Spaces:
Sleeping
Sleeping
File size: 232,214 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 |
"""Functional interface."""
from typing import Callable, List, Optional, Tuple, Union
import math
import warnings
import importlib
try:
import numpy as np
except ModuleNotFoundError:
np = None
import torch
from torch import _VF
from torch import sym_int as _sym_int
from torch._C import _infer_size, _add_docstr
from torch._torch_docs import reproducibility_notes, tf32_notes, sparse_support_notes
# A workaround to support both TorchScript and MyPy:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from torch.types import _dtype as DType
else:
# The JIT doesn't understand Union, nor torch.dtype here
DType = int
from .._jit_internal import boolean_dispatch, _overload, BroadcastingList1, BroadcastingList2, BroadcastingList3
from ..overrides import (
has_torch_function, has_torch_function_unary, has_torch_function_variadic,
handle_torch_function)
from . import _reduction as _Reduction
from . import grad # noqa: F401
from .modules import utils
from .modules.utils import _single, _pair, _triple, _list_with_default
Tensor = torch.Tensor
conv1d = _add_docstr(
torch.conv1d,
r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input
planes.
{tf32_note}
See :class:`~torch.nn.Conv1d` for details and output shape.
Note:
{cudnn_reproducibility_note}
Note:
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or
a one-element tuple `(sW,)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
single number or a one-element tuple `(padW,)`. Default: 0
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
the input so the output has the same shape as the input. However, this mode
doesn't support any stride values other than 1.
.. warning::
For ``padding='same'``, if the ``weight`` is even-length and
``dilation`` is odd in any dimension, a full :func:`pad` operation
may be needed internally. Lowering performance.
dilation: the spacing between kernel elements. Can be a single number or
a one-element tuple `(dW,)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> inputs = torch.randn(33, 16, 30)
>>> filters = torch.randn(20, 16, 5)
>>> F.conv1d(inputs, filters)
""",
)
conv2d = _add_docstr(
torch.conv2d,
r"""
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 2D convolution over an input image composed of several input
planes.
{tf32_note}
See :class:`~torch.nn.Conv2d` for details and output shape.
Note:
{cudnn_reproducibility_note}
Note:
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sH, sW)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
single number or a tuple `(padH, padW)`. Default: 0
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
the input so the output has the same shape as the input. However, this mode
doesn't support any stride values other than 1.
.. warning::
For ``padding='same'``, if the ``weight`` is even-length and
``dilation`` is odd in any dimension, a full :func:`pad` operation
may be needed internally. Lowering performance.
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dH, dW)`. Default: 1
groups: split input into groups, both :math:`\text{in\_channels}` and :math:`\text{out\_channels}`
should be divisible by the number of groups. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> filters = torch.randn(8, 4, 3, 3)
>>> inputs = torch.randn(1, 4, 5, 5)
>>> F.conv2d(inputs, filters, padding=1)
""",
) # noqa: E501
conv3d = _add_docstr(
torch.conv3d,
r"""
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 3D convolution over an input image composed of several input
planes.
{tf32_note}
See :class:`~torch.nn.Conv3d` for details and output shape.
Note:
{cudnn_reproducibility_note}
Note:
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)`
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple `(sT, sH, sW)`. Default: 1
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
single number or a tuple `(padT, padH, padW)`. Default: 0
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
the input so the output has the same shape as the input. However, this mode
doesn't support any stride values other than 1.
.. warning::
For ``padding='same'``, if the ``weight`` is even-length and
``dilation`` is odd in any dimension, a full :func:`pad` operation
may be needed internally. Lowering performance.
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
the number of groups. Default: 1
Examples::
>>> filters = torch.randn(33, 16, 3, 3, 3)
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> F.conv3d(inputs, filters)
""",
) # noqa: E501
conv_transpose1d = _add_docstr(
torch.conv_transpose1d,
r"""
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal
composed of several input planes, sometimes also called "deconvolution".
{tf32_note}
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
Note:
{cudnn_reproducibility_note}
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sW,)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padW,)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dW,)``. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50)
>>> weights = torch.randn(16, 33, 5)
>>> F.conv_transpose1d(inputs, weights)
""",
)
conv_transpose2d = _add_docstr(
torch.conv_transpose2d,
r"""
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 2D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution".
{tf32_note}
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
Note:
{cudnn_reproducibility_note}
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sH, sW)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.
Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple ``(dH, dW)``. Default: 1
Examples::
>>> # With square kernels and equal stride
>>> inputs = torch.randn(1, 4, 5, 5)
>>> weights = torch.randn(4, 8, 3, 3)
>>> F.conv_transpose2d(inputs, weights, padding=1)
""",
) # noqa: E501
conv_transpose3d = _add_docstr(
torch.conv_transpose3d,
r"""
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 3D transposed convolution operator over an input image
composed of several input planes, sometimes also called "deconvolution"
{tf32_note}
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
Note:
{cudnn_reproducibility_note}
""".format(
**reproducibility_notes, **tf32_notes
)
+ r"""
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)`
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
stride: the stride of the convolving kernel. Can be a single number or a
tuple ``(sT, sH, sW)``. Default: 1
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
sides of each dimension in the input. Can be a single number or a tuple
``(padT, padH, padW)``. Default: 0
output_padding: additional size added to one side of each dimension in the
output shape. Can be a single number or a tuple
``(out_padT, out_padH, out_padW)``. Default: 0
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
number of groups. Default: 1
dilation: the spacing between kernel elements. Can be a single number or
a tuple `(dT, dH, dW)`. Default: 1
Examples::
>>> inputs = torch.randn(20, 16, 50, 10, 20)
>>> weights = torch.randn(16, 33, 3, 3, 3)
>>> F.conv_transpose3d(inputs, weights)
""",
) # noqa: E501
conv_tbc = _add_docstr(
torch.conv_tbc,
r"""
Applies a 1-dimensional sequence convolution over an input sequence.
Input and output dimensions are (Time, Batch, Channels) - hence TBC.
Args:
input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`
weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)
bias: bias of shape (:math:`\text{out\_channels}`)
pad: number of timesteps to pad. Default: 0
""",
)
# Pooling
avg_pool1d = _add_docstr(
torch.avg_pool1d,
r"""
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
Applies a 1D average pooling over an input signal composed of several
input planes.
See :class:`~torch.nn.AvgPool1d` for details and output shape.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
kernel_size: the size of the window. Can be a single number or a
tuple `(kW,)`
stride: the stride of the window. Can be a single number or a tuple
`(sW,)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padW,)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
Examples::
>>> # pool of square window of size=3, stride=2
>>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32)
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
tensor([[[ 2., 4., 6.]]])
""",
)
avg_pool2d = _add_docstr(
torch._C._nn.avg_pool2d,
r"""
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
:math:`sH \times sW` steps. The number of output features is equal to the number of
input planes.
See :class:`~torch.nn.AvgPool2d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padH, padW)`. Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape. Default: ``False``
count_include_pad: when True, will include the zero-padding in the
averaging calculation. Default: ``True``
divisor_override: if specified, it will be used as divisor, otherwise
size of the pooling region will be used. Default: None
""",
)
avg_pool3d = _add_docstr(
torch._C._nn.avg_pool3d,
r"""
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step
size :math:`sT \times sH \times sW` steps. The number of output features is equal to
:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.
See :class:`~torch.nn.AvgPool3d` for details and output shape.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)`
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kT, kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
padding: implicit zero paddings on both sides of the input. Can be a
single number or a tuple `(padT, padH, padW)`, Default: 0
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
to compute the output shape
count_include_pad: when True, will include the zero-padding in the
averaging calculation
divisor_override: if specified, it will be used as divisor, otherwise
size of the pooling region will be used. Default: None
""",
)
def fractional_max_pool2d_with_indices(
input: Tensor, kernel_size: BroadcastingList2[int],
output_size: Optional[BroadcastingList2[int]] = None,
output_ratio: Optional[BroadcastingList2[float]] = None,
return_indices: bool = False,
_random_samples: Optional[Tensor] = None
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
fractional_max_pool2d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)
Applies 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k`)
or a tuple `(kH, kW)`
output_size: the target output size of the image of the form :math:`oH \times oW`.
Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool2d`.
Examples::
>>> input = torch.randn(20, 16, 50, 32)
>>> # pool of square window of size=3, and target output size 13x12
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))
>>> # pool of square window and target output size being half of input image size
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if has_torch_function_variadic(input, _random_samples):
return handle_torch_function(
fractional_max_pool2d_with_indices,
(input, _random_samples),
input,
kernel_size,
output_size=output_size,
output_ratio=output_ratio,
return_indices=return_indices,
_random_samples=_random_samples,
)
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool2d requires specifying either an output_size or an output_ratio")
if output_size is None:
assert output_ratio is not None
if len(output_ratio) > 2:
raise ValueError("fractional_max_pool2d requires output_ratio to either be a single Int or tuple of Ints.")
_output_ratio = _pair(output_ratio)
output_size = [int(input.size(-2) * _output_ratio[0]), int(input.size(-1) * _output_ratio[1])]
if _random_samples is None:
n_batch = 1 if input.dim() == 3 else input.size(0)
_random_samples = torch.rand(n_batch, input.size(-3), 2, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples)
def _fractional_max_pool2d(
input: Tensor, kernel_size: BroadcastingList2[int],
output_size: Optional[BroadcastingList2[int]] = None,
output_ratio: Optional[BroadcastingList2[float]] = None,
return_indices: bool = False,
_random_samples: Optional[Tensor] = None
) -> Tensor:
if has_torch_function_variadic(input, _random_samples):
return handle_torch_function(
fractional_max_pool2d,
(input, _random_samples),
input,
kernel_size,
output_size=output_size,
output_ratio=output_ratio,
return_indices=return_indices,
_random_samples=_random_samples,
)
return fractional_max_pool2d_with_indices(
input, kernel_size, output_size, output_ratio, return_indices, _random_samples
)[0]
fractional_max_pool2d = boolean_dispatch(
arg_name="return_indices",
arg_index=4,
default=False,
if_true=fractional_max_pool2d_with_indices,
if_false=_fractional_max_pool2d,
module_name=__name__,
func_name="fractional_max_pool2d",
)
def fractional_max_pool3d_with_indices(
input: Tensor, kernel_size: BroadcastingList3[int],
output_size: Optional[BroadcastingList3[int]] = None,
output_ratio: Optional[BroadcastingList3[float]] = None,
return_indices: bool = False,
_random_samples: Optional[Tensor] = None
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
fractional_max_pool3d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)
Applies 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic
step size determined by the target output size.
The number of output features is equal to the number of input planes.
Args:
kernel_size: the size of the window to take a max over.
Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`)
or a tuple `(kT, kH, kW)`
output_size: the target output size of the form :math:`oT \times oH \times oW`.
Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output
:math:`oH \times oH \times oH`
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
This has to be a number or tuple in the range (0, 1)
return_indices: if ``True``, will return the indices along with the outputs.
Useful to pass to :func:`~torch.nn.functional.max_unpool3d`.
Shape:
- Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`.
- Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})`
Examples::
>>> input = torch.randn(20, 16, 50, 32, 16)
>>> # pool of cubic window of size=3, and target output size 13x12x11
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))
>>> # pool of cubic window and target output size being half of input size
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5))
.. _Fractional MaxPooling:
http://arxiv.org/abs/1412.6071
"""
if has_torch_function_variadic(input, _random_samples):
return handle_torch_function(
fractional_max_pool3d_with_indices,
(input, _random_samples),
input,
kernel_size,
output_size=output_size,
output_ratio=output_ratio,
return_indices=return_indices,
_random_samples=_random_samples,
)
if output_size is None and output_ratio is None:
raise ValueError("fractional_max_pool3d requires specifying either an output_size or an output_ratio")
if output_size is None:
assert output_ratio is not None
_output_ratio = _triple(output_ratio)
output_size = [
int(input.size(-3) * _output_ratio[0]),
int(input.size(-2) * _output_ratio[1]),
int(input.size(-1) * _output_ratio[2]),
]
if _random_samples is None:
n_batch = 1 if input.dim() == 4 else input.size(0)
_random_samples = torch.rand(n_batch, input.size(-4), 3, dtype=input.dtype, device=input.device)
return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples)
def _fractional_max_pool3d(
input: Tensor, kernel_size: BroadcastingList3[int],
output_size: Optional[BroadcastingList3[int]] = None,
output_ratio: Optional[BroadcastingList3[float]] = None,
return_indices: bool = False,
_random_samples: Optional[Tensor] = None
) -> Tensor:
if has_torch_function_variadic(input, _random_samples):
return handle_torch_function(
fractional_max_pool3d,
(input, _random_samples),
input,
kernel_size,
output_size=output_size,
output_ratio=output_ratio,
return_indices=return_indices,
_random_samples=_random_samples,
)
return fractional_max_pool3d_with_indices(
input, kernel_size, output_size, output_ratio, return_indices, _random_samples
)[0]
fractional_max_pool3d = boolean_dispatch(
arg_name="return_indices",
arg_index=4,
default=False,
if_true=fractional_max_pool3d_with_indices,
if_false=_fractional_max_pool3d,
module_name=__name__,
func_name="fractional_max_pool3d",
)
def max_pool1d_with_indices(
input: Tensor, kernel_size: BroadcastingList1[int],
stride: Optional[BroadcastingList1[int]] = None,
padding: BroadcastingList1[int] = 0,
dilation: BroadcastingList1[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
Applies a 1D max pooling over an input signal composed of several input
planes.
.. note::
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
what seen in :class:`~torch.nn.MaxPool1d`, and will change in a future release.
See :class:`~torch.nn.MaxPool1d` for details.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`, minibatch dim optional.
kernel_size: the size of the window. Can be a single number or a
tuple `(kW,)`
stride: the stride of the window. Can be a single number or a tuple
`(sW,)`. Default: :attr:`kernel_size`
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
dilation: The stride between elements within a sliding window, must be > 0.
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
ensures that every element in the input tensor is covered by a sliding window.
return_indices: If ``True``, will return the argmax along with the max values.
Useful for :class:`torch.nn.functional.max_unpool1d` later
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_pool1d_with_indices,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool1d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool1d(
input: Tensor, kernel_size: BroadcastingList1[int],
stride: Optional[BroadcastingList1[int]] = None,
padding: BroadcastingList1[int] = 0,
dilation: BroadcastingList1[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
max_pool1d,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool1d = boolean_dispatch(
arg_name="return_indices",
arg_index=6,
default=False,
if_true=max_pool1d_with_indices,
if_false=_max_pool1d,
module_name=__name__,
func_name="max_pool1d",
)
def max_pool2d_with_indices(
input: Tensor, kernel_size: BroadcastingList2[int],
stride: Optional[BroadcastingList2[int]] = None,
padding: BroadcastingList2[int] = 0,
dilation: BroadcastingList2[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
Applies a 2D max pooling over an input signal composed of several input
planes.
.. note::
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
what seen in :class:`~torch.nn.MaxPool2d`, and will change in a future release.
See :class:`~torch.nn.MaxPool2d` for details.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`, minibatch dim optional.
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sH, sW)`. Default: :attr:`kernel_size`
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
dilation: The stride between elements within a sliding window, must be > 0.
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
ensures that every element in the input tensor is covered by a sliding window.
return_indices: If ``True``, will return the argmax along with the max values.
Useful for :class:`torch.nn.functional.max_unpool2d` later
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_pool2d_with_indices,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool2d(
input: Tensor, kernel_size: BroadcastingList2[int],
stride: Optional[BroadcastingList2[int]] = None,
padding: BroadcastingList2[int] = 0,
dilation: BroadcastingList2[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
max_pool2d,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool2d = boolean_dispatch(
arg_name="return_indices",
arg_index=6,
default=False,
if_true=max_pool2d_with_indices,
if_false=_max_pool2d,
module_name=__name__,
func_name="max_pool2d",
)
def max_pool3d_with_indices(
input: Tensor, kernel_size: BroadcastingList3[int],
stride: Optional[BroadcastingList3[int]] = None,
padding: BroadcastingList3[int] = 0,
dilation: BroadcastingList3[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
Applies a 3D max pooling over an input signal composed of several input
planes.
.. note::
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
what seen in :class:`~torch.nn.MaxPool3d`, and will change in a future release.
See :class:`~torch.nn.MaxPool3d` for details.
Args:
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iD, iH , iW)`, minibatch dim optional.
kernel_size: size of the pooling region. Can be a single number or a
tuple `(kT, kH, kW)`
stride: stride of the pooling operation. Can be a single number or a
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
dilation: The stride between elements within a sliding window, must be > 0.
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
ensures that every element in the input tensor is covered by a sliding window.
return_indices: If ``True``, will return the argmax along with the max values.
Useful for :class:`torch.nn.functional.max_unpool3d` later
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_pool3d_with_indices,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch._C._nn.max_pool3d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
def _max_pool3d(
input: Tensor, kernel_size: BroadcastingList3[int],
stride: Optional[BroadcastingList3[int]] = None,
padding: BroadcastingList3[int] = 0,
dilation: BroadcastingList3[int] = 1,
ceil_mode: bool = False,
return_indices: bool = False
) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
max_pool3d,
(input,),
input,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode,
return_indices=return_indices,
)
if stride is None:
stride = torch.jit.annotate(List[int], [])
return torch.max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode)
max_pool3d = boolean_dispatch(
arg_name="return_indices",
arg_index=6,
default=False,
if_true=max_pool3d_with_indices,
if_false=_max_pool3d,
module_name=__name__,
func_name="max_pool3d",
)
def _unpool_output_size(
input: Tensor, kernel_size: List[int], stride: List[int], padding: List[int], output_size: Optional[List[int]]
) -> List[int]:
input_size = input.size()
default_size = torch.jit.annotate(List[int], [])
for d in range(len(kernel_size)):
default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d] + kernel_size[d] - 2 * padding[d])
if output_size is None:
ret = default_size
else:
if len(output_size) == len(kernel_size) + 2:
output_size = output_size[2:]
if len(output_size) != len(kernel_size):
raise ValueError(
"output_size should be a sequence containing "
f"{len(kernel_size)} or {len(kernel_size) + 2} elements, but it has a length of '{len(output_size)}'"
)
for d in range(len(kernel_size)):
min_size = default_size[d] - stride[d]
max_size = default_size[d] + stride[d]
if not (min_size < output_size[d] < max_size):
raise ValueError(
f'invalid output_size "{output_size}" (dim {d} must be between {min_size} and {max_size})'
)
ret = output_size
return ret
def max_unpool1d(
input: Tensor, indices: Tensor,
kernel_size: BroadcastingList1[int],
stride: Optional[BroadcastingList1[int]] = None,
padding: BroadcastingList1[int] = 0,
output_size: Optional[BroadcastingList1[int]] = None
) -> Tensor:
r"""Compute a partial inverse of :class:`MaxPool1d`.
See :class:`~torch.nn.MaxUnpool1d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_unpool1d,
(input,),
input,
indices,
kernel_size,
stride=stride,
padding=padding,
output_size=output_size,
)
kernel_size = _single(kernel_size)
if stride is not None:
_stride = _single(stride)
else:
_stride = kernel_size
padding = _single(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
if isinstance(output_size, list):
output_size = output_size + [1]
else:
output_size = output_size + (1,)
return torch._C._nn.max_unpool2d(input.unsqueeze(-1), indices.unsqueeze(-1), output_size).squeeze(-1)
def max_unpool2d(
input: Tensor, indices: Tensor,
kernel_size: BroadcastingList2[int],
stride: Optional[BroadcastingList2[int]] = None,
padding: BroadcastingList2[int] = 0,
output_size: Optional[BroadcastingList2[int]] = None
) -> Tensor:
r"""Compute a partial inverse of :class:`MaxPool2d`.
See :class:`~torch.nn.MaxUnpool2d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_unpool2d,
(input,),
input,
indices,
kernel_size,
stride=stride,
padding=padding,
output_size=output_size,
)
kernel_size = _pair(kernel_size)
if stride is not None:
_stride = _pair(stride)
else:
_stride = kernel_size
padding = _pair(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
return torch._C._nn.max_unpool2d(input, indices, output_size)
def max_unpool3d(
input: Tensor, indices: Tensor,
kernel_size: BroadcastingList3[int],
stride: Optional[BroadcastingList3[int]] = None,
padding: BroadcastingList3[int] = 0,
output_size: Optional[BroadcastingList3[int]] = None
) -> Tensor:
r"""Compute a partial inverse of :class:`MaxPool3d`.
See :class:`~torch.nn.MaxUnpool3d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
max_unpool3d,
(input,),
input,
indices,
kernel_size,
stride=stride,
padding=padding,
output_size=output_size,
)
kernel_size = _triple(kernel_size)
if stride is not None:
_stride = _triple(stride)
else:
_stride = kernel_size
padding = _triple(padding)
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
return torch._C._nn.max_unpool3d(input, indices, output_size, _stride, padding)
def lp_pool3d(
input: Tensor, norm_type: Union[int, float],
kernel_size: BroadcastingList3[int],
stride: Optional[BroadcastingList3[int]] = None,
ceil_mode: bool = False
) -> Tensor:
r"""
Apply a 3D power-average pooling over an input signal composed of several input planes.
If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool3d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
lp_pool3d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
)
kd, kw, kh = utils._triple(kernel_size)
if stride is not None:
out = avg_pool3d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool3d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kd * kw * kh).pow(1.0 / norm_type)
def lp_pool2d(
input: Tensor, norm_type: Union[int, float],
kernel_size: BroadcastingList2[int],
stride: Optional[BroadcastingList2[int]] = None,
ceil_mode: bool = False
) -> Tensor:
r"""
Apply a 2D power-average pooling over an input signal composed of several input planes.
If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool2d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
)
kw, kh = utils._pair(kernel_size)
if stride is not None:
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1.0 / norm_type)
def lp_pool1d(
input: Tensor, norm_type: Union[int, float],
kernel_size: int,
stride: Optional[BroadcastingList1[int]] = None,
ceil_mode: bool = False
) -> Tensor:
r"""Apply a 1D power-average pooling over an input signal composed of several input planes.
If the sum of all inputs to the power of `p` is
zero, the gradient is set to zero as well.
See :class:`~torch.nn.LPPool1d` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
)
if stride is not None:
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
else:
out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1.0 / norm_type)
def adaptive_max_pool1d_with_indices(
input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
adaptive_max_pool1d(input, output_size, return_indices=False)
Applies a 1D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
return_indices: whether to return pooling indices. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool1d_with_indices, (input,), input, output_size, return_indices=return_indices
)
return torch.adaptive_max_pool1d(input, output_size)
def _adaptive_max_pool1d(input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool1d, (input,), input, output_size, return_indices=return_indices
)
return adaptive_max_pool1d_with_indices(input, output_size)[0]
adaptive_max_pool1d = boolean_dispatch(
arg_name="return_indices",
arg_index=2,
default=False,
if_true=adaptive_max_pool1d_with_indices,
if_false=_adaptive_max_pool1d,
module_name=__name__,
func_name="adaptive_max_pool1d",
)
def adaptive_max_pool2d_with_indices(
input: Tensor, output_size: BroadcastingList2[int],
return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""adaptive_max_pool2d(input, output_size, return_indices=False)
Applies a 2D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool2d_with_indices, (input,), input, output_size, return_indices=return_indices
)
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool2d(input, output_size)
def _adaptive_max_pool2d(input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool2d, (input,), input, output_size, return_indices=return_indices
)
return adaptive_max_pool2d_with_indices(input, output_size)[0]
adaptive_max_pool2d = boolean_dispatch(
arg_name="return_indices",
arg_index=2,
default=False,
if_true=adaptive_max_pool2d_with_indices,
if_false=_adaptive_max_pool2d,
module_name=__name__,
func_name="adaptive_max_pool2d",
)
def adaptive_max_pool3d_with_indices(
input: Tensor, output_size: BroadcastingList3[int],
return_indices: bool = False
) -> Tuple[Tensor, Tensor]: # noqa: D400
r"""
adaptive_max_pool3d(input, output_size, return_indices=False)
Applies a 3D adaptive max pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
return_indices: whether to return pooling indices. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool3d_with_indices, (input,), input, output_size, return_indices=return_indices
)
output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_max_pool3d(input, output_size)
def _adaptive_max_pool3d(input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False) -> Tensor:
if has_torch_function_unary(input):
return handle_torch_function(
adaptive_max_pool3d, (input,), input, output_size, return_indices=return_indices
)
return adaptive_max_pool3d_with_indices(input, output_size)[0]
adaptive_max_pool3d = boolean_dispatch(
arg_name="return_indices",
arg_index=2,
default=False,
if_true=adaptive_max_pool3d_with_indices,
if_false=_adaptive_max_pool3d,
module_name=__name__,
func_name="adaptive_max_pool3d",
)
adaptive_avg_pool1d = _add_docstr(
torch.adaptive_avg_pool1d,
r"""
adaptive_avg_pool1d(input, output_size) -> Tensor
Applies a 1D adaptive average pooling over an input signal composed of
several input planes.
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
Args:
output_size: the target output size (single integer)
""",
)
def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
r"""Apply a 2D adaptive average pooling over an input signal composed of several input planes.
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
Args:
output_size: the target output size (single integer or
double-integer tuple)
"""
if has_torch_function_unary(input):
return handle_torch_function(adaptive_avg_pool2d, (input,), input, output_size)
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool2d(input, _output_size)
def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList3[int]) -> Tensor:
r"""Apply a 3D adaptive average pooling over an input signal composed of several input planes.
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
Args:
output_size: the target output size (single integer or
triple-integer tuple)
"""
if has_torch_function_unary(input):
return handle_torch_function(adaptive_avg_pool3d, (input,), input, output_size)
_output_size = _list_with_default(output_size, input.size())
return torch._C._nn.adaptive_avg_pool3d(input, _output_size)
# Activation functions
def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
r"""During training, randomly zeroes some elements of the input tensor with probability :attr:`p`.
Uses samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout` for details.
Args:
p: probability of an element to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training)
def alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
r"""Apply alpha dropout to the input.
See :class:`~torch.nn.AlphaDropout` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(alpha_dropout, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
return _VF.alpha_dropout_(input, p, training) if inplace else _VF.alpha_dropout(input, p, training)
def dropout1d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
r"""Randomly zero out entire channels (a channel is a 1D feature map).
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 1D tensor :math:`\text{input}[i, j]` of the input tensor.
Each channel will be zeroed out independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout1d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(dropout1d, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
inp_dim = input.dim()
if inp_dim not in (2, 3):
raise RuntimeError(f"dropout1d: Expected 2D or 3D input, but received a {inp_dim}D input. "
"Note that dropout1d exists to provide channel-wise dropout on inputs with 1 "
"spatial dimension, a channel dimension, and an optional batch dimension "
"(i.e. 2D or 3D inputs).")
is_batched = inp_dim == 3
if not is_batched:
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
if not is_batched:
result = result.squeeze_(0) if inplace else result.squeeze(0)
return result
def dropout2d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
r"""Randomly zero out entire channels (a channel is a 2D feature map).
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 2D tensor :math:`\text{input}[i, j]` of the input tensor.
Each channel will be zeroed out independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout2d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(dropout2d, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
inp_dim = input.dim()
if inp_dim not in (3, 4):
warn_msg = (f"dropout2d: Received a {inp_dim}-D input to dropout2d, which is deprecated "
"and will result in an error in a future release. To retain the behavior "
"and silence this warning, please use dropout instead. Note that dropout2d "
"exists to provide channel-wise dropout on inputs with 2 spatial dimensions, "
"a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).")
warnings.warn(warn_msg)
# TODO: Properly support no-batch-dim inputs. For now, these are NOT supported; passing
# a 3D input will perform dropout1d behavior instead. This was done historically and the
# behavior is maintained here for now.
# See https://github.com/pytorch/pytorch/issues/77081
if inp_dim == 3:
warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "
"1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C "
"is the channel dim. This behavior will change in a future release to interpret the "
"input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D "
"channel-wise dropout behavior, please switch to using dropout1d instead.")
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
return result
def dropout3d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
r"""Randomly zero out entire channels (a channel is a 3D feature map).
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
batched input is a 3D tensor :math:`\text{input}[i, j]` of the input tensor.
Each channel will be zeroed out independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
See :class:`~torch.nn.Dropout3d` for details.
Args:
p: probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(dropout3d, (input,), input, p=p, training=training, inplace=inplace)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
inp_dim = input.dim()
if inp_dim not in (4, 5):
warn_msg = (f"dropout3d: Received a {inp_dim}-D input to dropout3d, which is deprecated "
"and will result in an error in a future release. To retain the behavior "
"and silence this warning, please use dropout instead. Note that dropout3d "
"exists to provide channel-wise dropout on inputs with 3 spatial dimensions, "
"a channel dimension, and an optional batch dimension (i.e. 4D or 5D inputs).")
warnings.warn(warn_msg)
is_batched = inp_dim == 5
if not is_batched:
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
if not is_batched:
result = result.squeeze_(0) if inplace else result.squeeze(0)
return result
def feature_alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
r"""Randomly masks out entire channels (a channel is a feature map).
For example, the :math:`j`-th channel of the :math:`i`-th sample in the batch input
is a tensor :math:`\text{input}[i, j]` of the input tensor. Instead of
setting activations to zero, as in regular Dropout, the activations are set
to the negative saturation value of the SELU activation function.
Each element will be masked independently on every forward call with
probability :attr:`p` using samples from a Bernoulli distribution.
The elements to be masked are randomized on every forward call, and scaled
and shifted to maintain zero mean and unit variance.
See :class:`~torch.nn.FeatureAlphaDropout` for details.
Args:
p: dropout probability of a channel to be zeroed. Default: 0.5
training: apply dropout if is ``True``. Default: ``True``
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
"""
if has_torch_function_unary(input):
return handle_torch_function(
feature_alpha_dropout, (input,), input, p=p, training=training, inplace=inplace
)
if p < 0.0 or p > 1.0:
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
return _VF.feature_alpha_dropout_(input, p, training) if inplace else _VF.feature_alpha_dropout(input, p, training)
def _threshold(input: Tensor, threshold: float, value: float, inplace: bool = False) -> Tensor:
r"""Apply a threshold to each element of the input Tensor.
See :class:`~torch.nn.Threshold` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(_threshold, (input,), input, threshold, value, inplace=inplace)
if inplace:
result = _VF.threshold_(input, threshold, value)
else:
result = _VF.threshold(input, threshold, value)
return result
# We define this function as _threshold because it takes an argument
# named threshold, which clobbers the recursive reference to the
# function needed for __torch_function__ support
threshold = _threshold
threshold_ = _add_docstr(
_VF.threshold_,
r"""
threshold_(input, threshold, value) -> Tensor
In-place version of :func:`~threshold`.
""",
)
def relu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""relu(input, inplace=False) -> Tensor
Applies the rectified linear unit function element-wise. See
:class:`~torch.nn.ReLU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(relu, (input,), input, inplace=inplace)
if inplace:
result = torch.relu_(input)
else:
result = torch.relu(input)
return result
relu_ = _add_docstr(
torch.relu_,
r"""
relu_(input) -> Tensor
In-place version of :func:`~relu`.
""",
)
def glu(input: Tensor, dim: int = -1) -> Tensor: # noqa: D400,D402
r"""
glu(input, dim=-1) -> Tensor
The gated linear unit. Computes:
.. math ::
\text{GLU}(a, b) = a \otimes \sigma(b)
where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma`
is the sigmoid function and :math:`\otimes` is the element-wise product between matrices.
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.
Args:
input (Tensor): input tensor
dim (int): dimension on which to split the input. Default: -1
"""
if has_torch_function_unary(input):
return handle_torch_function(glu, (input,), input, dim=dim)
if input.dim() == 0:
raise RuntimeError("glu does not support scalars because halving size must be even")
return torch._C._nn.glu(input, dim)
def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more
details.
"""
if has_torch_function_unary(input):
return handle_torch_function(hardtanh, (input,), input, min_val=min_val, max_val=max_val, inplace=inplace)
if inplace:
result = torch._C._nn.hardtanh_(input, min_val, max_val)
else:
result = torch._C._nn.hardtanh(input, min_val, max_val)
return result
hardtanh_ = _add_docstr(
torch._C._nn.hardtanh_,
r"""
hardtanh_(input, min_val=-1., max_val=1.) -> Tensor
In-place version of :func:`~hardtanh`.
""",
)
def relu6(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""relu6(input, inplace=False) -> Tensor
Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`.
See :class:`~torch.nn.ReLU6` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(relu6, (input,), input, inplace=inplace)
if inplace:
result = torch._C._nn.relu6_(input)
else:
result = torch._C._nn.relu6(input)
return result
def elu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor:
r"""Apply the Exponential Linear Unit (ELU) function element-wise.
See :class:`~torch.nn.ELU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(elu, (input,), input, alpha=alpha, inplace=inplace)
if inplace:
result = torch._C._nn.elu_(input, alpha)
else:
result = torch._C._nn.elu(input, alpha)
return result
elu_ = _add_docstr(
torch._C._nn.elu_,
r"""
elu_(input, alpha=1.) -> Tensor
In-place version of :func:`~elu`.
""",
)
def selu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""selu(input, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`,
with :math:`\alpha=1.6732632423543772848170429916717` and
:math:`scale=1.0507009873554804934193349852946`.
See :class:`~torch.nn.SELU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(selu, (input,), input, inplace=inplace)
if inplace:
result = torch.selu_(input)
else:
result = torch.selu(input)
return result
selu_ = _add_docstr(
torch.selu_,
r"""
selu_(input) -> Tensor
In-place version of :func:`~selu`.
""",
)
def celu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""celu(input, alpha=1., inplace=False) -> Tensor
Applies element-wise,
:math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.
See :class:`~torch.nn.CELU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(celu, (input,), input, alpha=alpha, inplace=inplace)
if inplace:
result = torch.celu_(input, alpha)
else:
result = torch.celu(input, alpha)
return result
celu_ = _add_docstr(
torch.celu_,
r"""
celu_(input, alpha=1.) -> Tensor
In-place version of :func:`~celu`.
""",
)
def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor: # noqa: D400,D402
r"""
leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor
Applies element-wise,
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`
See :class:`~torch.nn.LeakyReLU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(leaky_relu, (input,), input, negative_slope=negative_slope, inplace=inplace)
if inplace:
result = torch._C._nn.leaky_relu_(input, negative_slope)
else:
result = torch._C._nn.leaky_relu(input, negative_slope)
return result
leaky_relu_ = _add_docstr(
torch._C._nn.leaky_relu_,
r"""
leaky_relu_(input, negative_slope=0.01) -> Tensor
In-place version of :func:`~leaky_relu`.
""",
)
prelu = _add_docstr(
torch.prelu,
r"""prelu(input, weight) -> Tensor
Applies element-wise the function
:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a
learnable parameter.
.. note::
`weight` is expected to be a scalar or 1-D tensor. If `weight` is 1-D,
its size must match the number of input channels, determined by
`input.size(1)` when `input.dim() >= 2`, otherwise 1.
In the 1-D case, note that when `input` has dim > 2, `weight` can be expanded
to the shape of `input` in a way that is not possible using normal
:ref:`broadcasting semantics<broadcasting-semantics>`.
See :class:`~torch.nn.PReLU` for more details.
""")
def rrelu(
input: Tensor, lower: float = 1.0 / 8, upper: float = 1.0 / 3, training: bool = False, inplace: bool = False
) -> Tensor: # noqa: D400,D402
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor
Randomized leaky ReLU.
See :class:`~torch.nn.RReLU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(
rrelu, (input,), input, lower=lower, upper=upper, training=training, inplace=inplace
)
if inplace:
result = torch.rrelu_(input, lower, upper, training)
else:
result = torch.rrelu(input, lower, upper, training)
return result
rrelu_ = _add_docstr(
torch.rrelu_,
r"""
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor
In-place version of :func:`~rrelu`.
""",
)
logsigmoid = _add_docstr(
torch._C._nn.log_sigmoid,
r"""
logsigmoid(input) -> Tensor
Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)`
See :class:`~torch.nn.LogSigmoid` for more details.
""",
)
gelu = _add_docstr(
torch._C._nn.gelu,
r"""
gelu(input, approximate = 'none') -> Tensor
When the approximate argument is 'none', it applies element-wise the function
:math:`\text{GELU}(x) = x * \Phi(x)`
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
When the approximate argument is 'tanh', Gelu is estimated with
.. math::
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
""")
hardshrink = _add_docstr(
torch.hardshrink,
r"""
hardshrink(input, lambd=0.5) -> Tensor
Applies the hard shrinkage function element-wise
See :class:`~torch.nn.Hardshrink` for more details.
""")
def tanhshrink(input): # noqa: D400,D402
r"""tanhshrink(input) -> Tensor
Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)`
See :class:`~torch.nn.Tanhshrink` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(tanhshrink, (input,), input)
return input - input.tanh()
def softsign(input): # noqa: D400,D402
r"""softsign(input) -> Tensor
Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}`
See :class:`~torch.nn.Softsign` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(softsign, (input,), input)
return input / (input.abs() + 1)
softplus = _add_docstr(
torch._C._nn.softplus,
r"""
softplus(input, beta=1, threshold=20) -> Tensor
Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`.
For numerical stability the implementation reverts to the linear function
when :math:`input \times \beta > threshold`.
See :class:`~torch.nn.Softplus` for more details.
""",
)
def _get_softmax_dim(name: str, ndim: int, stacklevel: int) -> int:
warnings.warn(
f"Implicit dimension choice for {name} has been deprecated. Change the call to include dim=X as an argument.",
stacklevel=stacklevel,
)
if ndim == 0 or ndim == 1 or ndim == 3:
ret = 0
else:
ret = 1
return ret
def softmin(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
r"""Apply a softmin function.
Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula.
See :class:`~torch.nn.Softmin` for more details.
Args:
input (Tensor): input
dim (int): A dimension along which softmin will be computed (so every slice
along dim will sum to 1).
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if has_torch_function_unary(input):
return handle_torch_function(softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim("softmin", input.dim(), _stacklevel)
if dtype is None:
ret = (-input).softmax(dim)
else:
ret = (-input).softmax(dim, dtype=dtype)
return ret
def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
r"""Apply a softmax function.
Softmax is defined as:
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`
It is applied to all slices along dim, and will re-scale them so that the elements
lie in the range `[0, 1]` and sum to 1.
See :class:`~torch.nn.Softmax` for more details.
Args:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
.. note::
This function doesn't work directly with NLLLoss,
which expects the Log to be computed between the Softmax and itself.
Use log_softmax instead (it's faster and has better numerical properties).
"""
if has_torch_function_unary(input):
return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim("softmax", input.dim(), _stacklevel)
if dtype is None:
ret = input.softmax(dim)
else:
ret = input.softmax(dim, dtype=dtype)
return ret
def gumbel_softmax(logits: Tensor, tau: float = 1, hard: bool = False, eps: float = 1e-10, dim: int = -1) -> Tensor:
r"""
Sample from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretize.
Args:
logits: `[..., num_features]` unnormalized log probabilities
tau: non-negative scalar temperature
hard: if ``True``, the returned samples will be discretized as one-hot vectors,
but will be differentiated as if it is the soft sample in autograd
dim (int): A dimension along which softmax will be computed. Default: -1.
Returns:
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
.. note::
This function is here for legacy reasons, may be removed from nn.Functional in the future.
.. note::
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft`
It achieves two things:
- makes the output value exactly one-hot
(since we add then subtract y_soft value)
- makes the gradient equal to y_soft gradient
(since we strip all other gradients)
Examples::
>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
.. _Link 1:
https://arxiv.org/abs/1611.00712
.. _Link 2:
https://arxiv.org/abs/1611.01144
"""
if has_torch_function_unary(logits):
return handle_torch_function(gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim)
if eps != 1e-10:
warnings.warn("`eps` parameter is deprecated and has no effect.")
gumbels = (
-torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log()
) # ~Gumbel(0,1)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)
if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
# Reparametrization trick.
ret = y_soft
return ret
def log_softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
r"""Apply a softmax followed by a logarithm.
While mathematically equivalent to log(softmax(x)), doing these two
operations separately is slower and numerically unstable. This function
uses an alternative formulation to compute the output and gradient correctly.
See :class:`~torch.nn.LogSoftmax` for more details.
Args:
input (Tensor): input
dim (int): A dimension along which log_softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is cast to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
"""
if has_torch_function_unary(input):
return handle_torch_function(log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
if dim is None:
dim = _get_softmax_dim("log_softmax", input.dim(), _stacklevel)
if dtype is None:
ret = input.log_softmax(dim)
else:
ret = input.log_softmax(dim, dtype=dtype)
return ret
softshrink = _add_docstr(
torch._C._nn.softshrink,
r"""
softshrink(input, lambd=0.5) -> Tensor
Applies the soft shrinkage function elementwise
See :class:`~torch.nn.Softshrink` for more details.
""",
)
def tanh(input): # noqa: D400,D402
r"""tanh(input) -> Tensor
Applies element-wise,
:math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}`
See :class:`~torch.nn.Tanh` for more details.
"""
return input.tanh()
def sigmoid(input): # noqa: D400,D402
r"""sigmoid(input) -> Tensor
Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}`
See :class:`~torch.nn.Sigmoid` for more details.
"""
return input.sigmoid()
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor:
r"""Apply the Hardsigmoid function element-wise.
.. math::
\text{Hardsigmoid}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
1 & \text{if~} x \ge +3, \\
x / 6 + 1 / 2 & \text{otherwise}
\end{cases}
Args:
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
See :class:`~torch.nn.Hardsigmoid` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.hardsigmoid_(input)
return torch._C._nn.hardsigmoid(input)
linear = _add_docstr(
torch._C._nn.linear,
r"""
linear(input, weight, bias=None) -> Tensor
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.
This operation supports 2-D :attr:`weight` with :ref:`sparse layout<sparse-docs>`
{sparse_beta_warning}
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
Shape:
- Input: :math:`(*, in\_features)` where `*` means any number of
additional dimensions, including none
- Weight: :math:`(out\_features, in\_features)` or :math:`(in\_features)`
- Bias: :math:`(out\_features)` or :math:`()`
- Output: :math:`(*, out\_features)` or :math:`(*)`, based on the shape of the weight
""".format(**sparse_support_notes))
bilinear = _add_docstr(
torch.bilinear,
r"""
bilinear(input1, input2, weight, bias=None) -> Tensor
Applies a bilinear transformation to the incoming data:
:math:`y = x_1^T A x_2 + b`
Shape:
- input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}`
and :math:`*` means any number of additional dimensions.
All but the last dimension of the inputs should be the same.
- input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`
- weight: :math:`(\text{out\_features}, \text{in1\_features},
\text{in2\_features})`
- bias: :math:`(\text{out\_features})`
- output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
and all but the last dimension are the same shape as the input.
""")
def silu(input: Tensor, inplace: bool = False) -> Tensor:
r"""Apply the Sigmoid Linear Unit (SiLU) function, element-wise.
The SiLU function is also known as the swish function.
.. math::
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
.. note::
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
where the SiLU was experimented with later.
See :class:`~torch.nn.SiLU` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(silu, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.silu_(input)
return torch._C._nn.silu(input)
def mish(input: Tensor, inplace: bool = False) -> Tensor:
r"""Apply the Mish function, element-wise.
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
.. math::
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
.. note::
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
See :class:`~torch.nn.Mish` for more details.
"""
if has_torch_function_unary(input):
return handle_torch_function(mish, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.mish_(input)
return torch._C._nn.mish(input)
def hardswish(input: Tensor, inplace: bool = False) -> Tensor:
r"""Apply hardswish function, element-wise.
Follows implementation as described in the paper:
`Searching for MobileNetV3`_.
.. math::
\text{Hardswish}(x) = \begin{cases}
0 & \text{if~} x \le -3, \\
x & \text{if~} x \ge +3, \\
x \cdot (x + 3) /6 & \text{otherwise}
\end{cases}
See :class:`~torch.nn.Hardswish` for more details.
.. _`Searching for MobileNetV3`:
https://arxiv.org/abs/1905.02244
"""
if has_torch_function_unary(input):
return handle_torch_function(hardswish, (input,), input, inplace=inplace)
if inplace:
return torch._C._nn.hardswish_(input)
return torch._C._nn.hardswish(input)
def _no_grad_embedding_renorm_(weight: Tensor, input: Tensor, max_norm: float, norm_type: float) -> Tuple[Tensor, Tensor]:
torch.embedding_renorm_(weight.detach(), input, max_norm, norm_type)
def embedding(
input: Tensor,
weight: Tensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
) -> Tensor:
r"""Generate a simple lookup table that looks up embeddings in a fixed dictionary and size.
This module is often used to retrieve word embeddings using indices.
The input to the module is a list of indices, and the embedding matrix,
and the output is the corresponding word embeddings.
See :class:`torch.nn.Embedding` for more details.
.. note::
Note that the analytical gradients of this function with respect to
entries in :attr:`weight` at the row specified by :attr:`padding_idx`
are expected to differ from the numerical ones.
.. note::
Note that `:class:`torch.nn.Embedding` differs from this function in
that it initializes the row of :attr:`weight` specified by
:attr:`padding_idx` to all zeros on construction.
Args:
input (LongTensor): Tensor containing indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
i.e. it remains as a fixed "pad".
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Shape:
- Input: LongTensor of arbitrary shape containing the indices to extract
- Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`,
where V = maximum index + 1 and embedding_dim = the embedding size
- Output: `(*, embedding_dim)`, where `*` is the input shape
Examples::
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]])
>>> # an embedding matrix containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> F.embedding(input, embedding_matrix)
tensor([[[ 0.8490, 0.9625, 0.6753],
[ 0.9666, 0.7761, 0.6108],
[ 0.6246, 0.9751, 0.3618],
[ 0.4161, 0.2419, 0.7383]],
[[ 0.6246, 0.9751, 0.3618],
[ 0.0237, 0.7794, 0.0528],
[ 0.9666, 0.7761, 0.6108],
[ 0.3385, 0.8612, 0.1867]]])
>>> # example with padding_idx
>>> weights = torch.rand(10, 3)
>>> weights[0, :].zero_()
>>> embedding_matrix = weights
>>> input = torch.tensor([[0, 2, 0, 5]])
>>> F.embedding(input, embedding_matrix, padding_idx=0)
tensor([[[ 0.0000, 0.0000, 0.0000],
[ 0.5609, 0.5384, 0.8720],
[ 0.0000, 0.0000, 0.0000],
[ 0.6262, 0.2438, 0.7471]]])
"""
if has_torch_function_variadic(input, weight):
return handle_torch_function(
embedding,
(input, weight),
input,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse,
)
if padding_idx is not None:
if padding_idx > 0:
assert padding_idx < weight.size(0), "Padding_idx must be within num_embeddings"
elif padding_idx < 0:
assert padding_idx >= -weight.size(0), "Padding_idx must be within num_embeddings"
padding_idx = weight.size(0) + padding_idx
else:
padding_idx = -1
if max_norm is not None:
# Note [embedding_renorm contiguous]
# `embedding_renorm_` will call .contiguous() on input anyways, so we
# call it here and take advantage of the improved locality in the
# `embedding` call below too.
input = input.contiguous()
# Note [embedding_renorm set_grad_enabled]
# XXX: equivalent to
# with torch.no_grad():
# torch.embedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
def embedding_bag(
input: Tensor,
weight: Tensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None,
) -> Tensor:
r"""Compute sums, means or maxes of `bags` of embeddings.
Calculation is done without instantiating the intermediate embeddings.
See :class:`torch.nn.EmbeddingBag` for more details.
Note:
{backward_reproducibility_note}
Args:
input (LongTensor): Tensor containing bags of indices into the embedding matrix
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
and number of columns equal to the embedding size
offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
the starting index position of each bag (sequence) in :attr:`input`.
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
Note: this will modify :attr:`weight` in-place.
norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option.
Default ``2``.
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
Note: this option is not supported when ``mode="max"``.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not None.
include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1.
The last element is the size of the input, or the ending index position of the last bag (sequence).
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
during training, i.e. it remains as a fixed "pad". Note that the embedding
vector at :attr:`padding_idx` is excluded from the reduction.
Shape:
- :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional)
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
each of fixed length ``N``, and this will return ``B`` values aggregated in a way
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing
the starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets`
of shape `(B)`, :attr:`input` will be viewed as having ``B`` bags.
Empty bags (i.e., having 0-length) will have returned vectors filled by zeros.
- :attr:`weight` (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
- :attr:`per_sample_weights` (Tensor, optional). Has the same shape as :attr:`input`.
- :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)`
Examples::
>>> # an Embedding module containing 10 tensors of size 3
>>> embedding_matrix = torch.rand(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9])
>>> offsets = torch.tensor([0, 4])
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> F.embedding_bag(input, embedding_matrix, offsets)
tensor([[ 0.3397, 0.3552, 0.5545],
[ 0.5893, 0.4386, 0.5882]])
>>> # example with padding_idx
>>> embedding_matrix = torch.rand(10, 3)
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9])
>>> offsets = torch.tensor([0, 4])
>>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum')
tensor([[ 0.0000, 0.0000, 0.0000],
[-0.7082, 3.2145, -2.6251]])
"""
if has_torch_function_variadic(input, weight, offsets, per_sample_weights):
return handle_torch_function(
embedding_bag,
(input, weight, offsets, per_sample_weights),
input,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx,
)
# Check for backward compatibility.
# Used to be embedding_bag(weight, input, ...)
# Now is embedding_bag(input, weight, ...)
if weight.dtype == torch.long and input.is_floating_point():
warnings.warn(
"Argument order of nn.functional.embedding_bag was changed. "
"Usage `embedding_bag(weight, input, ...)` is deprecated, "
"and should now be `embedding_bag(input, weight, ...)`."
)
weight, input = input, weight
if per_sample_weights is not None and input.size() != per_sample_weights.size():
raise ValueError(
f"embedding_bag: If per_sample_weights ({per_sample_weights.shape}) is not None, "
f"then it must have the same shape as the input ({input.shape})"
)
if not weight.dim() == 2:
raise ValueError(
f"weight has to be a 2D Tensor, but got Tensor of dimension {weight.dim()}"
)
if input.dim() == 2:
if offsets is not None:
type_str = "<unknown>"
# TODO: Remove this once script supports type() calls
if not torch.jit.is_scripting():
type_str = str(type(offsets))
raise ValueError(
"if input is 2D, then offsets has to be None"
", as input is treated is a mini-batch of"
" fixed length sequences. However, found "
f"offsets of type {type_str}"
)
offsets = torch.arange(0, input.numel(), input.size(1), dtype=input.dtype, device=input.device)
input = input.reshape(-1)
if per_sample_weights is not None:
per_sample_weights = per_sample_weights.reshape(-1)
elif input.dim() == 1:
if offsets is None:
raise ValueError("offsets has to be a 1D Tensor but got None")
if offsets.dim() != 1:
raise ValueError("offsets has to be a 1D Tensor")
else:
raise ValueError(f"input has to be 1D or 2D Tensor, but got Tensor of dimension {input.dim()}")
if mode == "sum":
mode_enum = 0
elif mode == "mean":
mode_enum = 1
elif mode == "max":
mode_enum = 2
if scale_grad_by_freq:
raise ValueError("max mode does not support scaling the gradient by the frequency")
if sparse:
raise ValueError("max mode does not support sparse weights")
else:
raise ValueError("mode has to be one of sum, mean or max")
if max_norm is not None:
# XXX: equivalent to
# with torch.no_grad():
# torch.nembedding_renorm_
# remove once script supports set_grad_enabled
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
if per_sample_weights is not None and mode != "sum":
raise NotImplementedError(
"embedding_bag: per_sample_weights was not None. "
"per_sample_weights is only supported for mode='sum' "
f"(got mode='{mode}'). Please open a feature request on GitHub."
)
ret, _, _, _ = torch.embedding_bag(
weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights, include_last_offset, padding_idx
)
return ret
if embedding_bag.__doc__:
embedding_bag.__doc__ = embedding_bag.__doc__.format(**reproducibility_notes)
def _verify_batch_size(size: List[int]) -> None:
# XXX: JIT script does not support the reduce from functools, and mul op is a
# builtin, which cannot be used as a value to a func yet, so rewrite this size
# check to a simple equivalent for loop
#
# TODO: make use of reduce like below when JIT is ready with the missing features:
# from operator import mul
# from functools import reduce
#
# if reduce(mul, size[2:], size[0]) == 1
size_prods = size[0]
for i in range(len(size) - 2):
size_prods *= size[i + 2]
if size_prods == 1:
raise ValueError(f"Expected more than 1 value per channel when training, got input size {size}")
def batch_norm(
input: Tensor,
running_mean: Optional[Tensor],
running_var: Optional[Tensor],
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
) -> Tensor:
r"""Apply Batch Normalization for each channel across a batch of data.
See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,
:class:`~torch.nn.BatchNorm3d` for details.
"""
if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
return handle_torch_function(
batch_norm,
(input, running_mean, running_var, weight, bias),
input,
running_mean,
running_var,
weight=weight,
bias=bias,
training=training,
momentum=momentum,
eps=eps,
)
if training:
_verify_batch_size(input.size())
return torch.batch_norm(
input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled
)
def _verify_spatial_size(size: List[int]) -> None:
# Verify that there is > 1 spatial element for instance norm calculation.
size_prods = 1
for i in range(2, len(size)):
size_prods *= size[i]
if size_prods == 1:
raise ValueError(f"Expected more than 1 spatial element when training, got input size {size}")
def instance_norm(
input: Tensor,
running_mean: Optional[Tensor] = None,
running_var: Optional[Tensor] = None,
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
use_input_stats: bool = True,
momentum: float = 0.1,
eps: float = 1e-5,
) -> Tensor:
r"""Apply Instance Normalization independently for each channel in every data sample within a batch.
See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`,
:class:`~torch.nn.InstanceNorm3d` for details.
"""
if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
return handle_torch_function(
instance_norm,
(input, running_mean, running_var, weight, bias),
input,
running_mean=running_mean,
running_var=running_var,
weight=weight,
bias=bias,
use_input_stats=use_input_stats,
momentum=momentum,
eps=eps,
)
if use_input_stats:
_verify_spatial_size(input.size())
return torch.instance_norm(
input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, torch.backends.cudnn.enabled
)
def layer_norm(
input: Tensor,
normalized_shape: List[int],
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
eps: float = 1e-5,
) -> Tensor:
r"""Apply Layer Normalization for last certain number of dimensions.
See :class:`~torch.nn.LayerNorm` for details.
"""
if has_torch_function_variadic(input, weight, bias):
return handle_torch_function(
layer_norm, (input, weight, bias), input, normalized_shape, weight=weight, bias=bias, eps=eps
)
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
def group_norm(
input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5
) -> Tensor:
r"""Apply Group Normalization for last certain number of dimensions.
See :class:`~torch.nn.GroupNorm` for details.
"""
if has_torch_function_variadic(input, weight, bias):
return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
if input.dim() < 2:
raise RuntimeError(f"Expected at least 2 dimensions for input tensor but received {input.dim()}")
_verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:]))
return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
def local_response_norm(input: Tensor, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0) -> Tensor:
r"""Apply local response normalization over an input signal.
The input signal is composed of several input planes, where channels occupy the second dimension.
Normalization is applied across channels.
See :class:`~torch.nn.LocalResponseNorm` for details.
"""
if has_torch_function_unary(input):
return handle_torch_function(local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k)
dim = input.dim()
if dim < 3:
raise ValueError(
f"Expected 3D or higher dimensionality input (got {dim} dimensions)"
)
if input.numel() == 0:
return input
div = input.mul(input)
if dim == 3:
div = div.unsqueeze(1)
div = pad(div, (0, 0, size // 2, (size - 1) // 2))
div = avg_pool2d(div, (size, 1), stride=1).squeeze(1)
else:
sizes = input.size()
div = div.view(sizes[0], 1, sizes[1], sizes[2], -1)
div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2))
div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1)
div = div.view(sizes)
div = div.mul(alpha).add(k).pow(beta)
return input / div
# loss
def ctc_loss(
log_probs: Tensor,
targets: Tensor,
input_lengths: Tensor,
target_lengths: Tensor,
blank: int = 0,
reduction: str = "mean",
zero_infinity: bool = False,
) -> Tensor:
r"""Apply the Connectionist Temporal Classification loss.
See :class:`~torch.nn.CTCLoss` for details.
Note:
{cudnn_reproducibility_note}
Note:
{backward_reproducibility_note}
Args:
log_probs: :math:`(T, N, C)` or :math:`(T, C)` where `C = number of characters in alphabet including blank`,
`T = input length`, and `N = batch size`.
The logarithmized probabilities of the outputs
(e.g. obtained with :func:`torch.nn.functional.log_softmax`).
targets: :math:`(N, S)` or `(sum(target_lengths))`.
Targets cannot be blank. In the second form, the targets are assumed to be concatenated.
input_lengths: :math:`(N)` or :math:`()`.
Lengths of the inputs (must each be :math:`\leq T`)
target_lengths: :math:`(N)` or :math:`()`.
Lengths of the targets
blank (int, optional):
Blank label. Default :math:`0`.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output losses will be divided by the target lengths and
then the mean over the batch is taken, ``'sum'``: the output will be
summed. Default: ``'mean'``
zero_infinity (bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: ``False``
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Example::
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
>>> input_lengths = torch.full((16,), 50, dtype=torch.long)
>>> target_lengths = torch.randint(10, 30, (16,), dtype=torch.long)
>>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths)
>>> loss.backward()
"""
if has_torch_function_variadic(log_probs, targets, input_lengths, target_lengths):
return handle_torch_function(
ctc_loss,
(log_probs, targets, input_lengths, target_lengths),
log_probs, targets, input_lengths, target_lengths,
blank=blank, reduction=reduction, zero_infinity=zero_infinity
)
return torch.ctc_loss(
log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction), zero_infinity
)
if ctc_loss.__doc__:
ctc_loss.__doc__ = ctc_loss.__doc__.format(**reproducibility_notes)
def nll_loss(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
ignore_index: int = -100,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor:
r"""Compute the negative log likelihood loss.
See :class:`~torch.nn.NLLLoss` for details.
Args:
input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1`
in the case of K-dimensional loss. `input` is expected to be log-probabilities.
target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
K-dimensional loss.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Example::
>>> # input is of size N x C = 3 x 5
>>> input = torch.randn(3, 5, requires_grad=True)
>>> # each element in target has to have 0 <= value < C
>>> target = torch.tensor([1, 0, 4])
>>> output = F.nll_loss(F.log_softmax(input, dim=1), target)
>>> output.backward()
"""
if has_torch_function_variadic(input, target, weight):
return handle_torch_function(
nll_loss,
(input, target, weight),
input,
target,
weight=weight,
size_average=size_average,
ignore_index=ignore_index,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
def poisson_nll_loss(
input: Tensor,
target: Tensor,
log_input: bool = True,
full: bool = False,
size_average: Optional[bool] = None,
eps: float = 1e-8,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor:
r"""Poisson negative log likelihood loss.
See :class:`~torch.nn.PoissonNLLLoss` for details.
Args:
input: expectation of underlying Poisson distribution.
target: random sample :math:`target \sim \text{Poisson}(input)`.
log_input: if ``True`` the loss is computed as
:math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is
:math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True``
full: whether to compute full loss, i. e. to add the Stirling
approximation term. Default: ``False``
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
:attr:`log_input`\ =\ ``False``. Default: 1e-8
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
poisson_nll_loss,
(input, target),
input,
target,
log_input=log_input,
full=full,
size_average=size_average,
eps=eps,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
if reduction != "none" and reduction != "mean" and reduction != "sum":
ret = input
raise ValueError(reduction + " is not a valid value for reduction")
ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction))
return ret
def gaussian_nll_loss(
input: Tensor,
target: Tensor,
var: Tensor,
full: bool = False,
eps: float = 1e-6,
reduction: str = "mean",
) -> Tensor:
r"""Gaussian negative log likelihood loss.
See :class:`~torch.nn.GaussianNLLLoss` for details.
Args:
input: expectation of the Gaussian distribution.
target: sample from the Gaussian distribution.
var: tensor of positive variance(s), one for each of the expectations
in the input (heteroscedastic), or a single one (homoscedastic).
full (bool, optional): include the constant term in the loss calculation. Default: ``False``.
eps (float, optional): value added to var, for stability. Default: 1e-6.
reduction (str, optional): specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output is the average of all batch member losses,
``'sum'``: the output is the sum of all batch member losses.
Default: ``'mean'``.
"""
if has_torch_function_variadic(input, target, var):
return handle_torch_function(
gaussian_nll_loss,
(input, target, var),
input,
target,
var,
full=full,
eps=eps,
reduction=reduction,
)
# Check var size
# If var.size == input.size, the case is heteroscedastic and no further checks are needed.
# Otherwise:
if var.size() != input.size():
# If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case.
# e.g. input.size = (10, 2, 3), var.size = (10, 2)
# -> unsqueeze var so that var.shape = (10, 2, 1)
# this is done so that broadcasting can happen in the loss calculation
if input.size()[:-1] == var.size():
var = torch.unsqueeze(var, -1)
# This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1.
# This is also a homoscedastic case.
# e.g. input.size = (10, 2, 3), var.size = (10, 2, 1)
elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1: # Heteroscedastic case
pass
# If none of the above pass, then the size of var is incorrect.
else:
raise ValueError("var is of incorrect size")
# Check validity of reduction mode
if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
raise ValueError(reduction + " is not valid")
# Entries of var must be non-negative
if torch.any(var < 0):
raise ValueError("var has negative entry/entries")
# Clamp for stability
var = var.clone()
with torch.no_grad():
var.clamp_(min=eps)
# Calculate the loss
loss = 0.5 * (torch.log(var) + (input - target)**2 / var)
if full:
loss += 0.5 * math.log(2 * math.pi)
if reduction == 'mean':
return loss.mean()
elif reduction == 'sum':
return loss.sum()
else:
return loss
def kl_div(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
log_target: bool = False,
) -> Tensor:
r"""Compute the KL Divergence loss.
Refer - The `Kullback-Leibler divergence Loss
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__
See :class:`~torch.nn.KLDivLoss` for details.
Args:
input: Tensor of arbitrary shape in log-probabilities.
target: Tensor of the same shape as input. See :attr:`log_target` for
the target's interpretation.
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.
``'none'``: no reduction will be applied
``'batchmean'``: the sum of the output will be divided by the batchsize
``'sum'``: the output will be summed
``'mean'``: the output will be divided by the number of elements in the output
Default: ``'mean'``
log_target (bool): A flag indicating whether ``target`` is passed in the log space.
It is recommended to pass certain distributions (like ``softmax``)
in the log space to avoid numerical issues caused by explicit ``log``.
Default: ``False``
.. note::
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
and in the meantime, specifying either of those two args will override :attr:`reduction`.
.. warning::
:attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use
:attr:`reduction` = ``'batchmean'`` which aligns with KL math definition.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
kl_div,
(input, target),
input,
target,
size_average=size_average,
reduce=reduce,
reduction=reduction,
log_target=log_target,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
if reduction == "mean":
warnings.warn(
"reduction: 'mean' divides the total loss by both the batch size and the support size."
"'batchmean' divides only by the batch size, and aligns with the KL div math definition."
"'mean' will be changed to behave the same as 'batchmean' in the next major release."
)
# special case for batchmean
if reduction == "batchmean":
reduction_enum = _Reduction.get_enum("sum")
else:
reduction_enum = _Reduction.get_enum(reduction)
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
if reduction == "batchmean" and input.dim() != 0:
reduced = reduced / input.size()[0]
return reduced
def cross_entropy(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
ignore_index: int = -100,
reduce: Optional[bool] = None,
reduction: str = "mean",
label_smoothing: float = 0.0,
) -> Tensor:
r"""Compute the cross entropy loss between input logits and target.
See :class:`~torch.nn.CrossEntropyLoss` for details.
Args:
input (Tensor) : Predicted unnormalized logits;
see Shape section below for supported shapes.
target (Tensor) : Ground truth class indices or class probabilities;
see Shape section below for supported shapes.
weight (Tensor, optional): a manual rescaling weight given to each
class. If given, has to be a Tensor of size `C`
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. When :attr:`size_average` is
``True``, the loss is averaged over non-ignored targets. Note that
:attr:`ignore_index` is only applicable when the target contains class indices.
Default: -100
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount
of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
Shape:
- Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
in the case of `K`-dimensional loss.
- Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with
:math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`.
If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`.
where:
.. math::
\begin{aligned}
C ={} & \text{number of classes} \\
N ={} & \text{batch size} \\
\end{aligned}
Examples::
>>> # Example of target with class indices
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randint(5, (3,), dtype=torch.int64)
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()
>>>
>>> # Example of target with class probabilities
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5).softmax(dim=1)
>>> loss = F.cross_entropy(input, target)
>>> loss.backward()
"""
if has_torch_function_variadic(input, target, weight):
return handle_torch_function(
cross_entropy,
(input, target, weight),
input,
target,
weight=weight,
size_average=size_average,
ignore_index=ignore_index,
reduce=reduce,
reduction=reduction,
label_smoothing=label_smoothing,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
def binary_cross_entropy(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor:
r"""Measure Binary Cross Entropy between the target and input probabilities.
See :class:`~torch.nn.BCELoss` for details.
Args:
input: Tensor of arbitrary shape as probabilities.
target: Tensor of the same shape as input with values between 0 and 1.
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
Examples::
>>> input = torch.randn(3, 2, requires_grad=True)
>>> target = torch.rand(3, 2, requires_grad=False)
>>> loss = F.binary_cross_entropy(torch.sigmoid(input), target)
>>> loss.backward()
"""
if has_torch_function_variadic(input, target, weight):
return handle_torch_function(
binary_cross_entropy,
(input, target, weight),
input,
target,
weight=weight,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if target.size() != input.size():
raise ValueError(
"Using a target size ({}) that is different to the input size ({}) is deprecated. "
"Please ensure they have the same size.".format(target.size(), input.size())
)
if weight is not None:
new_size = _infer_size(target.size(), weight.size())
weight = weight.expand(new_size)
return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum)
def binary_cross_entropy_with_logits(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
pos_weight: Optional[Tensor] = None,
) -> Tensor:
r"""Calculate Binary Cross Entropy between target and input logits.
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
Args:
input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits).
target: Tensor of the same shape as input with values between 0 and 1
weight (Tensor, optional): a manual rescaling weight
if provided it's repeated to match input tensor shape
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
the losses are averaged over each loss element in the batch. Note that for
some losses, there multiple elements per sample. If the field :attr:`size_average`
is set to ``False``, the losses are instead summed for each minibatch. Ignored
when reduce is ``False``. Default: ``True``
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
losses are averaged or summed over observations for each minibatch depending
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
batch element instead and ignores :attr:`size_average`. Default: ``True``
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the sum of the output will be divided by the number of
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.
Must be a tensor with equal size along the class dimension to the number of classes.
Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired
operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of
size [B, C, H, W] will apply different pos_weights to each element of the batch or
[C, H, W] the same pos_weights across the batch. To apply the same positive weight
along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].
Default: ``None``
Examples::
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> loss = F.binary_cross_entropy_with_logits(input, target)
>>> loss.backward()
"""
if has_torch_function_variadic(input, target, weight, pos_weight):
return handle_torch_function(
binary_cross_entropy_with_logits,
(input, target, weight, pos_weight),
input,
target,
weight=weight,
size_average=size_average,
reduce=reduce,
reduction=reduction,
pos_weight=pos_weight,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if not (target.size() == input.size()):
raise ValueError(f"Target size ({target.size()}) must be the same as input size ({input.size()})")
return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)
def smooth_l1_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
beta: float = 1.0,
) -> Tensor:
r"""Compute the Smooth L1 loss.
Function uses a squared term if the absolute
element-wise error falls below beta and an L1 term otherwise.
See :class:`~torch.nn.SmoothL1Loss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
smooth_l1_loss,
(input, target),
input,
target,
size_average=size_average,
reduce=reduce,
reduction=reduction,
beta=beta,
)
if not (target.size() == input.size()):
warnings.warn(
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.",
stacklevel=2,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
if beta == 0.0:
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
else:
return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta)
def huber_loss(
input: Tensor,
target: Tensor,
reduction: str = 'mean',
delta: float = 1.0,
) -> Tensor:
r"""Compute the Huber loss.
Function uses a squared term if the absolute
element-wise error falls below delta and a delta-scaled L1 term otherwise.
When delta equals 1, this loss is equivalent to SmoothL1Loss.
In general, Huber loss differs from SmoothL1Loss by a factor of delta (AKA beta in Smooth L1).
See :class:`~torch.nn.HuberLoss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
huber_loss,
(input, target),
input,
target,
reduction=reduction,
delta=delta,
)
if not (target.size() == input.size()):
warnings.warn(f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.",
stacklevel=2)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.huber_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), delta)
def l1_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Function that takes the mean element-wise absolute value difference.
See :class:`~torch.nn.L1Loss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
)
if not (target.size() == input.size()):
warnings.warn(
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.",
stacklevel=2,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
def mse_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
Measures the element-wise mean squared error.
See :class:`~torch.nn.MSELoss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
)
if not (target.size() == input.size()):
warnings.warn(
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
"This will likely lead to incorrect results due to broadcasting. "
"Please ensure they have the same size.",
stacklevel=2,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
def margin_ranking_loss(
input1: Tensor,
input2: Tensor,
target: Tensor,
margin: float = 0,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MarginRankingLoss` for details.
"""
if has_torch_function_variadic(input1, input2, target):
return handle_torch_function(
margin_ranking_loss,
(input1, input2, target),
input1,
input2,
target,
margin=margin,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if (input1.dim() != input2.dim() or input1.dim() != target.dim()):
raise RuntimeError(
f"margin_ranking_loss : All input tensors should have same dimension but got sizes: "
f"input1: {input1.size()}, input2: {input2.size()}, target: {target.size()} "
)
return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum)
def hinge_embedding_loss(
input: Tensor,
target: Tensor,
margin: float = 1.0,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.HingeEmbeddingLoss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
hinge_embedding_loss,
(input, target),
input,
target,
margin=margin,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.hinge_embedding_loss(input, target, margin, reduction_enum)
def multilabel_margin_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiLabelMarginLoss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
multilabel_margin_loss,
(input, target),
input,
target,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum)
def soft_margin_loss(
input: Tensor,
target: Tensor,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""
soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.SoftMarginLoss` for details.
"""
if has_torch_function_variadic(input, target):
return handle_torch_function(
soft_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch._C._nn.soft_margin_loss(input, target, reduction_enum)
def multilabel_soft_margin_loss(
input: Tensor,
target: Tensor,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.
"""
if has_torch_function_variadic(input, target, weight):
return handle_torch_function(
multilabel_soft_margin_loss,
(input, target, weight),
input,
target,
weight=weight,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction = _Reduction.legacy_get_string(size_average, reduce)
loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input))
if weight is not None:
loss = loss * weight
class_dim = input.dim() - 1
C = input.size(class_dim)
loss = loss.sum(dim=class_dim) / C # only return N loss values
if reduction == "none":
ret = loss
elif reduction == "mean":
ret = loss.mean()
elif reduction == "sum":
ret = loss.sum()
else:
ret = input
raise ValueError(reduction + " is not valid")
return ret
def cosine_embedding_loss(
input1: Tensor,
input2: Tensor,
target: Tensor,
margin: float = 0,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.CosineEmbeddingLoss` for details.
"""
if has_torch_function_variadic(input1, input2, target):
return handle_torch_function(
cosine_embedding_loss,
(input1, input2, target),
input1,
input2,
target,
margin=margin,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum)
def multi_margin_loss(
input: Tensor,
target: Tensor,
p: int = 1,
margin: float = 1.0,
weight: Optional[Tensor] = None,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor: # noqa: D400,D402
r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor
See :class:`~torch.nn.MultiMarginLoss` for details.
"""
if has_torch_function_variadic(input, target, weight):
return handle_torch_function(
multi_margin_loss,
(input, target, weight),
input,
target,
p=p,
margin=margin,
weight=weight,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
if p != 1 and p != 2:
raise ValueError("only p == 1 and p == 2 supported")
if weight is not None:
if weight.dim() != 1:
raise ValueError("weight must be one-dimensional")
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum)
pixel_shuffle = _add_docstr(
torch.pixel_shuffle,
r"""
pixel_shuffle(input, upscale_factor) -> Tensor
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a
tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is the :attr:`upscale_factor`.
See :class:`~torch.nn.PixelShuffle` for details.
Args:
input (Tensor): the input tensor
upscale_factor (int): factor to increase spatial resolution by
Examples::
>>> input = torch.randn(1, 9, 4, 4)
>>> output = torch.nn.functional.pixel_shuffle(input, 3)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
""",
)
pixel_unshuffle = _add_docstr(
torch.pixel_unshuffle,
r"""
pixel_unshuffle(input, downscale_factor) -> Tensor
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements in a
tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
:math:`(*, C \times r^2, H, W)`, where r is the :attr:`downscale_factor`.
See :class:`~torch.nn.PixelUnshuffle` for details.
Args:
input (Tensor): the input tensor
downscale_factor (int): factor to increase spatial resolution by
Examples::
>>> input = torch.randn(1, 1, 12, 12)
>>> output = torch.nn.functional.pixel_unshuffle(input, 3)
>>> print(output.size())
torch.Size([1, 9, 4, 4])
""",
)
channel_shuffle = _add_docstr(
torch.channel_shuffle,
r"""
channel_shuffle(input, groups) -> Tensor
Divide the channels in a tensor of shape :math:`(*, C , H, W)`
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,
while keeping the original tensor shape.
See :class:`~torch.nn.ChannelShuffle` for details.
Args:
input (Tensor): the input tensor
groups (int): number of groups to divide channels in and rearrange.
Examples::
>>> input = torch.randn(1, 4, 2, 2)
>>> print(input)
[[[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]],
[[9, 10],
[11, 12]],
[[13, 14],
[15, 16]],
]]
>>> output = torch.nn.functional.channel_shuffle(input, 2)
>>> print(output)
[[[[1, 2],
[3, 4]],
[[9, 10],
[11, 12]],
[[5, 6],
[7, 8]],
[[13, 14],
[15, 16]],
]]
""",
)
native_channel_shuffle = _add_docstr(
torch.native_channel_shuffle,
r"""
native_channel_shuffle(input, groups) -> Tensor
Native kernel level implementation of the `channel_shuffle`.
This function might become private in future releases, use with caution.
Divide the channels in a tensor of shape :math:`(*, C , H, W)`
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,
while keeping the original tensor shape.
See :class:`~torch.nn.ChannelShuffle` for details.
Args:
input (Tensor): the input tensor
groups (int): number of groups to divide channels in and rearrange.
Examples::
>>> input = torch.randn(1, 4, 2, 2)
>>> print(input)
[[[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]],
[[9, 10],
[11, 12]],
[[13, 14],
[15, 16]],
]]
>>> output = torch.nn.functional.native_channel_shuffle(input, 2)
>>> print(output)
[[[[1, 2],
[3, 4]],
[[9, 10],
[11, 12]],
[[5, 6],
[7, 8]],
[[13, 14],
[15, 16]],
]]
""",
)
@_overload # noqa: F811
def upsample(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950
pass
@_overload # noqa: F811
def upsample(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950
pass
def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # noqa: F811
r"""Upsample input.
Provided tensor is upsampled to either the given :attr:`size` or the given
:attr:`scale_factor`
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(...)``.
Note:
{backward_reproducibility_note}
The algorithm used for upsampling is determined by :attr:`mode`.
Currently temporal, spatial and volumetric upsampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for upsampling are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
mode (str): algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'``. Default: ``'nearest'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to ``True``, the input and output tensors are aligned by the
center points of their corner pixels, preserving the values at the corner pixels.
If set to ``False``, the input and output tensors are aligned by the corner
points of their corner pixels, and the interpolation uses edge value padding
for out-of-boundary values, making this operation *independent* of input size
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
Default: ``False``
.. note::
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
negative values or values greater than 255 for images.
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
when displaying the image.
.. warning::
With ``align_corners = True``, the linearly interpolating modes
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
output and input pixels, and thus the output values can depend on the
input size. This was the default behavior for these modes up to version
0.3.1. Since then, the default behavior is ``align_corners = False``.
See :class:`~torch.nn.Upsample` for concrete examples on how this
affects the outputs.
"""
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode, align_corners)
if upsample.__doc__:
upsample.__doc__ = upsample.__doc__.format(**reproducibility_notes)
def _is_integer(x) -> bool:
r"""Type check the input number is an integer.
Will return True for int, SymInt, Numpy integers and Tensors with integer elements.
"""
if isinstance(x, (int, torch.SymInt)):
return True
if np is not None and isinstance(x, np.integer):
return True
return isinstance(x, Tensor) and not x.is_floating_point()
@_overload # noqa: F811
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
pass
@_overload # noqa: F811
def interpolate(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
pass
@_overload # noqa: F811
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
pass
@_overload # noqa: F811
def interpolate( # noqa: F811
input: Tensor,
size: Optional[List[int]] = None,
scale_factor: Optional[float] = None,
mode: str = "nearest",
align_corners: Optional[bool] = None,
recompute_scale_factor: Optional[bool] = None,
antialias: bool = False,
) -> Tensor: # noqa: F811
pass
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
r"""Down/up samples the input.
Tensor interpolated to either the given :attr:`size` or the given
:attr:`scale_factor`
The algorithm used for interpolation is determined by :attr:`mode`.
Currently temporal, spatial and volumetric sampling are supported, i.e.
expected inputs are 3-D, 4-D or 5-D in shape.
The input dimensions are interpreted in the form:
`mini-batch x channels x [optional depth] x [optional height] x width`.
The modes available for resizing are: `nearest`, `linear` (3D-only),
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`, `nearest-exact`
Args:
input (Tensor): the input tensor
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
output spatial size.
scale_factor (float or Tuple[float]): multiplier for spatial size. If `scale_factor` is a tuple,
its length has to match the number of spatial dimensions; `input.dim() - 2`.
mode (str): algorithm used for upsampling:
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
``'trilinear'`` | ``'area'`` | ``'nearest-exact'``. Default: ``'nearest'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input and output as squares rather than points.
If set to ``True``, the input and output tensors are aligned by the
center points of their corner pixels, preserving the values at the corner pixels.
If set to ``False``, the input and output tensors are aligned by the corner
points of their corner pixels, and the interpolation uses edge value padding
for out-of-boundary values, making this operation *independent* of input size
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
Default: ``False``
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the
interpolation calculation. If `recompute_scale_factor` is ``True``, then
`scale_factor` must be passed in and `scale_factor` is used to compute the
output `size`. The computed output `size` will be used to infer new scales for
the interpolation. Note that when `scale_factor` is floating-point, it may differ
from the recomputed `scale_factor` due to rounding and precision issues.
If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will
be used directly for interpolation. Default: ``None``.
antialias (bool, optional): flag to apply anti-aliasing. Default: ``False``. Using anti-alias
option together with ``align_corners=False``, interpolation result would match Pillow
result for downsampling operation. Supported modes: ``'bilinear'``, ``'bicubic'``.
.. note::
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
negative values or values greater than 255 for images.
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
when displaying the image.
.. note::
Mode ``mode='nearest-exact'`` matches Scikit-Image and PIL nearest neighbours interpolation
algorithms and fixes known issues with ``mode='nearest'``. This mode is introduced to keep
backward compatibility.
Mode ``mode='nearest'`` matches buggy OpenCV's ``INTER_NEAREST`` interpolation algorithm.
.. note::
The gradients for the dtype ``float16`` on CUDA may be inaccurate in the upsample operation
when using modes ``['linear', 'bilinear', 'bicubic', 'trilinear', 'area']``.
For more details, please refer to the discussion in
`issue#104157 <https://github.com/pytorch/pytorch/issues/104157>`_.
Note:
{backward_reproducibility_note}
"""
if has_torch_function_unary(input):
return handle_torch_function(
interpolate,
(input,),
input,
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor,
antialias=antialias
)
if mode in ("nearest", "area", "nearest-exact"):
if align_corners is not None:
raise ValueError(
"align_corners option can only be set with the "
"interpolating modes: linear | bilinear | bicubic | trilinear"
)
else:
if align_corners is None:
align_corners = False
dim = input.dim() - 2 # Number of spatial dimensions.
# Process size and scale_factor. Validate that exactly one is set.
# Validate its length if it is a list, or expand it if it is a scalar.
# After this block, exactly one of output_size and scale_factors will
# be non-None, and it will be a list (or tuple).
if size is not None and scale_factor is not None:
raise ValueError("only one of size or scale_factor should be defined")
elif size is not None:
assert scale_factor is None
scale_factors = None
if isinstance(size, (list, tuple)):
if len(size) != dim:
raise ValueError(
"Input and output must have the same number of spatial dimensions, but got "
f"input with spatial dimensions of {list(input.shape[2:])} and output size of {size}. "
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
"output size in (o1, o2, ...,oK) format."
)
if not torch.jit.is_scripting():
if not all(_is_integer(x) for x in size):
raise TypeError(
"expected size to be one of int or Tuple[int] or Tuple[int, int] or "
f"Tuple[int, int, int], but got size with types {[type(x) for x in size]}"
)
output_size = size
else:
output_size = [size for _ in range(dim)]
elif scale_factor is not None:
assert size is None
output_size = None
if isinstance(scale_factor, (list, tuple)):
if len(scale_factor) != dim:
raise ValueError(
"Input and scale_factor must have the same number of spatial dimensions, but "
f"got input with spatial dimensions of {list(input.shape[2:])} and "
f"scale_factor of shape {scale_factor}. "
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
"scale_factor in (s1, s2, ...,sK) format."
)
scale_factors = scale_factor
else:
scale_factors = [scale_factor for _ in range(dim)]
else:
raise ValueError("either size or scale_factor should be defined")
if recompute_scale_factor is not None and recompute_scale_factor and size is not None:
raise ValueError("recompute_scale_factor is not meaningful with an explicit size.")
# "area" mode always requires an explicit size rather than scale factor.
# Re-use the recompute_scale_factor code path.
if mode == "area" and output_size is None:
recompute_scale_factor = True
if recompute_scale_factor is not None and recompute_scale_factor:
# We compute output_size here, then un-set scale_factors.
# The C++ code will recompute it based on the (integer) output size.
assert scale_factors is not None
if not torch.jit.is_scripting() and torch._C._get_tracing_state():
# make scale_factor a tensor in tracing so constant doesn't get baked in
output_size = [
(torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float()))
for i in range(dim)
]
elif torch.jit.is_scripting():
output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i]))
for i in range(dim)]
else:
output_size = [
_sym_int(input.size(i + 2) * scale_factors[i])
for i in range(dim)
]
scale_factors = None
if antialias and not (mode in ("bilinear", "bicubic") and input.ndim == 4):
raise ValueError("Anti-alias option is restricted to bilinear and bicubic modes and requires a 4-D tensor as input")
if input.dim() == 3 and mode == "nearest":
return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors)
if input.dim() == 4 and mode == "nearest":
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
if input.dim() == 5 and mode == "nearest":
return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors)
if input.dim() == 3 and mode == "nearest-exact":
return torch._C._nn._upsample_nearest_exact1d(input, output_size, scale_factors)
if input.dim() == 4 and mode == "nearest-exact":
return torch._C._nn._upsample_nearest_exact2d(input, output_size, scale_factors)
if input.dim() == 5 and mode == "nearest-exact":
return torch._C._nn._upsample_nearest_exact3d(input, output_size, scale_factors)
if input.dim() == 3 and mode == "area":
assert output_size is not None
return adaptive_avg_pool1d(input, output_size)
if input.dim() == 4 and mode == "area":
assert output_size is not None
return adaptive_avg_pool2d(input, output_size)
if input.dim() == 5 and mode == "area":
assert output_size is not None
return adaptive_avg_pool3d(input, output_size)
if input.dim() == 3 and mode == "linear":
assert align_corners is not None
return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors)
if input.dim() == 4 and mode == "bilinear":
assert align_corners is not None
if antialias:
return torch._C._nn._upsample_bilinear2d_aa(input, output_size, align_corners, scale_factors)
# Two levels are necessary to prevent TorchScript from touching
# are_deterministic_algorithms_enabled.
if not torch.jit.is_scripting():
if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
# Use slow decomp whose backward will be in terms of index_put
# importlib is required because the import cannot be top level
# (cycle) and cannot be nested (TS doesn't support)
return importlib.import_module('torch._decomp.decompositions')._upsample_linear_vec(
input, output_size, align_corners, scale_factors)
return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors)
if input.dim() == 5 and mode == "trilinear":
assert align_corners is not None
return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors)
if input.dim() == 4 and mode == "bicubic":
assert align_corners is not None
if antialias:
return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors)
return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors)
if input.dim() == 3 and mode == "bilinear":
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
if input.dim() == 3 and mode == "trilinear":
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
if input.dim() == 4 and mode == "linear":
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
if input.dim() == 4 and mode == "trilinear":
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
if input.dim() == 5 and mode == "linear":
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
if input.dim() == 5 and mode == "bilinear":
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
raise NotImplementedError(
"Input Error: Only 3D, 4D and 5D input Tensors supported"
f" (got {input.dim()}D) for the modes: nearest | linear | bilinear | bicubic | trilinear | area | nearest-exact"
f" (got {mode})"
)
if interpolate.__doc__:
interpolate.__doc__ = interpolate.__doc__.format(**reproducibility_notes)
@_overload # noqa: F811
def upsample_nearest(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811
pass
@_overload # noqa: F811
def upsample_nearest(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811
pass
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811
r"""Upsamples the input, using nearest neighbours' pixel values.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``.
Currently spatial and volumetric upsampling are supported (i.e. expected
inputs are 4 or 5 dimensional).
Args:
input (Tensor): input
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
size.
scale_factor (int): multiplier for spatial size. Has to be an integer.
Note:
{backward_reproducibility_note}
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode="nearest")
if upsample_nearest.__doc__:
upsample_nearest.__doc__ = upsample_nearest.__doc__.format(**reproducibility_notes)
@_overload # noqa: F811
def upsample_bilinear(
input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None
) -> Tensor: # noqa: F811
pass
@_overload # noqa: F811
def upsample_bilinear( # noqa: F811
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None
) -> Tensor: # noqa: F811
pass
@_overload # noqa: F811
def upsample_bilinear( # noqa: F811
input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None
) -> Tensor: # noqa: F811
pass
@_overload # noqa: F811
def upsample_bilinear( # noqa: F811
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None
) -> Tensor: # noqa: F811
pass
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
r"""Upsamples the input, using bilinear upsampling.
.. warning::
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
This is equivalent with
``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo
volumetric (5 dimensional) inputs.
Args:
input (Tensor): input
size (int or Tuple[int, int]): output spatial size.
scale_factor (int or Tuple[int, int]): multiplier for spatial size
Note:
{backward_reproducibility_note}
"""
# DeprecationWarning is ignored by default
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.")
return interpolate(input, size, scale_factor, mode="bilinear", align_corners=True)
if upsample_bilinear.__doc__:
upsample_bilinear.__doc__ = upsample_bilinear.__doc__.format(**reproducibility_notes)
GRID_SAMPLE_INTERPOLATION_MODES = {
"bilinear": 0,
"nearest": 1,
"bicubic": 2,
}
GRID_SAMPLE_PADDING_MODES = {
"zeros": 0,
"border": 1,
"reflection": 2,
}
def grid_sample(
input: Tensor,
grid: Tensor,
mode: str = "bilinear",
padding_mode: str = "zeros",
align_corners: Optional[bool] = None,
) -> Tensor:
r"""Compute grid sample.
Given an :attr:`input` and a flow-field :attr:`grid`, computes the
``output`` using :attr:`input` values and pixel locations from :attr:`grid`.
Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are
supported.
In the spatial (4-D) case, for :attr:`input` with shape
:math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape
:math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape
:math:`(N, C, H_\text{out}, W_\text{out})`.
For each output location ``output[n, :, h, w]``, the size-2 vector
``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``,
which are used to interpolate the output value ``output[n, :, h, w]``.
In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the
``x``, ``y``, ``z`` pixel locations for interpolating
``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or
``bilinear`` interpolation method to sample the input pixels.
:attr:`grid` specifies the sampling pixel locations normalized by the
:attr:`input` spatial dimensions. Therefore, it should have most values in
the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the
left-top pixel of :attr:`input`, and values ``x = 1, y = 1`` is the
right-bottom pixel of :attr:`input`.
If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding
outputs are handled as defined by :attr:`padding_mode`. Options are
* ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations,
* ``padding_mode="border"``: use border values for out-of-bound grid locations,
* ``padding_mode="reflection"``: use values at locations reflected by
the border for out-of-bound grid locations. For location far away
from the border, it will keep being reflected until becoming in bound,
e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1``
and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes
``x'' = -0.5``.
Note:
This function is often used in conjunction with :func:`affine_grid`
to build `Spatial Transformer Networks`_ .
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Note:
NaN values in :attr:`grid` would be interpreted as ``-1``.
Args:
input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case)
or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case)
grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case)
or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case)
mode (str): interpolation mode to calculate output values
``'bilinear'`` | ``'nearest'`` | ``'bicubic'``. Default: ``'bilinear'``
Note: ``mode='bicubic'`` supports only 4-D input.
When ``mode='bilinear'`` and the input is 5-D, the interpolation mode
used internally will actually be trilinear. However, when the input is 4-D,
the interpolation mode will legitimately be bilinear.
padding_mode (str): padding mode for outside grid values
``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'``
align_corners (bool, optional): Geometrically, we consider the pixels of the
input as squares rather than points.
If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring
to the center points of the input's corner pixels. If set to ``False``, they
are instead considered as referring to the corner points of the input's corner
pixels, making the sampling more resolution agnostic.
This option parallels the ``align_corners`` option in
:func:`interpolate`, and so whichever option is used here
should also be used there to resize the input image before grid sampling.
Default: ``False``
Returns:
output (Tensor): output Tensor
.. _`Spatial Transformer Networks`:
https://arxiv.org/abs/1506.02025
.. warning::
When ``align_corners = True``, the grid positions depend on the pixel
size relative to the input image size, and so the locations sampled by
:func:`grid_sample` will differ for the same input given at different
resolutions (that is, after being upsampled or downsampled).
The default behavior up to version 1.2.0 was ``align_corners = True``.
Since then, the default behavior has been changed to ``align_corners = False``,
in order to bring it in line with the default for :func:`interpolate`.
.. note::
``mode='bicubic'`` is implemented using the `cubic convolution algorithm`_ with :math:`\alpha=-0.75`.
The constant :math:`\alpha` might be different from packages to packages.
For example, `PIL`_ and `OpenCV`_ use -0.5 and -0.75 respectively.
This algorithm may "overshoot" the range of values it's interpolating.
For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255].
Clamp the results with :func:`torch.clamp` to ensure they are within the valid range.
.. _`cubic convolution algorithm`: https://en.wikipedia.org/wiki/Bicubic_interpolation
.. _`PIL`: https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/src/libImaging/Resample.c#L51
.. _`OpenCV`: https://github.com/opencv/opencv/blob/f345ed564a06178670750bad59526cfa4033be55/modules/imgproc/src/resize.cpp#L908
"""
if has_torch_function_variadic(input, grid):
return handle_torch_function(
grid_sample, (input, grid), input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners
)
if mode != "bilinear" and mode != "nearest" and mode != "bicubic":
raise ValueError(
f"nn.functional.grid_sample(): expected mode to be 'bilinear', 'nearest' or 'bicubic', but got: '{mode}'"
)
if padding_mode != "zeros" and padding_mode != "border" and padding_mode != "reflection":
raise ValueError(
"nn.functional.grid_sample(): expected padding_mode "
"to be 'zeros', 'border', or 'reflection', "
f"but got: '{padding_mode}'"
)
if mode == "bilinear":
mode_enum = 0
elif mode == "nearest":
mode_enum = 1
else: # mode == 'bicubic'
mode_enum = 2
if padding_mode == "zeros":
padding_mode_enum = 0
elif padding_mode == "border":
padding_mode_enum = 1
else: # padding_mode == 'reflection'
padding_mode_enum = 2
if align_corners is None:
warnings.warn(
"Default grid_sample and affine_grid behavior has changed "
"to align_corners=False since 1.3.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of grid_sample for details."
)
align_corners = False
return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners)
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[bool] = None) -> Tensor:
r"""Generate 2D or 3D flow field (sampling grid), given a batch of affine matrices :attr:`theta`.
.. note::
This function is often used in conjunction with :func:`grid_sample`
to build `Spatial Transformer Networks`_ .
Args:
theta (Tensor): input batch of affine matrices with shape
(:math:`N \times 2 \times 3`) for 2D or
(:math:`N \times 3 \times 4`) for 3D
size (torch.Size): the target output image size.
(:math:`N \times C \times H \times W` for 2D or
:math:`N \times C \times D \times H \times W` for 3D)
Example: torch.Size((32, 3, 24, 24))
align_corners (bool, optional): if ``True``, consider ``-1`` and ``1``
to refer to the centers of the corner pixels rather than the image corners.
Refer to :func:`grid_sample` for a more complete description.
A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample`
with the same setting for this option.
Default: ``False``
Returns:
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
.. _`Spatial Transformer Networks`:
https://arxiv.org/abs/1506.02025
.. warning::
When ``align_corners = True``, the grid positions depend on the pixel
size relative to the input image size, and so the locations sampled by
:func:`grid_sample` will differ for the same input given at different
resolutions (that is, after being upsampled or downsampled).
The default behavior up to version 1.2.0 was ``align_corners = True``.
Since then, the default behavior has been changed to ``align_corners = False``,
in order to bring it in line with the default for :func:`interpolate`.
.. warning::
When ``align_corners = True``, 2D affine transforms on 1D data and
3D affine transforms on 2D data (that is, when one of the spatial
dimensions has unit size) are ill-defined, and not an intended use case.
This is not a problem when ``align_corners = False``.
Up to version 1.2.0, all grid points along a unit dimension were
considered arbitrarily to be at ``-1``.
From version 1.3.0, under ``align_corners = True`` all grid points
along a unit dimension are considered to be at ``0``
(the center of the input image).
"""
if has_torch_function_unary(theta):
return handle_torch_function(affine_grid, (theta,), theta, size, align_corners=align_corners)
if align_corners is None:
warnings.warn(
"Default grid_sample and affine_grid behavior has changed "
"to align_corners=False since 1.3.0. Please specify "
"align_corners=True if the old behavior is desired. "
"See the documentation of grid_sample for details."
)
align_corners = False
# enforce floating point dtype on theta
if not theta.is_floating_point():
raise ValueError(f"Expected theta to have floating point type, but got {theta.dtype}")
# check that shapes and sizes match
if len(size) == 4:
if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3:
raise ValueError(
f"Expected a batch of 2D affine matrices of shape Nx2x3 for size {size}. Got {theta.shape}."
)
spatial_size = size[-2:] # spatial dimension sizes
elif len(size) == 5:
if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4:
raise ValueError(
f"Expected a batch of 3D affine matrices of shape Nx3x4 for size {size}. Got {theta.shape}."
)
spatial_size = size[-3:] # spatial dimension sizes
else:
raise NotImplementedError(
"affine_grid only supports 4D and 5D sizes, "
"for 2D and 3D affine transforms, respectively. "
f"Got size {size}."
)
# check for empty span
if align_corners and min(spatial_size) == 1:
warnings.warn(
"Since version 1.3.0, affine_grid behavior has changed "
"for unit-size grids when align_corners=True. "
"This is not an intended use case of affine_grid. "
"See the documentation of affine_grid for details."
)
elif min(size) <= 0:
raise ValueError(f"Expected non-zero, positive output size. Got {size}")
return torch.affine_grid_generator(theta, size, align_corners)
def pad(input: Tensor, pad: List[int], mode: str = "constant", value: Optional[float] = None) -> Tensor:
r"""
pad(input, pad, mode="constant", value=None) -> Tensor
Pads tensor.
Padding size:
The padding size by which to pad some dimensions of :attr:`input`
are described starting from the last dimension and moving forward.
:math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions
of ``input`` will be padded.
For example, to pad only the last dimension of the input tensor, then
:attr:`pad` has the form
:math:`(\text{padding\_left}, \text{padding\_right})`;
to pad the last 2 dimensions of the input tensor, then use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom})`;
to pad the last 3 dimensions, use
:math:`(\text{padding\_left}, \text{padding\_right},`
:math:`\text{padding\_top}, \text{padding\_bottom}`
:math:`\text{padding\_front}, \text{padding\_back})`.
Padding mode:
See :class:`torch.nn.CircularPad2d`, :class:`torch.nn.ConstantPad2d`,
:class:`torch.nn.ReflectionPad2d`, and :class:`torch.nn.ReplicationPad2d`
for concrete examples on how each of the padding modes works. Constant
padding is implemented for arbitrary dimensions. Circular, replicate and
reflection padding are implemented for padding the last 3 dimensions of a
4D or 5D input tensor, the last 2 dimensions of a 3D or 4D input tensor,
or the last dimension of a 2D or 3D input tensor.
Note:
When using the CUDA backend, this operation may induce nondeterministic
behaviour in its backward pass that is not easily switched off.
Please see the notes on :doc:`/notes/randomness` for background.
Args:
input (Tensor): N-dimensional tensor
pad (tuple): m-elements tuple, where
:math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
Default: ``'constant'``
value: fill value for ``'constant'`` padding. Default: ``0``
Examples::
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p1d = (1, 1) # pad last dim by 1 on each side
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
>>> print(out.size())
torch.Size([3, 3, 4, 4])
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
>>> out = F.pad(t4d, p2d, "constant", 0)
>>> print(out.size())
torch.Size([3, 3, 8, 4])
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
>>> out = F.pad(t4d, p3d, "constant", 0)
>>> print(out.size())
torch.Size([3, 9, 7, 3])
"""
if has_torch_function_unary(input):
return handle_torch_function(
torch.nn.functional.pad, (input,), input, pad, mode=mode, value=value)
if not torch.jit.is_scripting():
if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
if mode == 'replicate':
# Use slow decomp whose backward will be in terms of index_put.
# importlib is required because the import cannot be top level
# (cycle) and cannot be nested (TS doesn't support)
return importlib.import_module('torch._decomp.decompositions')._replication_pad(
input, pad
)
return torch._C._nn.pad(input, pad, mode, value)
# TODO: Fix via https://github.com/pytorch/pytorch/issues/75798
pad.__module__ = "torch.nn.functional"
# distance
pairwise_distance = _add_docstr(
torch.pairwise_distance,
r"""
pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor
See :class:`torch.nn.PairwiseDistance` for details
""")
pdist = _add_docstr(
torch.pdist,
r"""
pdist(input, p=2) -> Tensor
Computes the p-norm distance between every pair of row vectors in the input.
This is identical to the upper triangular portion, excluding the diagonal, of
`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster
if the rows are contiguous.
If input has shape :math:`N \times M` then the output will have shape
:math:`\frac{1}{2} N (N - 1)`.
This function is equivalent to ``scipy.spatial.distance.pdist(input,
'minkowski', p=p)`` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is
equivalent to ``scipy.spatial.distance.pdist(input, 'hamming') * M``.
When :math:`p = \infty`, the closest scipy function is
``scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())``.
Args:
input: input tensor of shape :math:`N \times M`.
p: p value for the p-norm distance to calculate between each vector pair
:math:`\in [0, \infty]`.
""",
)
cosine_similarity = _add_docstr(
torch.cosine_similarity,
r"""
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor
Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable
to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is
squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 fewer dimension.
.. math ::
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2, \epsilon) \cdot \max(\Vert x_2 \Vert _2, \epsilon)}
Supports :ref:`type promotion <type-promotion-doc>`.
Args:
x1 (Tensor): First input.
x2 (Tensor): Second input.
dim (int, optional): Dimension along which cosine similarity is computed. Default: 1
eps (float, optional): Small value to avoid division by zero.
Default: 1e-8
Example::
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> output = F.cosine_similarity(input1, input2)
>>> print(output)
""",
)
one_hot = _add_docstr(
torch._C._nn.one_hot,
r"""
one_hot(tensor, num_classes=-1) -> LongTensor
Takes LongTensor with index values of shape ``(*)`` and returns a tensor
of shape ``(*, num_classes)`` that have zeros everywhere except where the
index of last dimension matches the corresponding value of the input tensor,
in which case it will be 1.
See also `One-hot on Wikipedia`_ .
.. _One-hot on Wikipedia:
https://en.wikipedia.org/wiki/One-hot
Arguments:
tensor (LongTensor): class values of any shape.
num_classes (int): Total number of classes. If set to -1, the number
of classes will be inferred as one greater than the largest class
value in the input tensor.
Returns:
LongTensor that has one more dimension with 1 values at the
index of last dimension indicated by the input, and 0 everywhere
else.
Examples:
>>> F.one_hot(torch.arange(0, 5) % 3)
tensor([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5)
tensor([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0]])
>>> F.one_hot(torch.arange(0, 6).view(3,2) % 3)
tensor([[[1, 0, 0],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0]],
[[0, 1, 0],
[0, 0, 1]]])
""",
)
def triplet_margin_loss(
anchor: Tensor,
positive: Tensor,
negative: Tensor,
margin: float = 1.0,
p: float = 2,
eps: float = 1e-6,
swap: bool = False,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = "mean",
) -> Tensor:
r"""Compute the triplet loss between given input tensors and a margin greater than 0.
See :class:`~torch.nn.TripletMarginLoss` for details.
"""
if has_torch_function_variadic(anchor, positive, negative):
return handle_torch_function(
triplet_margin_loss,
(anchor, positive, negative),
anchor,
positive,
negative,
margin=margin,
p=p,
eps=eps,
swap=swap,
size_average=size_average,
reduce=reduce,
reduction=reduction,
)
if size_average is not None or reduce is not None:
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
else:
reduction_enum = _Reduction.get_enum(reduction)
return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction_enum)
def triplet_margin_with_distance_loss(
anchor: Tensor,
positive: Tensor,
negative: Tensor,
*,
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
margin: float = 1.0,
swap: bool = False,
reduction: str = "mean"
) -> Tensor:
r"""Compute the triplet margin loss for input tensors using a custom distance function.
See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details.
"""
if torch.jit.is_scripting():
raise NotImplementedError(
"F.triplet_margin_with_distance_loss does not support JIT scripting: "
"functions requiring Callables cannot be scripted."
)
if has_torch_function_variadic(anchor, positive, negative):
return handle_torch_function(
triplet_margin_with_distance_loss,
(anchor, positive, negative),
anchor,
positive,
negative,
distance_function=distance_function,
margin=margin,
swap=swap,
reduction=reduction,
)
# Check validity of reduction mode
if reduction not in ("mean", "sum", "none"):
raise ValueError(f"{reduction} is not a valid value for reduction")
# Check dimensions
a_dim = anchor.ndim
p_dim = positive.ndim
n_dim = negative.ndim
if not (a_dim == p_dim and p_dim == n_dim):
raise RuntimeError(
f"The anchor, positive, and negative tensors are expected to have "
f"the same number of dimensions, but got: anchor {a_dim}D, "
f"positive {p_dim}D, and negative {n_dim}D inputs")
# Calculate loss
if distance_function is None:
distance_function = torch.pairwise_distance
dist_pos = distance_function(anchor, positive)
dist_neg = distance_function(anchor, negative)
# The distance swap is described in the paper "Learning shallow
# convolutional feature descriptors with triplet losses" by V. Balntas, E.
# Riba et al. If True, and if the positive example is closer to the
# negative example than the anchor is, swaps the positive example and the
# anchor in the loss computation.
if swap:
dist_swap = distance_function(positive, negative)
dist_neg = torch.minimum(dist_neg, dist_swap)
loss = torch.clamp_min(margin + dist_pos - dist_neg, 0)
# Apply reduction
if reduction == "sum":
return torch.sum(loss)
elif reduction == "mean":
return torch.mean(loss)
else: # reduction == "none"
return loss
def normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12, out: Optional[Tensor] = None) -> Tensor:
r"""Perform :math:`L_p` normalization of inputs over specified dimension.
For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as
.. math::
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.
With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization.
Args:
input: input tensor of any shape
p (float): the exponent value in the norm formulation. Default: 2
dim (int or tuple of ints): the dimension to reduce. Default: 1
eps (float): small value to avoid division by zero. Default: 1e-12
out (Tensor, optional): the output tensor. If :attr:`out` is used, this
operation won't be differentiable.
"""
if has_torch_function_variadic(input, out):
return handle_torch_function(normalize, (input, out), input, p=p, dim=dim, eps=eps, out=out)
if out is None:
denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input)
return input / denom
else:
denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input)
return torch.div(input, denom, out=out)
def assert_int_or_pair(arg: List[int], arg_name: str, message: str) -> None:
assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name)
def unfold(
input: Tensor, kernel_size: BroadcastingList2[int],
dilation: BroadcastingList2[int] = 1,
padding: BroadcastingList2[int] = 0,
stride: BroadcastingList2[int] = 1
) -> Tensor:
r"""Extract sliding local blocks from a batched input tensor.
.. warning::
Currently, only 4-D input tensors (batched image-like tensors) are
supported.
.. warning::
More than one element of the unfolded tensor may refer to a single
memory location. As a result, in-place operations (especially ones that
are vectorized) may result in incorrect behavior. If you need to write
to the tensor, please clone it first.
See :class:`torch.nn.Unfold` for details
"""
if has_torch_function_unary(input):
return handle_torch_function(
unfold, (input,), input, kernel_size, dilation=dilation, padding=padding, stride=stride
)
return torch._C._nn.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride))
def fold(
input: Tensor, output_size: BroadcastingList2[int],
kernel_size: BroadcastingList2[int],
dilation: BroadcastingList2[int] = 1,
padding: BroadcastingList2[int] = 0,
stride: BroadcastingList2[int] = 1
) -> Tensor:
r"""Combine an array of sliding local blocks into a large containing tensor.
.. warning::
Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported.
See :class:`torch.nn.Fold` for details
"""
if has_torch_function_unary(input):
return handle_torch_function(
fold, (input,), input, output_size, kernel_size, dilation=dilation, padding=padding, stride=stride
)
return torch._C._nn.col2im(
input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)
)
#
# multihead attention
#
def _in_projection_packed(
q: Tensor,
k: Tensor,
v: Tensor,
w: Tensor,
b: Optional[Tensor] = None,
) -> List[Tensor]:
r"""Perform the in-projection step of the attention operation, using packed weights.
Output is a triple containing projection tensors for query, key and value.
Args:
q, k, v: query, key and value tensors to be projected. For self-attention,
these are typically the same tensor; for encoder-decoder attention,
k and v are typically the same tensor. (We take advantage of these
identities for performance if they are present.) Regardless, q, k and v
must share a common embedding dimension; otherwise their shapes may vary.
w: projection weights for q, k and v, packed into a single tensor. Weights
are packed along dimension 0, in q, k, v order.
b: optional projection biases for q, k and v, packed into a single tensor
in q, k, v order.
Shape:
Inputs:
- q: :math:`(..., E)` where E is the embedding dimension
- k: :math:`(..., E)` where E is the embedding dimension
- v: :math:`(..., E)` where E is the embedding dimension
- w: :math:`(E * 3, E)` where E is the embedding dimension
- b: :math:`E * 3` where E is the embedding dimension
Output:
- in output list :math:`[q', k', v']`, each output tensor will have the
same shape as the corresponding input tensor.
"""
E = q.size(-1)
if k is v:
if q is k:
# self-attention
proj = linear(q, w, b)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
return proj[0], proj[1], proj[2]
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
q_proj = linear(q, w_q, b_q)
kv_proj = linear(k, w_kv, b_kv)
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
return (q_proj, kv_proj[0], kv_proj[1])
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
def _in_projection(
q: Tensor,
k: Tensor,
v: Tensor,
w_q: Tensor,
w_k: Tensor,
w_v: Tensor,
b_q: Optional[Tensor] = None,
b_k: Optional[Tensor] = None,
b_v: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor]:
r"""Perform the in-projection step of the attention operation.
This is simply a triple of linear projections,
with shape constraints on the weights which
ensure embedding dimension uniformity in the projected outputs.
Output is a triple containing projection tensors for query, key and value.
Args:
q, k, v: query, key and value tensors to be projected.
w_q, w_k, w_v: weights for q, k and v, respectively.
b_q, b_k, b_v: optional biases for q, k and v, respectively.
Shape:
Inputs:
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
number of leading dimensions.
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
number of leading dimensions.
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
number of leading dimensions.
- w_q: :math:`(Eq, Eq)`
- w_k: :math:`(Eq, Ek)`
- w_v: :math:`(Eq, Ev)`
- b_q: :math:`(Eq)`
- b_k: :math:`(Eq)`
- b_v: :math:`(Eq)`
Output: in output triple :math:`(q', k', v')`,
- q': :math:`[Qdims..., Eq]`
- k': :math:`[Kdims..., Eq]`
- v': :math:`[Vdims..., Eq]`
"""
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
scaled_dot_product_attention = _add_docstr(
torch._C._nn.scaled_dot_product_attention, r"""
scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> Tensor:
Computes scaled dot product attention on query, key and value tensors, using
an optional attention mask if passed, and applying dropout if a probability
greater than 0.0 is specified. The optional scale argument can only be specified as a keyword argument.
.. code-block:: python
# Efficient implementation equivalent to the following:
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
.. warning:: This function is beta and subject to change.
Note:
There are currently three supported implementations of scaled dot product attention:
- `FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning`_
- `Memory-Efficient Attention`_
- A PyTorch implementation defined in C++ matching the above formulation
The function may call optimized kernels for improved performance when using the CUDA backend.
For all other backends, the PyTorch implementation will be used.
All implementations are enabled by default. Scaled dot product attention attempts to automatically select the
most optimal implementation based on the inputs. In order to provide more fine-grained control over what implementation
is used, the following functions are provided for enabling and disabling implementations.
The context manager is the preferred mechanism:
- :func:`torch.nn.attention.sdpa_kernel`: A context manager used to enable or disable any of the implementations.
- :func:`torch.backends.cuda.enable_flash_sdp`: Globally enables or disables FlashAttention.
- :func:`torch.backends.cuda.enable_mem_efficient_sdp`: Globally enables or disables Memory-Efficient Attention.
- :func:`torch.backends.cuda.enable_math_sdp`: Globally enables or disables the PyTorch C++ implementation.
Each of the fused kernels has specific input limitations. If the user requires the use of a specific fused implementation,
disable the PyTorch C++ implementation using :func:`torch.nn.attention.sdpa_kernel`.
In the event that a fused implementation is not available, a warning will be raised with the
reasons why the fused implementation cannot run.
Due to the nature of fusing floating point operations, the output of this function may be different
depending on what backend kernel is chosen.
The c++ implementation supports torch.float64 and can be used when higher precision is required.
For more information please see :doc:`/notes/numerical_accuracy`
Note:
{cudnn_reproducibility_note}
""".format(**reproducibility_notes)
+ r"""
Args:
query (Tensor): Query tensor; shape :math:`(N, ..., L, E)`.
key (Tensor): Key tensor; shape :math:`(N, ..., S, E)`.
value (Tensor): Value tensor; shape :math:`(N, ..., S, Ev)`.
attn_mask (optional Tensor): Attention mask; shape must be broadcastable to the shape of attention weights,
which is :math:`(N,..., L, S)`. Two types of masks are supported.
A boolean mask where a value of True indicates that the element *should* take part in attention.
A float mask of the same type as query, key, value that is added to the attention score.
dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied
is_causal (bool): If true, assumes upper left causal attention masking and errors if both attn_mask and is_causal
are set.
scale (optional float, keyword-only): Scaling factor applied prior to softmax. If None, the default value is set
to :math:`\frac{1}{\sqrt{E}}`.
Returns:
output (Tensor): Attention output; shape :math:`(N, ..., L, Ev)`.
Shape legend:
- :math:`N: \text{Batch size} ... : \text{Any number of other batch dimensions (optional)}`
- :math:`S: \text{Source sequence length}`
- :math:`L: \text{Target sequence length}`
- :math:`E: \text{Embedding dimension of the query and key}`
- :math:`Ev: \text{Embedding dimension of the value}`
Examples:
>>> # Optionally use the context manager to ensure one of the fused kernels is run
>>> query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
>>> key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
>>> value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
>>> with torch.backends.cuda.sdp_kernel(enable_math=False):
>>> F.scaled_dot_product_attention(query,key,value)
.. _FlashAttention-2\: Faster Attention with Better Parallelism and Work Partitioning:
https://arxiv.org/abs/2307.08691
.. _Memory-Efficient Attention:
https://github.com/facebookresearch/xformers
""")
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
# and returns if the input is batched or not.
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
# Shape check.
if query.dim() == 3:
# Batched Inputs
is_batched = True
assert key.dim() == 3 and value.dim() == 3, \
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
if key_padding_mask is not None:
assert key_padding_mask.dim() == 2, \
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
f" but found {key_padding_mask.dim()}-D tensor instead")
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), \
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead")
elif query.dim() == 2:
# Unbatched Inputs
is_batched = False
assert key.dim() == 2 and value.dim() == 2, \
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
if key_padding_mask is not None:
assert key_padding_mask.dim() == 1, \
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
f" but found {key_padding_mask.dim()}-D tensor instead")
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), \
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead")
if attn_mask.dim() == 3:
expected_shape = (num_heads, query.shape[0], key.shape[0])
assert attn_mask.shape == expected_shape, \
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
else:
raise AssertionError(
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
return is_batched
def _canonical_mask(
mask: Optional[Tensor],
mask_name: str,
other_type: Optional[DType],
other_name: str,
target_type: DType,
check_other: bool = True,
) -> Optional[Tensor]:
if mask is not None:
_mask_dtype = mask.dtype
_mask_is_float = torch.is_floating_point(mask)
if _mask_dtype != torch.bool and not _mask_is_float:
raise AssertionError(
f"only bool and floating types of {mask_name} are supported")
if check_other and other_type is not None:
if _mask_dtype != other_type:
warnings.warn(
f"Support for mismatched {mask_name} and {other_name} "
"is deprecated. Use same type for both instead."
)
if not _mask_is_float:
mask = (
torch.zeros_like(mask, dtype=target_type)
.masked_fill_(mask, float("-inf"))
)
return mask
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
if input is None:
return None
elif isinstance(input, torch.Tensor):
return input.dtype
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
def multi_head_attention_forward(
query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
r"""Forward method for MultiHeadAttention.
See :class:`torch.nn.MultiheadAttention` for details.
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
Default: `True`
Note: `needs_weight` defaults to `True`, but should be set to `False`
For best performance when attention weights are not needed.
*Setting needs_weights to `True`
leads to a significant performance degradation.*
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
is_causal: If specified, applies a causal mask as attention mask, and ignores
attn_mask for computing scaled dot product attention.
Default: ``False``.
.. warning::
is_causal is provides a hint that the attn_mask is the
causal mask.Providing incorrect hints can result in
incorrect execution, including forward and backward
compatibility.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
when ``need_weights=True.``. Default: True
Shape:
Inputs:
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a FloatTensor is provided, it will be directly added to the value.
If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
"""
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
if has_torch_function(tens_ops):
return handle_torch_function(
multi_head_attention_forward,
tens_ops,
query,
key,
value,
embed_dim_to_check,
num_heads,
in_proj_weight,
in_proj_bias,
bias_k,
bias_v,
add_zero_attn,
dropout_p,
out_proj_weight,
out_proj_bias,
training=training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
is_causal=is_causal,
use_separate_proj_weight=use_separate_proj_weight,
q_proj_weight=q_proj_weight,
k_proj_weight=k_proj_weight,
v_proj_weight=v_proj_weight,
static_k=static_k,
static_v=static_v,
average_attn_weights=average_attn_weights,
)
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
# is batched, run the computation and before returning squeeze the
# batch dimension so that the output doesn't carry this temporary batch dimension.
if not is_batched:
# unsqueeze if the input is unbatched
query = query.unsqueeze(1)
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.unsqueeze(0)
# set up shape vars
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
key_padding_mask = _canonical_mask(
mask=key_padding_mask,
mask_name="key_padding_mask",
other_type=_none_or_dtype(attn_mask),
other_name="attn_mask",
target_type=query.dtype
)
if is_causal and attn_mask is None:
raise RuntimeError(
"Need attn_mask if specifying the is_causal hint. "
"You may use the Transformer module method "
"`generate_square_subsequent_mask` to create this mask."
)
if is_causal and key_padding_mask is None and not need_weights:
# when we have a kpm or need weights, we need attn_mask
# Otherwise, we use the is_causal hint go as is_causal
# indicator to SDPA.
attn_mask = None
else:
attn_mask = _canonical_mask(
mask=attn_mask,
mask_name="attn_mask",
other_type=None,
other_name="",
target_type=query.dtype,
check_other=False,
)
if key_padding_mask is not None:
# We have the attn_mask, and use that to merge kpm into it.
# Turn off use of is_causal hint, as the merged mask is no
# longer causal.
is_causal = False
assert embed_dim == embed_dim_to_check, \
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
if isinstance(embed_dim, torch.Tensor):
# embed_dim can be a tensor when JIT tracing
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
if use_separate_proj_weight:
# allow MHA to have different embedding dimensions when separate projection weights are used
assert key.shape[:2] == value.shape[:2], \
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
else:
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
#
# compute in-projection
#
if not use_separate_proj_weight:
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
else:
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
if in_proj_bias is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = in_proj_bias.chunk(3)
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
# prep attention mask
if attn_mask is not None:
# ensure attn_mask's dim is 3
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
# add bias along batch dimension (currently second)
if bias_k is not None and bias_v is not None:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
else:
assert bias_k is None
assert bias_v is None
#
# reshape q, k, v for multihead attention and make em batch first
#
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is None:
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_k.size(0) == bsz * num_heads, \
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
assert static_k.size(2) == head_dim, \
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
k = static_k
if static_v is None:
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_v.size(0) == bsz * num_heads, \
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
assert static_v.size(2) == head_dim, \
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
v = static_v
# add zero attention along batch dimension (now first)
if add_zero_attn:
zero_attn_shape = (bsz * num_heads, 1, head_dim)
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = pad(attn_mask, (0, 1))
if key_padding_mask is not None:
key_padding_mask = pad(key_padding_mask, (0, 1))
# update source sequence length after adjustments
src_len = k.size(1)
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
else:
attn_mask = attn_mask + key_padding_mask
# adjust dropout probability
if not training:
dropout_p = 0.0
#
# (deep breath) calculate attention and out projection
#
if need_weights:
B, Nt, E = q.shape
q_scaled = q * math.sqrt(1.0 / float(E))
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
if attn_mask is not None:
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
else:
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
attn_output_weights = softmax(attn_output_weights, dim=-1)
if dropout_p > 0.0:
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
attn_output = torch.bmm(attn_output_weights, v)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
# optionally average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
if average_attn_weights:
attn_output_weights = attn_output_weights.mean(dim=1)
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
attn_output_weights = attn_output_weights.squeeze(0)
return attn_output, attn_output_weights
else:
# attn_mask can be either (L,S) or (N*num_heads, L, S)
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
# in order to match the input for SDPA of (N, num_heads, L, S)
if attn_mask is not None:
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
attn_mask = attn_mask.unsqueeze(0)
else:
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
q = q.view(bsz, num_heads, tgt_len, head_dim)
k = k.view(bsz, num_heads, src_len, head_dim)
v = v.view(bsz, num_heads, src_len, head_dim)
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
return attn_output, None
|