). | |
The default behavior up to version 1.2.0 was ``align_corners = True``. | |
Since then, the default behavior has been changed to ``align_corners = False``, | |
in order to bring it in line with the default for :func:`interpolate`. | |
.. warning:: | |
When ``align_corners = True``, 2D affine transforms on 1D data and | |
3D affine transforms on 2D data (that is, when one of the spatial | |
dimensions has unit size) are ill-defined, and not an intended use case. | |
This is not a problem when ``align_corners = False``. | |
Up to version 1.2.0, all grid points along a unit dimension were | |
considered arbitrarily to be at ``-1``. | |
From version 1.3.0, under ``align_corners = True`` all grid points | |
along a unit dimension are considered to be at ``0`` | |
(the center of the input image). | |
""" | |
if has_torch_function_unary(theta): | |
return handle_torch_function(affine_grid, (theta,), theta, size, align_corners=align_corners) | |
if align_corners is None: | |
warnings.warn( | |
"Default grid_sample and affine_grid behavior has changed " | |
"to align_corners=False since 1.3.0. Please specify " | |
"align_corners=True if the old behavior is desired. " | |
"See the documentation of grid_sample for details." | |
) | |
align_corners = False | |
# enforce floating point dtype on theta | |
if not theta.is_floating_point(): | |
raise ValueError(f"Expected theta to have floating point type, but got {theta.dtype}") | |
# check that shapes and sizes match | |
if len(size) == 4: | |
if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3: | |
raise ValueError( | |
f"Expected a batch of 2D affine matrices of shape Nx2x3 for size {size}. Got {theta.shape}." | |
) | |
spatial_size = size[-2:] # spatial dimension sizes | |
elif len(size) == 5: | |
if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4: | |
raise ValueError( | |
f"Expected a batch of 3D affine matrices of shape Nx3x4 for size {size}. Got {theta.shape}." | |
) | |
spatial_size = size[-3:] # spatial dimension sizes | |
else: | |
raise NotImplementedError( | |
"affine_grid only supports 4D and 5D sizes, " | |
"for 2D and 3D affine transforms, respectively. " | |
f"Got size {size}." | |
) | |
# check for empty span | |
if align_corners and min(spatial_size) == 1: | |
warnings.warn( | |
"Since version 1.3.0, affine_grid behavior has changed " | |
"for unit-size grids when align_corners=True. " | |
"This is not an intended use case of affine_grid. " | |
"See the documentation of affine_grid for details." | |
) | |
elif min(size) <= 0: | |
raise ValueError(f"Expected non-zero, positive output size. Got {size}") | |
return torch.affine_grid_generator(theta, size, align_corners) | |
def pad(input: Tensor, pad: List[int], mode: str = "constant", value: Optional[float] = None) -> Tensor: | |
r""" | |
pad(input, pad, mode="constant", value=None) -> Tensor | |
Pads tensor. | |
Padding size: | |
The padding size by which to pad some dimensions of :attr:`input` | |
are described starting from the last dimension and moving forward. | |
:math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions | |
of ``input`` will be padded. | |
For example, to pad only the last dimension of the input tensor, then | |
:attr:`pad` has the form | |
:math:`(\text{padding\_left}, \text{padding\_right})`; | |
to pad the last 2 dimensions of the input tensor, then use | |
:math:`(\text{padding\_left}, \text{padding\_right},` | |
:math:`\text{padding\_top}, \text{padding\_bottom})`; | |
to pad the last 3 dimensions, use | |
:math:`(\text{padding\_left}, \text{padding\_right},` | |
:math:`\text{padding\_top}, \text{padding\_bottom}` | |
:math:`\text{padding\_front}, \text{padding\_back})`. | |
Padding mode: | |
See :class:`torch.nn.CircularPad2d`, :class:`torch.nn.ConstantPad2d`, | |
:class:`torch.nn.ReflectionPad2d`, and :class:`torch.nn.ReplicationPad2d` | |
for concrete examples on how each of the padding modes works. Constant | |
padding is implemented for arbitrary dimensions. Circular, replicate and | |
reflection padding are implemented for padding the last 3 dimensions of a | |
4D or 5D input tensor, the last 2 dimensions of a 3D or 4D input tensor, | |
or the last dimension of a 2D or 3D input tensor. | |
Note: | |
When using the CUDA backend, this operation may induce nondeterministic | |
behaviour in its backward pass that is not easily switched off. | |
Please see the notes on :doc:`/notes/randomness` for background. | |
Args: | |
input (Tensor): N-dimensional tensor | |
pad (tuple): m-elements tuple, where | |
:math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even. | |
mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. | |
Default: ``'constant'`` | |
value: fill value for ``'constant'`` padding. Default: ``0`` | |
Examples:: | |
>>> t4d = torch.empty(3, 3, 4, 2) | |
>>> p1d = (1, 1) # pad last dim by 1 on each side | |
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding | |
>>> print(out.size()) | |
torch.Size([3, 3, 4, 4]) | |
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2) | |
>>> out = F.pad(t4d, p2d, "constant", 0) | |
>>> print(out.size()) | |
torch.Size([3, 3, 8, 4]) | |
>>> t4d = torch.empty(3, 3, 4, 2) | |
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3) | |
>>> out = F.pad(t4d, p3d, "constant", 0) | |
>>> print(out.size()) | |
torch.Size([3, 9, 7, 3]) | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
torch.nn.functional.pad, (input,), input, pad, mode=mode, value=value) | |
if not torch.jit.is_scripting(): | |
if torch.are_deterministic_algorithms_enabled() and input.is_cuda: | |
if mode == 'replicate': | |
# Use slow decomp whose backward will be in terms of index_put. | |
# importlib is required because the import cannot be top level | |
# (cycle) and cannot be nested (TS doesn't support) | |
return importlib.import_module('torch._decomp.decompositions')._replication_pad( | |
input, pad | |
) | |
return torch._C._nn.pad(input, pad, mode, value) | |
# TODO: Fix via https://github.com/pytorch/pytorch/issues/75798 | |
pad.__module__ = "torch.nn.functional" | |
# distance | |
pairwise_distance = _add_docstr( | |
torch.pairwise_distance, | |
r""" | |
pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor | |
See :class:`torch.nn.PairwiseDistance` for details | |
""") | |
pdist = _add_docstr( | |
torch.pdist, | |
r""" | |
pdist(input, p=2) -> Tensor | |
Computes the p-norm distance between every pair of row vectors in the input. | |
This is identical to the upper triangular portion, excluding the diagonal, of | |
`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster | |
if the rows are contiguous. | |
If input has shape :math:`N \times M` then the output will have shape | |
:math:`\frac{1}{2} N (N - 1)`. | |
This function is equivalent to ``scipy.spatial.distance.pdist(input, | |
'minkowski', p=p)`` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is | |
equivalent to ``scipy.spatial.distance.pdist(input, 'hamming') * M``. | |
When :math:`p = \infty`, the closest scipy function is | |
``scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())``. | |
Args: | |
input: input tensor of shape :math:`N \times M`. | |
p: p value for the p-norm distance to calculate between each vector pair | |
:math:`\in [0, \infty]`. | |
""", | |
) | |
cosine_similarity = _add_docstr( | |
torch.cosine_similarity, | |
r""" | |
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor | |
Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable | |
to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is | |
squeezed (see :func:`torch.squeeze`), resulting in the | |
output tensor having 1 fewer dimension. | |
.. math :: | |
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2, \epsilon) \cdot \max(\Vert x_2 \Vert _2, \epsilon)} | |
Supports :ref:`type promotion <type-promotion-doc>`. | |
Args: | |
x1 (Tensor): First input. | |
x2 (Tensor): Second input. | |
dim (int, optional): Dimension along which cosine similarity is computed. Default: 1 | |
eps (float, optional): Small value to avoid division by zero. | |
Default: 1e-8 | |
Example:: | |
>>> input1 = torch.randn(100, 128) | |
>>> input2 = torch.randn(100, 128) | |
>>> output = F.cosine_similarity(input1, input2) | |
>>> print(output) | |
""", | |
) | |
one_hot = _add_docstr( | |
torch._C._nn.one_hot, | |
r""" | |
one_hot(tensor, num_classes=-1) -> LongTensor | |
Takes LongTensor with index values of shape ``(*)`` and returns a tensor | |
of shape ``(*, num_classes)`` that have zeros everywhere except where the | |
index of last dimension matches the corresponding value of the input tensor, | |
in which case it will be 1. | |
See also `One-hot on Wikipedia`_ . | |
.. _One-hot on Wikipedia: | |
https://en.wikipedia.org/wiki/One-hot | |
Arguments: | |
tensor (LongTensor): class values of any shape. | |
num_classes (int): Total number of classes. If set to -1, the number | |
of classes will be inferred as one greater than the largest class | |
value in the input tensor. | |
Returns: | |
LongTensor that has one more dimension with 1 values at the | |
index of last dimension indicated by the input, and 0 everywhere | |
else. | |
Examples: | |
>>> F.one_hot(torch.arange(0, 5) % 3) | |
tensor([[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1], | |
[1, 0, 0], | |
[0, 1, 0]]) | |
>>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5) | |
tensor([[1, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[1, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0]]) | |
>>> F.one_hot(torch.arange(0, 6).view(3,2) % 3) | |
tensor([[[1, 0, 0], | |
[0, 1, 0]], | |
[[0, 0, 1], | |
[1, 0, 0]], | |
[[0, 1, 0], | |
[0, 0, 1]]]) | |
""", | |
) | |
def triplet_margin_loss( | |
anchor: Tensor, | |
positive: Tensor, | |
negative: Tensor, | |
margin: float = 1.0, | |
p: float = 2, | |
eps: float = 1e-6, | |
swap: bool = False, | |
size_average: Optional[bool] = None, | |
reduce: Optional[bool] = None, | |
reduction: str = "mean", | |
) -> Tensor: | |
r"""Compute the triplet loss between given input tensors and a margin greater than 0. | |
See :class:`~torch.nn.TripletMarginLoss` for details. | |
""" | |
if has_torch_function_variadic(anchor, positive, negative): | |
return handle_torch_function( | |
triplet_margin_loss, | |
(anchor, positive, negative), | |
anchor, | |
positive, | |
negative, | |
margin=margin, | |
p=p, | |
eps=eps, | |
swap=swap, | |
size_average=size_average, | |
reduce=reduce, | |
reduction=reduction, | |
) | |
if size_average is not None or reduce is not None: | |
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce) | |
else: | |
reduction_enum = _Reduction.get_enum(reduction) | |
return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction_enum) | |
def triplet_margin_with_distance_loss( | |
anchor: Tensor, | |
positive: Tensor, | |
negative: Tensor, | |
*, | |
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None, | |
margin: float = 1.0, | |
swap: bool = False, | |
reduction: str = "mean" | |
) -> Tensor: | |
r"""Compute the triplet margin loss for input tensors using a custom distance function. | |
See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details. | |
""" | |
if torch.jit.is_scripting(): | |
raise NotImplementedError( | |
"F.triplet_margin_with_distance_loss does not support JIT scripting: " | |
"functions requiring Callables cannot be scripted." | |
) | |
if has_torch_function_variadic(anchor, positive, negative): | |
return handle_torch_function( | |
triplet_margin_with_distance_loss, | |
(anchor, positive, negative), | |
anchor, | |
positive, | |
negative, | |
distance_function=distance_function, | |
margin=margin, | |
swap=swap, | |
reduction=reduction, | |
) | |
# Check validity of reduction mode | |
if reduction not in ("mean", "sum", "none"): | |
raise ValueError(f"{reduction} is not a valid value for reduction") | |
# Check dimensions | |
a_dim = anchor.ndim | |
p_dim = positive.ndim | |
n_dim = negative.ndim | |
if not (a_dim == p_dim and p_dim == n_dim): | |
raise RuntimeError( | |
f"The anchor, positive, and negative tensors are expected to have " | |
f"the same number of dimensions, but got: anchor {a_dim}D, " | |
f"positive {p_dim}D, and negative {n_dim}D inputs") | |
# Calculate loss | |
if distance_function is None: | |
distance_function = torch.pairwise_distance | |
dist_pos = distance_function(anchor, positive) | |
dist_neg = distance_function(anchor, negative) | |
# The distance swap is described in the paper "Learning shallow | |
# convolutional feature descriptors with triplet losses" by V. Balntas, E. | |
# Riba et al. If True, and if the positive example is closer to the | |
# negative example than the anchor is, swaps the positive example and the | |
# anchor in the loss computation. | |
if swap: | |
dist_swap = distance_function(positive, negative) | |
dist_neg = torch.minimum(dist_neg, dist_swap) | |
loss = torch.clamp_min(margin + dist_pos - dist_neg, 0) | |
# Apply reduction | |
if reduction == "sum": | |
return torch.sum(loss) | |
elif reduction == "mean": | |
return torch.mean(loss) | |
else: # reduction == "none" | |
return loss | |
def normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12, out: Optional[Tensor] = None) -> Tensor: | |
r"""Perform :math:`L_p` normalization of inputs over specified dimension. | |
For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each | |
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as | |
.. math:: | |
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}. | |
With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization. | |
Args: | |
input: input tensor of any shape | |
p (float): the exponent value in the norm formulation. Default: 2 | |
dim (int or tuple of ints): the dimension to reduce. Default: 1 | |
eps (float): small value to avoid division by zero. Default: 1e-12 | |
out (Tensor, optional): the output tensor. If :attr:`out` is used, this | |
operation won't be differentiable. | |
""" | |
if has_torch_function_variadic(input, out): | |
return handle_torch_function(normalize, (input, out), input, p=p, dim=dim, eps=eps, out=out) | |
if out is None: | |
denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input) | |
return input / denom | |
else: | |
denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input) | |
return torch.div(input, denom, out=out) | |
def assert_int_or_pair(arg: List[int], arg_name: str, message: str) -> None: | |
assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name) | |
def unfold( | |
input: Tensor, kernel_size: BroadcastingList2[int], | |
dilation: BroadcastingList2[int] = 1, | |
padding: BroadcastingList2[int] = 0, | |
stride: BroadcastingList2[int] = 1 | |
) -> Tensor: | |
r"""Extract sliding local blocks from a batched input tensor. | |
.. warning:: | |
Currently, only 4-D input tensors (batched image-like tensors) are | |
supported. | |
.. warning:: | |
More than one element of the unfolded tensor may refer to a single | |
memory location. As a result, in-place operations (especially ones that | |
are vectorized) may result in incorrect behavior. If you need to write | |
to the tensor, please clone it first. | |
See :class:`torch.nn.Unfold` for details | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
unfold, (input,), input, kernel_size, dilation=dilation, padding=padding, stride=stride | |
) | |
return torch._C._nn.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)) | |
def fold( | |
input: Tensor, output_size: BroadcastingList2[int], | |
kernel_size: BroadcastingList2[int], | |
dilation: BroadcastingList2[int] = 1, | |
padding: BroadcastingList2[int] = 0, | |
stride: BroadcastingList2[int] = 1 | |
) -> Tensor: | |
r"""Combine an array of sliding local blocks into a large containing tensor. | |
.. warning:: | |
Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported. | |
See :class:`torch.nn.Fold` for details | |
""" | |
if has_torch_function_unary(input): | |
return handle_torch_function( | |
fold, (input,), input, output_size, kernel_size, dilation=dilation, padding=padding, stride=stride | |
) | |
return torch._C._nn.col2im( | |
input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride) | |
) | |
# | |
# multihead attention | |
# | |
def _in_projection_packed( | |
q: Tensor, | |
k: Tensor, | |
v: Tensor, | |
w: Tensor, | |
b: Optional[Tensor] = None, | |
) -> List[Tensor]: | |
r"""Perform the in-projection step of the attention operation, using packed weights. | |
Output is a triple containing projection tensors for query, key and value. | |
Args: | |
q, k, v: query, key and value tensors to be projected. For self-attention, | |
these are typically the same tensor; for encoder-decoder attention, | |
k and v are typically the same tensor. (We take advantage of these | |
identities for performance if they are present.) Regardless, q, k and v | |
must share a common embedding dimension; otherwise their shapes may vary. | |
w: projection weights for q, k and v, packed into a single tensor. Weights | |
are packed along dimension 0, in q, k, v order. | |
b: optional projection biases for q, k and v, packed into a single tensor | |
in q, k, v order. | |
Shape: | |
Inputs: | |
- q: :math:`(..., E)` where E is the embedding dimension | |
- k: :math:`(..., E)` where E is the embedding dimension | |
- v: :math:`(..., E)` where E is the embedding dimension | |
- w: :math:`(E * 3, E)` where E is the embedding dimension | |
- b: :math:`E * 3` where E is the embedding dimension | |
Output: | |
- in output list :math:`[q', k', v']`, each output tensor will have the | |
same shape as the corresponding input tensor. | |
""" | |
E = q.size(-1) | |
if k is v: | |
if q is k: | |
# self-attention | |
proj = linear(q, w, b) | |
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk() | |
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() | |
return proj[0], proj[1], proj[2] | |
else: | |
# encoder-decoder attention | |
w_q, w_kv = w.split([E, E * 2]) | |
if b is None: | |
b_q = b_kv = None | |
else: | |
b_q, b_kv = b.split([E, E * 2]) | |
q_proj = linear(q, w_q, b_q) | |
kv_proj = linear(k, w_kv, b_kv) | |
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk() | |
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() | |
return (q_proj, kv_proj[0], kv_proj[1]) | |
else: | |
w_q, w_k, w_v = w.chunk(3) | |
if b is None: | |
b_q = b_k = b_v = None | |
else: | |
b_q, b_k, b_v = b.chunk(3) | |
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) | |
def _in_projection( | |
q: Tensor, | |
k: Tensor, | |
v: Tensor, | |
w_q: Tensor, | |
w_k: Tensor, | |
w_v: Tensor, | |
b_q: Optional[Tensor] = None, | |
b_k: Optional[Tensor] = None, | |
b_v: Optional[Tensor] = None, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
r"""Perform the in-projection step of the attention operation. | |
This is simply a triple of linear projections, | |
with shape constraints on the weights which | |
ensure embedding dimension uniformity in the projected outputs. | |
Output is a triple containing projection tensors for query, key and value. | |
Args: | |
q, k, v: query, key and value tensors to be projected. | |
w_q, w_k, w_v: weights for q, k and v, respectively. | |
b_q, b_k, b_v: optional biases for q, k and v, respectively. | |
Shape: | |
Inputs: | |
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any | |
number of leading dimensions. | |
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any | |
number of leading dimensions. | |
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any | |
number of leading dimensions. | |
- w_q: :math:`(Eq, Eq)` | |
- w_k: :math:`(Eq, Ek)` | |
- w_v: :math:`(Eq, Ev)` | |
- b_q: :math:`(Eq)` | |
- b_k: :math:`(Eq)` | |
- b_v: :math:`(Eq)` | |
Output: in output triple :math:`(q', k', v')`, | |
- q': :math:`[Qdims..., Eq]` | |
- k': :math:`[Kdims..., Eq]` | |
- v': :math:`[Vdims..., Eq]` | |
""" | |
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1) | |
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}" | |
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}" | |
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}" | |
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}" | |
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}" | |
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}" | |
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) | |
scaled_dot_product_attention = _add_docstr( | |
torch._C._nn.scaled_dot_product_attention, r""" | |
scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> Tensor: | |
Computes scaled dot product attention on query, key and value tensors, using | |
an optional attention mask if passed, and applying dropout if a probability | |
greater than 0.0 is specified. The optional scale argument can only be specified as a keyword argument. | |
.. code-block:: python | |
# Efficient implementation equivalent to the following: | |
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor: | |
L, S = query.size(-2), key.size(-2) | |
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale | |
attn_bias = torch.zeros(L, S, dtype=query.dtype) | |
if is_causal: | |
assert attn_mask is None | |
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) | |
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) | |
attn_bias.to(query.dtype) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
else: | |
attn_bias += attn_mask | |
attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
attn_weight += attn_bias | |
attn_weight = torch.softmax(attn_weight, dim=-1) | |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
return attn_weight @ value | |
.. warning:: This function is beta and subject to change. | |
Note: | |
There are currently three supported implementations of scaled dot product attention: | |
- `FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning`_ | |
- `Memory-Efficient Attention`_ | |
- A PyTorch implementation defined in C++ matching the above formulation | |
The function may call optimized kernels for improved performance when using the CUDA backend. | |
For all other backends, the PyTorch implementation will be used. | |
All implementations are enabled by default. Scaled dot product attention attempts to automatically select the | |
most optimal implementation based on the inputs. In order to provide more fine-grained control over what implementation | |
is used, the following functions are provided for enabling and disabling implementations. | |
The context manager is the preferred mechanism: | |
- :func:`torch.nn.attention.sdpa_kernel`: A context manager used to enable or disable any of the implementations. | |
- :func:`torch.backends.cuda.enable_flash_sdp`: Globally enables or disables FlashAttention. | |
- :func:`torch.backends.cuda.enable_mem_efficient_sdp`: Globally enables or disables Memory-Efficient Attention. | |
- :func:`torch.backends.cuda.enable_math_sdp`: Globally enables or disables the PyTorch C++ implementation. | |
Each of the fused kernels has specific input limitations. If the user requires the use of a specific fused implementation, | |
disable the PyTorch C++ implementation using :func:`torch.nn.attention.sdpa_kernel`. | |
In the event that a fused implementation is not available, a warning will be raised with the | |
reasons why the fused implementation cannot run. | |
Due to the nature of fusing floating point operations, the output of this function may be different | |
depending on what backend kernel is chosen. | |
The c++ implementation supports torch.float64 and can be used when higher precision is required. | |
For more information please see :doc:`/notes/numerical_accuracy` | |
Note: | |
{cudnn_reproducibility_note} | |
""".format(**reproducibility_notes) | |
+ r""" | |
Args: | |
query (Tensor): Query tensor; shape :math:`(N, ..., L, E)`. | |
key (Tensor): Key tensor; shape :math:`(N, ..., S, E)`. | |
value (Tensor): Value tensor; shape :math:`(N, ..., S, Ev)`. | |
attn_mask (optional Tensor): Attention mask; shape must be broadcastable to the shape of attention weights, | |
which is :math:`(N,..., L, S)`. Two types of masks are supported. | |
A boolean mask where a value of True indicates that the element *should* take part in attention. | |
A float mask of the same type as query, key, value that is added to the attention score. | |
dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied | |
is_causal (bool): If true, assumes upper left causal attention masking and errors if both attn_mask and is_causal | |
are set. | |
scale (optional float, keyword-only): Scaling factor applied prior to softmax. If None, the default value is set | |
to :math:`\frac{1}{\sqrt{E}}`. | |
Returns: | |
output (Tensor): Attention output; shape :math:`(N, ..., L, Ev)`. | |
Shape legend: | |
- :math:`N: \text{Batch size} ... : \text{Any number of other batch dimensions (optional)}` | |
- :math:`S: \text{Source sequence length}` | |
- :math:`L: \text{Target sequence length}` | |
- :math:`E: \text{Embedding dimension of the query and key}` | |
- :math:`Ev: \text{Embedding dimension of the value}` | |
Examples: | |
>>> # Optionally use the context manager to ensure one of the fused kernels is run | |
>>> query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda") | |
>>> key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda") | |
>>> value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda") | |
>>> with torch.backends.cuda.sdp_kernel(enable_math=False): | |
>>> F.scaled_dot_product_attention(query,key,value) | |
.. _FlashAttention-2\: Faster Attention with Better Parallelism and Work Partitioning: | |
https://arxiv.org/abs/2307.08691 | |
.. _Memory-Efficient Attention: | |
https://github.com/facebookresearch/xformers | |
""") | |
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor, | |
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int): | |
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask` | |
# and returns if the input is batched or not. | |
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor. | |
# Shape check. | |
if query.dim() == 3: | |
# Batched Inputs | |
is_batched = True | |
assert key.dim() == 3 and value.dim() == 3, \ | |
("For batched (3-D) `query`, expected `key` and `value` to be 3-D" | |
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") | |
if key_padding_mask is not None: | |
assert key_padding_mask.dim() == 2, \ | |
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D" | |
f" but found {key_padding_mask.dim()}-D tensor instead") | |
if attn_mask is not None: | |
assert attn_mask.dim() in (2, 3), \ | |
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" | |
f" but found {attn_mask.dim()}-D tensor instead") | |
elif query.dim() == 2: | |
# Unbatched Inputs | |
is_batched = False | |
assert key.dim() == 2 and value.dim() == 2, \ | |
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D" | |
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") | |
if key_padding_mask is not None: | |
assert key_padding_mask.dim() == 1, \ | |
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D" | |
f" but found {key_padding_mask.dim()}-D tensor instead") | |
if attn_mask is not None: | |
assert attn_mask.dim() in (2, 3), \ | |
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" | |
f" but found {attn_mask.dim()}-D tensor instead") | |
if attn_mask.dim() == 3: | |
expected_shape = (num_heads, query.shape[0], key.shape[0]) | |
assert attn_mask.shape == expected_shape, \ | |
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}") | |
else: | |
raise AssertionError( | |
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor") | |
return is_batched | |
def _canonical_mask( | |
mask: Optional[Tensor], | |
mask_name: str, | |
other_type: Optional[DType], | |
other_name: str, | |
target_type: DType, | |
check_other: bool = True, | |
) -> Optional[Tensor]: | |
if mask is not None: | |
_mask_dtype = mask.dtype | |
_mask_is_float = torch.is_floating_point(mask) | |
if _mask_dtype != torch.bool and not _mask_is_float: | |
raise AssertionError( | |
f"only bool and floating types of {mask_name} are supported") | |
if check_other and other_type is not None: | |
if _mask_dtype != other_type: | |
warnings.warn( | |
f"Support for mismatched {mask_name} and {other_name} " | |
"is deprecated. Use same type for both instead." | |
) | |
if not _mask_is_float: | |
mask = ( | |
torch.zeros_like(mask, dtype=target_type) | |
.masked_fill_(mask, float("-inf")) | |
) | |
return mask | |
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]: | |
if input is None: | |
return None | |
elif isinstance(input, torch.Tensor): | |
return input.dtype | |
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor") | |
def multi_head_attention_forward( | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
embed_dim_to_check: int, | |
num_heads: int, | |
in_proj_weight: Optional[Tensor], | |
in_proj_bias: Optional[Tensor], | |
bias_k: Optional[Tensor], | |
bias_v: Optional[Tensor], | |
add_zero_attn: bool, | |
dropout_p: float, | |
out_proj_weight: Tensor, | |
out_proj_bias: Optional[Tensor], | |
training: bool = True, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
use_separate_proj_weight: bool = False, | |
q_proj_weight: Optional[Tensor] = None, | |
k_proj_weight: Optional[Tensor] = None, | |
v_proj_weight: Optional[Tensor] = None, | |
static_k: Optional[Tensor] = None, | |
static_v: Optional[Tensor] = None, | |
average_attn_weights: bool = True, | |
is_causal: bool = False, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
r"""Forward method for MultiHeadAttention. | |
See :class:`torch.nn.MultiheadAttention` for details. | |
Args: | |
query, key, value: map a query and a set of key-value pairs to an output. | |
See "Attention Is All You Need" for more details. | |
embed_dim_to_check: total dimension of the model. | |
num_heads: parallel attention heads. | |
in_proj_weight, in_proj_bias: input projection weight and bias. | |
bias_k, bias_v: bias of the key and value sequences to be added at dim=0. | |
add_zero_attn: add a new batch of zeros to the key and | |
value sequences at dim=1. | |
dropout_p: probability of an element to be zeroed. | |
out_proj_weight, out_proj_bias: the output projection weight and bias. | |
training: apply dropout if is ``True``. | |
key_padding_mask: if provided, specified padding elements in the key will | |
be ignored by the attention. This is an binary mask. When the value is True, | |
the corresponding value on the attention layer will be filled with -inf. | |
need_weights: output attn_output_weights. | |
Default: `True` | |
Note: `needs_weight` defaults to `True`, but should be set to `False` | |
For best performance when attention weights are not needed. | |
*Setting needs_weights to `True` | |
leads to a significant performance degradation.* | |
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all | |
the batches while a 3D mask allows to specify a different mask for the entries of each batch. | |
is_causal: If specified, applies a causal mask as attention mask, and ignores | |
attn_mask for computing scaled dot product attention. | |
Default: ``False``. | |
.. warning:: | |
is_causal is provides a hint that the attn_mask is the | |
causal mask.Providing incorrect hints can result in | |
incorrect execution, including forward and backward | |
compatibility. | |
use_separate_proj_weight: the function accept the proj. weights for query, key, | |
and value in different forms. If false, in_proj_weight will be used, which is | |
a combination of q_proj_weight, k_proj_weight, v_proj_weight. | |
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. | |
static_k, static_v: static key and value used for attention operators. | |
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads. | |
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect | |
when ``need_weights=True.``. Default: True | |
Shape: | |
Inputs: | |
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is | |
the embedding dimension. | |
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length. | |
If a FloatTensor is provided, it will be directly added to the value. | |
If a BoolTensor is provided, the positions with the | |
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. | |
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. | |
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, | |
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked | |
positions. If a BoolTensor is provided, positions with ``True`` | |
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor | |
is provided, it will be added to the attention weight. | |
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, | |
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. | |
Outputs: | |
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, | |
E is the embedding dimension. | |
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns | |
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or | |
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and | |
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per | |
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`. | |
""" | |
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) | |
if has_torch_function(tens_ops): | |
return handle_torch_function( | |
multi_head_attention_forward, | |
tens_ops, | |
query, | |
key, | |
value, | |
embed_dim_to_check, | |
num_heads, | |
in_proj_weight, | |
in_proj_bias, | |
bias_k, | |
bias_v, | |
add_zero_attn, | |
dropout_p, | |
out_proj_weight, | |
out_proj_bias, | |
training=training, | |
key_padding_mask=key_padding_mask, | |
need_weights=need_weights, | |
attn_mask=attn_mask, | |
is_causal=is_causal, | |
use_separate_proj_weight=use_separate_proj_weight, | |
q_proj_weight=q_proj_weight, | |
k_proj_weight=k_proj_weight, | |
v_proj_weight=v_proj_weight, | |
static_k=static_k, | |
static_v=static_v, | |
average_attn_weights=average_attn_weights, | |
) | |
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads) | |
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input | |
# is batched, run the computation and before returning squeeze the | |
# batch dimension so that the output doesn't carry this temporary batch dimension. | |
if not is_batched: | |
# unsqueeze if the input is unbatched | |
query = query.unsqueeze(1) | |
key = key.unsqueeze(1) | |
value = value.unsqueeze(1) | |
if key_padding_mask is not None: | |
key_padding_mask = key_padding_mask.unsqueeze(0) | |
# set up shape vars | |
tgt_len, bsz, embed_dim = query.shape | |
src_len, _, _ = key.shape | |
key_padding_mask = _canonical_mask( | |
mask=key_padding_mask, | |
mask_name="key_padding_mask", | |
other_type=_none_or_dtype(attn_mask), | |
other_name="attn_mask", | |
target_type=query.dtype | |
) | |
if is_causal and attn_mask is None: | |
raise RuntimeError( | |
"Need attn_mask if specifying the is_causal hint. " | |
"You may use the Transformer module method " | |
"`generate_square_subsequent_mask` to create this mask." | |
) | |
if is_causal and key_padding_mask is None and not need_weights: | |
# when we have a kpm or need weights, we need attn_mask | |
# Otherwise, we use the is_causal hint go as is_causal | |
# indicator to SDPA. | |
attn_mask = None | |
else: | |
attn_mask = _canonical_mask( | |
mask=attn_mask, | |
mask_name="attn_mask", | |
other_type=None, | |
other_name="", | |
target_type=query.dtype, | |
check_other=False, | |
) | |
if key_padding_mask is not None: | |
# We have the attn_mask, and use that to merge kpm into it. | |
# Turn off use of is_causal hint, as the merged mask is no | |
# longer causal. | |
is_causal = False | |
assert embed_dim == embed_dim_to_check, \ | |
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}" | |
if isinstance(embed_dim, torch.Tensor): | |
# embed_dim can be a tensor when JIT tracing | |
head_dim = embed_dim.div(num_heads, rounding_mode='trunc') | |
else: | |
head_dim = embed_dim // num_heads | |
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" | |
if use_separate_proj_weight: | |
# allow MHA to have different embedding dimensions when separate projection weights are used | |
assert key.shape[:2] == value.shape[:2], \ | |
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}" | |
else: | |
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" | |
# | |
# compute in-projection | |
# | |
if not use_separate_proj_weight: | |
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None" | |
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias) | |
else: | |
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None" | |
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None" | |
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None" | |
if in_proj_bias is None: | |
b_q = b_k = b_v = None | |
else: | |
b_q, b_k, b_v = in_proj_bias.chunk(3) | |
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v) | |
# prep attention mask | |
if attn_mask is not None: | |
# ensure attn_mask's dim is 3 | |
if attn_mask.dim() == 2: | |
correct_2d_size = (tgt_len, src_len) | |
if attn_mask.shape != correct_2d_size: | |
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.") | |
attn_mask = attn_mask.unsqueeze(0) | |
elif attn_mask.dim() == 3: | |
correct_3d_size = (bsz * num_heads, tgt_len, src_len) | |
if attn_mask.shape != correct_3d_size: | |
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.") | |
else: | |
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported") | |
# add bias along batch dimension (currently second) | |
if bias_k is not None and bias_v is not None: | |
assert static_k is None, "bias cannot be added to static key." | |
assert static_v is None, "bias cannot be added to static value." | |
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | |
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
else: | |
assert bias_k is None | |
assert bias_v is None | |
# | |
# reshape q, k, v for multihead attention and make em batch first | |
# | |
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | |
if static_k is None: | |
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) | |
else: | |
# TODO finish disentangling control flow so we don't do in-projections when statics are passed | |
assert static_k.size(0) == bsz * num_heads, \ | |
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}" | |
assert static_k.size(2) == head_dim, \ | |
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}" | |
k = static_k | |
if static_v is None: | |
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1) | |
else: | |
# TODO finish disentangling control flow so we don't do in-projections when statics are passed | |
assert static_v.size(0) == bsz * num_heads, \ | |
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}" | |
assert static_v.size(2) == head_dim, \ | |
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}" | |
v = static_v | |
# add zero attention along batch dimension (now first) | |
if add_zero_attn: | |
zero_attn_shape = (bsz * num_heads, 1, head_dim) | |
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1) | |
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1) | |
if attn_mask is not None: | |
attn_mask = pad(attn_mask, (0, 1)) | |
if key_padding_mask is not None: | |
key_padding_mask = pad(key_padding_mask, (0, 1)) | |
# update source sequence length after adjustments | |
src_len = k.size(1) | |
# merge key padding and attention masks | |
if key_padding_mask is not None: | |
assert key_padding_mask.shape == (bsz, src_len), \ | |
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}" | |
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \ | |
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len) | |
if attn_mask is None: | |
attn_mask = key_padding_mask | |
else: | |
attn_mask = attn_mask + key_padding_mask | |
# adjust dropout probability | |
if not training: | |
dropout_p = 0.0 | |
# | |
# (deep breath) calculate attention and out projection | |
# | |
if need_weights: | |
B, Nt, E = q.shape | |
q_scaled = q * math.sqrt(1.0 / float(E)) | |
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights" | |
if attn_mask is not None: | |
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1)) | |
else: | |
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1)) | |
attn_output_weights = softmax(attn_output_weights, dim=-1) | |
if dropout_p > 0.0: | |
attn_output_weights = dropout(attn_output_weights, p=dropout_p) | |
attn_output = torch.bmm(attn_output_weights, v) | |
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim) | |
attn_output = linear(attn_output, out_proj_weight, out_proj_bias) | |
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) | |
# optionally average attention weights over heads | |
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | |
if average_attn_weights: | |
attn_output_weights = attn_output_weights.mean(dim=1) | |
if not is_batched: | |
# squeeze the output if input was unbatched | |
attn_output = attn_output.squeeze(1) | |
attn_output_weights = attn_output_weights.squeeze(0) | |
return attn_output, attn_output_weights | |
else: | |
# attn_mask can be either (L,S) or (N*num_heads, L, S) | |
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S) | |
# in order to match the input for SDPA of (N, num_heads, L, S) | |
if attn_mask is not None: | |
if attn_mask.size(0) == 1 and attn_mask.dim() == 3: | |
attn_mask = attn_mask.unsqueeze(0) | |
else: | |
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len) | |
q = q.view(bsz, num_heads, tgt_len, head_dim) | |
k = k.view(bsz, num_heads, src_len, head_dim) | |
v = v.view(bsz, num_heads, src_len, head_dim) | |
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal) | |
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim) | |
attn_output = linear(attn_output, out_proj_weight, out_proj_bias) | |
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) | |
if not is_batched: | |
# squeeze the output if input was unbatched | |
attn_output = attn_output.squeeze(1) | |
return attn_output, None | |