File size: 232,214 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
"""Functional interface."""
from typing import Callable, List, Optional, Tuple, Union
import math
import warnings
import importlib

try:
    import numpy as np
except ModuleNotFoundError:
    np = None

import torch
from torch import _VF
from torch import sym_int as _sym_int
from torch._C import _infer_size, _add_docstr
from torch._torch_docs import reproducibility_notes, tf32_notes, sparse_support_notes
# A workaround to support both TorchScript and MyPy:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from torch.types import _dtype as DType
else:
    # The JIT doesn't understand Union, nor torch.dtype here
    DType = int

from .._jit_internal import boolean_dispatch, _overload, BroadcastingList1, BroadcastingList2, BroadcastingList3
from ..overrides import (
    has_torch_function, has_torch_function_unary, has_torch_function_variadic,
    handle_torch_function)
from . import _reduction as _Reduction
from . import grad  # noqa: F401
from .modules import utils
from .modules.utils import _single, _pair, _triple, _list_with_default

Tensor = torch.Tensor

conv1d = _add_docstr(
    torch.conv1d,
    r"""

conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor



Applies a 1D convolution over an input signal composed of several input

planes.



{tf32_note}



See :class:`~torch.nn.Conv1d` for details and output shape.



Note:

    {cudnn_reproducibility_note}



Note:

    This operator supports complex data types i.e. ``complex32, complex64, complex128``.

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`

    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)`

    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``

    stride: the stride of the convolving kernel. Can be a single number or

      a one-element tuple `(sW,)`. Default: 1

    padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},

      single number or a one-element tuple `(padW,)`. Default: 0

      ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

      the input so the output has the same shape as the input. However, this mode

      doesn't support any stride values other than 1.



      .. warning::

          For ``padding='same'``, if the ``weight`` is even-length and

          ``dilation`` is odd in any dimension, a full :func:`pad` operation

          may be needed internally. Lowering performance.

    dilation: the spacing between kernel elements. Can be a single number or

      a one-element tuple `(dW,)`. Default: 1

    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by

      the number of groups. Default: 1



Examples::



    >>> inputs = torch.randn(33, 16, 30)

    >>> filters = torch.randn(20, 16, 5)

    >>> F.conv1d(inputs, filters)

""",
)

conv2d = _add_docstr(
    torch.conv2d,
    r"""

conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor



Applies a 2D convolution over an input image composed of several input

planes.



{tf32_note}



See :class:`~torch.nn.Conv2d` for details and output shape.



Note:

    {cudnn_reproducibility_note}



Note:

    This operator supports complex data types i.e. ``complex32, complex64, complex128``.

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`

    bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``

    stride: the stride of the convolving kernel. Can be a single number or a

      tuple `(sH, sW)`. Default: 1

    padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},

      single number or a tuple `(padH, padW)`. Default: 0

      ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

      the input so the output has the same shape as the input. However, this mode

      doesn't support any stride values other than 1.



      .. warning::

          For ``padding='same'``, if the ``weight`` is even-length and

          ``dilation`` is odd in any dimension, a full :func:`pad` operation

          may be needed internally. Lowering performance.



    dilation: the spacing between kernel elements. Can be a single number or

      a tuple `(dH, dW)`. Default: 1

    groups: split input into groups, both :math:`\text{in\_channels}` and :math:`\text{out\_channels}`

      should be divisible by the number of groups. Default: 1



Examples::



    >>> # With square kernels and equal stride

    >>> filters = torch.randn(8, 4, 3, 3)

    >>> inputs = torch.randn(1, 4, 5, 5)

    >>> F.conv2d(inputs, filters, padding=1)

""",
)  # noqa: E501

conv3d = _add_docstr(
    torch.conv3d,
    r"""

conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor



Applies a 3D convolution over an input image composed of several input

planes.



{tf32_note}



See :class:`~torch.nn.Conv3d` for details and output shape.



Note:

    {cudnn_reproducibility_note}



Note:

    This operator supports complex data types i.e. ``complex32, complex64, complex128``.

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`

    weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)`

    bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None

    stride: the stride of the convolving kernel. Can be a single number or a

      tuple `(sT, sH, sW)`. Default: 1

    padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},

      single number or a tuple `(padT, padH, padW)`. Default: 0

      ``padding='valid'`` is the same as no padding. ``padding='same'`` pads

      the input so the output has the same shape as the input. However, this mode

      doesn't support any stride values other than 1.



      .. warning::

          For ``padding='same'``, if the ``weight`` is even-length and

          ``dilation`` is odd in any dimension, a full :func:`pad` operation

          may be needed internally. Lowering performance.



    dilation: the spacing between kernel elements. Can be a single number or

      a tuple `(dT, dH, dW)`. Default: 1

    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by

      the number of groups. Default: 1



Examples::



    >>> filters = torch.randn(33, 16, 3, 3, 3)

    >>> inputs = torch.randn(20, 16, 50, 10, 20)

    >>> F.conv3d(inputs, filters)

""",
)  # noqa: E501

conv_transpose1d = _add_docstr(
    torch.conv_transpose1d,
    r"""

conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor



Applies a 1D transposed convolution operator over an input signal

composed of several input planes, sometimes also called "deconvolution".



{tf32_note}



See :class:`~torch.nn.ConvTranspose1d` for details and output shape.



Note:

    {cudnn_reproducibility_note}

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`

    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)`

    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None

    stride: the stride of the convolving kernel. Can be a single number or a

      tuple ``(sW,)``. Default: 1

    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both

      sides of each dimension in the input. Can be a single number or a tuple

      ``(padW,)``. Default: 0

    output_padding: additional size added to one side of each dimension in the

      output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0

    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the

      number of groups. Default: 1

    dilation: the spacing between kernel elements. Can be a single number or

      a tuple ``(dW,)``. Default: 1



Examples::



    >>> inputs = torch.randn(20, 16, 50)

    >>> weights = torch.randn(16, 33, 5)

    >>> F.conv_transpose1d(inputs, weights)

""",
)

conv_transpose2d = _add_docstr(
    torch.conv_transpose2d,
    r"""

conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor



Applies a 2D transposed convolution operator over an input image

composed of several input planes, sometimes also called "deconvolution".



{tf32_note}



See :class:`~torch.nn.ConvTranspose2d` for details and output shape.



Note:

    {cudnn_reproducibility_note}

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)`

    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None

    stride: the stride of the convolving kernel. Can be a single number or a

      tuple ``(sH, sW)``. Default: 1

    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both

      sides of each dimension in the input. Can be a single number or a tuple

      ``(padH, padW)``. Default: 0

    output_padding: additional size added to one side of each dimension in the

      output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.

      Default: 0

    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the

      number of groups. Default: 1

    dilation: the spacing between kernel elements. Can be a single number or

      a tuple ``(dH, dW)``. Default: 1



Examples::



    >>> # With square kernels and equal stride

    >>> inputs = torch.randn(1, 4, 5, 5)

    >>> weights = torch.randn(4, 8, 3, 3)

    >>> F.conv_transpose2d(inputs, weights, padding=1)

""",
)  # noqa: E501

conv_transpose3d = _add_docstr(
    torch.conv_transpose3d,
    r"""

conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor



Applies a 3D transposed convolution operator over an input image

composed of several input planes, sometimes also called "deconvolution"



{tf32_note}



See :class:`~torch.nn.ConvTranspose3d` for details and output shape.



Note:

    {cudnn_reproducibility_note}

""".format(
        **reproducibility_notes, **tf32_notes
    )
    + r"""



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`

    weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)`

    bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None

    stride: the stride of the convolving kernel. Can be a single number or a

      tuple ``(sT, sH, sW)``. Default: 1

    padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both

      sides of each dimension in the input. Can be a single number or a tuple

      ``(padT, padH, padW)``. Default: 0

    output_padding: additional size added to one side of each dimension in the

      output shape. Can be a single number or a tuple

      ``(out_padT, out_padH, out_padW)``. Default: 0

    groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the

      number of groups. Default: 1

    dilation: the spacing between kernel elements. Can be a single number or

      a tuple `(dT, dH, dW)`. Default: 1



Examples::



    >>> inputs = torch.randn(20, 16, 50, 10, 20)

    >>> weights = torch.randn(16, 33, 3, 3, 3)

    >>> F.conv_transpose3d(inputs, weights)

""",
)  # noqa: E501

conv_tbc = _add_docstr(
    torch.conv_tbc,
    r"""

Applies a 1-dimensional sequence convolution over an input sequence.

Input and output dimensions are (Time, Batch, Channels) - hence TBC.



Args:

    input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`

    weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)

    bias: bias of shape (:math:`\text{out\_channels}`)

    pad: number of timesteps to pad. Default: 0

""",
)


# Pooling
avg_pool1d = _add_docstr(
    torch.avg_pool1d,
    r"""

avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor



Applies a 1D average pooling over an input signal composed of several

input planes.



See :class:`~torch.nn.AvgPool1d` for details and output shape.



Args:

    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`

    kernel_size: the size of the window. Can be a single number or a

      tuple `(kW,)`

    stride: the stride of the window. Can be a single number or a tuple

      `(sW,)`. Default: :attr:`kernel_size`

    padding: implicit zero paddings on both sides of the input. Can be a

      single number or a tuple `(padW,)`. Default: 0

    ceil_mode: when True, will use `ceil` instead of `floor` to compute the

        output shape. Default: ``False``

    count_include_pad: when True, will include the zero-padding in the

        averaging calculation. Default: ``True``



Examples::



    >>> # pool of square window of size=3, stride=2

    >>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32)

    >>> F.avg_pool1d(input, kernel_size=3, stride=2)

    tensor([[[ 2.,  4.,  6.]]])



""",
)


avg_pool2d = _add_docstr(
    torch._C._nn.avg_pool2d,
    r"""

avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor



Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size

:math:`sH \times sW` steps. The number of output features is equal to the number of

input planes.



See :class:`~torch.nn.AvgPool2d` for details and output shape.



Args:

    input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

    kernel_size: size of the pooling region. Can be a single number or a

      tuple `(kH, kW)`

    stride: stride of the pooling operation. Can be a single number or a

      tuple `(sH, sW)`. Default: :attr:`kernel_size`

    padding: implicit zero paddings on both sides of the input. Can be a

      single number or a tuple `(padH, padW)`. Default: 0

    ceil_mode: when True, will use `ceil` instead of `floor` in the formula

        to compute the output shape. Default: ``False``

    count_include_pad: when True, will include the zero-padding in the

        averaging calculation. Default: ``True``

    divisor_override: if specified, it will be used as divisor, otherwise

         size of the pooling region will be used. Default: None

""",
)

avg_pool3d = _add_docstr(
    torch._C._nn.avg_pool3d,
    r"""

avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor



Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step

size :math:`sT \times sH \times sW` steps. The number of output features is equal to

:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.



See :class:`~torch.nn.AvgPool3d` for details and output shape.



Args:

    input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)`

    kernel_size: size of the pooling region. Can be a single number or a

      tuple `(kT, kH, kW)`

    stride: stride of the pooling operation. Can be a single number or a

      tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`

    padding: implicit zero paddings on both sides of the input. Can be a

      single number or a tuple `(padT, padH, padW)`, Default: 0

    ceil_mode: when True, will use `ceil` instead of `floor` in the formula

        to compute the output shape

    count_include_pad: when True, will include the zero-padding in the

        averaging calculation

    divisor_override: if specified, it will be used as divisor, otherwise

        size of the pooling region will be used. Default: None

""",
)


def fractional_max_pool2d_with_indices(

    input: Tensor, kernel_size: BroadcastingList2[int],

    output_size: Optional[BroadcastingList2[int]] = None,

    output_ratio: Optional[BroadcastingList2[float]] = None,

    return_indices: bool = False,

    _random_samples: Optional[Tensor] = None

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    fractional_max_pool2d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)



    Applies 2D fractional max pooling over an input signal composed of several input planes.



    Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham



    The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic

    step size determined by the target output size.

    The number of output features is equal to the number of input planes.



    Args:

        kernel_size: the size of the window to take a max over.

                     Can be a single number :math:`k` (for a square kernel of :math:`k \times k`)

                     or a tuple `(kH, kW)`

        output_size: the target output size of the image of the form :math:`oH \times oW`.

                     Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH`

        output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.

                      This has to be a number or tuple in the range (0, 1)

        return_indices: if ``True``, will return the indices along with the outputs.

                        Useful to pass to :func:`~torch.nn.functional.max_unpool2d`.



    Examples::

        >>> input = torch.randn(20, 16, 50, 32)

        >>> # pool of square window of size=3, and target output size 13x12

        >>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))

        >>> # pool of square window and target output size being half of input image size

        >>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))



    .. _Fractional MaxPooling:

        http://arxiv.org/abs/1412.6071

    """
    if has_torch_function_variadic(input, _random_samples):
        return handle_torch_function(
            fractional_max_pool2d_with_indices,
            (input, _random_samples),
            input,
            kernel_size,
            output_size=output_size,
            output_ratio=output_ratio,
            return_indices=return_indices,
            _random_samples=_random_samples,
        )
    if output_size is None and output_ratio is None:
        raise ValueError("fractional_max_pool2d requires specifying either an output_size or an output_ratio")
    if output_size is None:
        assert output_ratio is not None
        if len(output_ratio) > 2:
            raise ValueError("fractional_max_pool2d requires output_ratio to either be a single Int or tuple of Ints.")
        _output_ratio = _pair(output_ratio)
        output_size = [int(input.size(-2) * _output_ratio[0]), int(input.size(-1) * _output_ratio[1])]

    if _random_samples is None:
        n_batch = 1 if input.dim() == 3 else input.size(0)
        _random_samples = torch.rand(n_batch, input.size(-3), 2, dtype=input.dtype, device=input.device)
    return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples)


def _fractional_max_pool2d(

    input: Tensor, kernel_size: BroadcastingList2[int],

    output_size: Optional[BroadcastingList2[int]] = None,

    output_ratio: Optional[BroadcastingList2[float]] = None,

    return_indices: bool = False,

    _random_samples: Optional[Tensor] = None

) -> Tensor:
    if has_torch_function_variadic(input, _random_samples):
        return handle_torch_function(
            fractional_max_pool2d,
            (input, _random_samples),
            input,
            kernel_size,
            output_size=output_size,
            output_ratio=output_ratio,
            return_indices=return_indices,
            _random_samples=_random_samples,
        )
    return fractional_max_pool2d_with_indices(
        input, kernel_size, output_size, output_ratio, return_indices, _random_samples
    )[0]


fractional_max_pool2d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=4,
    default=False,
    if_true=fractional_max_pool2d_with_indices,
    if_false=_fractional_max_pool2d,
    module_name=__name__,
    func_name="fractional_max_pool2d",
)


def fractional_max_pool3d_with_indices(

    input: Tensor, kernel_size: BroadcastingList3[int],

    output_size: Optional[BroadcastingList3[int]] = None,

    output_ratio: Optional[BroadcastingList3[float]] = None,

    return_indices: bool = False,

    _random_samples: Optional[Tensor] = None

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    fractional_max_pool3d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)



    Applies 3D fractional max pooling over an input signal composed of several input planes.



    Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham



    The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic

    step size determined by the target output size.

    The number of output features is equal to the number of input planes.



    Args:

        kernel_size: the size of the window to take a max over.

                     Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`)

                     or a tuple `(kT, kH, kW)`

        output_size: the target output size of the form :math:`oT \times oH \times oW`.

                     Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output

                     :math:`oH \times oH \times oH`

        output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.

                      This has to be a number or tuple in the range (0, 1)

        return_indices: if ``True``, will return the indices along with the outputs.

                        Useful to pass to :func:`~torch.nn.functional.max_unpool3d`.



    Shape:

        - Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`.

        - Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where

          :math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or

          :math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})`



    Examples::

        >>> input = torch.randn(20, 16, 50, 32, 16)

        >>> # pool of cubic window of size=3, and target output size 13x12x11

        >>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))

        >>> # pool of cubic window and target output size being half of input size

        >>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5))



    .. _Fractional MaxPooling:

        http://arxiv.org/abs/1412.6071

    """
    if has_torch_function_variadic(input, _random_samples):
        return handle_torch_function(
            fractional_max_pool3d_with_indices,
            (input, _random_samples),
            input,
            kernel_size,
            output_size=output_size,
            output_ratio=output_ratio,
            return_indices=return_indices,
            _random_samples=_random_samples,
        )
    if output_size is None and output_ratio is None:
        raise ValueError("fractional_max_pool3d requires specifying either an output_size or an output_ratio")
    if output_size is None:
        assert output_ratio is not None
        _output_ratio = _triple(output_ratio)
        output_size = [
            int(input.size(-3) * _output_ratio[0]),
            int(input.size(-2) * _output_ratio[1]),
            int(input.size(-1) * _output_ratio[2]),
        ]

    if _random_samples is None:
        n_batch = 1 if input.dim() == 4 else input.size(0)
        _random_samples = torch.rand(n_batch, input.size(-4), 3, dtype=input.dtype, device=input.device)
    return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples)


def _fractional_max_pool3d(

    input: Tensor, kernel_size: BroadcastingList3[int],

    output_size: Optional[BroadcastingList3[int]] = None,

    output_ratio: Optional[BroadcastingList3[float]] = None,

    return_indices: bool = False,

    _random_samples: Optional[Tensor] = None

) -> Tensor:
    if has_torch_function_variadic(input, _random_samples):
        return handle_torch_function(
            fractional_max_pool3d,
            (input, _random_samples),
            input,
            kernel_size,
            output_size=output_size,
            output_ratio=output_ratio,
            return_indices=return_indices,
            _random_samples=_random_samples,
        )
    return fractional_max_pool3d_with_indices(
        input, kernel_size, output_size, output_ratio, return_indices, _random_samples
    )[0]


fractional_max_pool3d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=4,
    default=False,
    if_true=fractional_max_pool3d_with_indices,
    if_false=_fractional_max_pool3d,
    module_name=__name__,
    func_name="fractional_max_pool3d",
)


def max_pool1d_with_indices(

    input: Tensor, kernel_size: BroadcastingList1[int],

    stride: Optional[BroadcastingList1[int]] = None,

    padding: BroadcastingList1[int] = 0,

    dilation: BroadcastingList1[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)



    Applies a 1D max pooling over an input signal composed of several input

    planes.



    .. note::

        The order of :attr:`ceil_mode` and :attr:`return_indices` is different from

        what seen in :class:`~torch.nn.MaxPool1d`, and will change in a future release.



    See :class:`~torch.nn.MaxPool1d` for details.



    Args:

        input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`, minibatch dim optional.

        kernel_size: the size of the window. Can be a single number or a

            tuple `(kW,)`

        stride: the stride of the window. Can be a single number or a tuple

            `(sW,)`. Default: :attr:`kernel_size`

        padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.

        dilation: The stride between elements within a sliding window, must be > 0.

        ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This

                   ensures that every element in the input tensor is covered by a sliding window.

        return_indices: If ``True``, will return the argmax along with the max values.

                        Useful for :class:`torch.nn.functional.max_unpool1d` later

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool1d_with_indices,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.max_pool1d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)


def _max_pool1d(

    input: Tensor, kernel_size: BroadcastingList1[int],

    stride: Optional[BroadcastingList1[int]] = None,

    padding: BroadcastingList1[int] = 0,

    dilation: BroadcastingList1[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool1d,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode)


max_pool1d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=6,
    default=False,
    if_true=max_pool1d_with_indices,
    if_false=_max_pool1d,
    module_name=__name__,
    func_name="max_pool1d",
)


def max_pool2d_with_indices(

    input: Tensor, kernel_size: BroadcastingList2[int],

    stride: Optional[BroadcastingList2[int]] = None,

    padding: BroadcastingList2[int] = 0,

    dilation: BroadcastingList2[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)



    Applies a 2D max pooling over an input signal composed of several input

    planes.



    .. note::

        The order of :attr:`ceil_mode` and :attr:`return_indices` is different from

        what seen in :class:`~torch.nn.MaxPool2d`, and will change in a future release.



    See :class:`~torch.nn.MaxPool2d` for details.



    Args:

        input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`, minibatch dim optional.

        kernel_size: size of the pooling region. Can be a single number or a

            tuple `(kH, kW)`

        stride: stride of the pooling operation. Can be a single number or a

            tuple `(sH, sW)`. Default: :attr:`kernel_size`

        padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.

        dilation: The stride between elements within a sliding window, must be > 0.

        ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This

                   ensures that every element in the input tensor is covered by a sliding window.

        return_indices: If ``True``, will return the argmax along with the max values.

                        Useful for :class:`torch.nn.functional.max_unpool2d` later

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool2d_with_indices,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)


def _max_pool2d(

    input: Tensor, kernel_size: BroadcastingList2[int],

    stride: Optional[BroadcastingList2[int]] = None,

    padding: BroadcastingList2[int] = 0,

    dilation: BroadcastingList2[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool2d,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)


max_pool2d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=6,
    default=False,
    if_true=max_pool2d_with_indices,
    if_false=_max_pool2d,
    module_name=__name__,
    func_name="max_pool2d",
)


def max_pool3d_with_indices(

    input: Tensor, kernel_size: BroadcastingList3[int],

    stride: Optional[BroadcastingList3[int]] = None,

    padding: BroadcastingList3[int] = 0,

    dilation: BroadcastingList3[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)



    Applies a 3D max pooling over an input signal composed of several input

    planes.



    .. note::

        The order of :attr:`ceil_mode` and :attr:`return_indices` is different from

        what seen in :class:`~torch.nn.MaxPool3d`, and will change in a future release.



    See :class:`~torch.nn.MaxPool3d` for details.



    Args:

        input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iD, iH , iW)`, minibatch dim optional.

        kernel_size: size of the pooling region. Can be a single number or a

                     tuple `(kT, kH, kW)`

        stride: stride of the pooling operation. Can be a single number or a

                tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`

        padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.

        dilation: The stride between elements within a sliding window, must be > 0.

        ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This

                   ensures that every element in the input tensor is covered by a sliding window.

        return_indices: If ``True``, will return the argmax along with the max values.

                        Useful for :class:`torch.nn.functional.max_unpool3d` later

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool3d_with_indices,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch._C._nn.max_pool3d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)


def _max_pool3d(

    input: Tensor, kernel_size: BroadcastingList3[int],

    stride: Optional[BroadcastingList3[int]] = None,

    padding: BroadcastingList3[int] = 0,

    dilation: BroadcastingList3[int] = 1,

    ceil_mode: bool = False,

    return_indices: bool = False

) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_pool3d,
            (input,),
            input,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            ceil_mode=ceil_mode,
            return_indices=return_indices,
        )
    if stride is None:
        stride = torch.jit.annotate(List[int], [])
    return torch.max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode)


max_pool3d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=6,
    default=False,
    if_true=max_pool3d_with_indices,
    if_false=_max_pool3d,
    module_name=__name__,
    func_name="max_pool3d",
)


def _unpool_output_size(

    input: Tensor, kernel_size: List[int], stride: List[int], padding: List[int], output_size: Optional[List[int]]

) -> List[int]:
    input_size = input.size()
    default_size = torch.jit.annotate(List[int], [])
    for d in range(len(kernel_size)):
        default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d] + kernel_size[d] - 2 * padding[d])
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                f"{len(kernel_size)} or {len(kernel_size) + 2} elements, but it has a length of '{len(output_size)}'"
            )
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
                    f'invalid output_size "{output_size}" (dim {d} must be between {min_size} and {max_size})'
                )

        ret = output_size
    return ret


def max_unpool1d(

    input: Tensor, indices: Tensor,

    kernel_size: BroadcastingList1[int],

    stride: Optional[BroadcastingList1[int]] = None,

    padding: BroadcastingList1[int] = 0,

    output_size: Optional[BroadcastingList1[int]] = None

) -> Tensor:
    r"""Compute a partial inverse of :class:`MaxPool1d`.



    See :class:`~torch.nn.MaxUnpool1d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_unpool1d,
            (input,),
            input,
            indices,
            kernel_size,
            stride=stride,
            padding=padding,
            output_size=output_size,
        )
    kernel_size = _single(kernel_size)
    if stride is not None:
        _stride = _single(stride)
    else:
        _stride = kernel_size
    padding = _single(padding)
    output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
    if isinstance(output_size, list):
        output_size = output_size + [1]
    else:
        output_size = output_size + (1,)
    return torch._C._nn.max_unpool2d(input.unsqueeze(-1), indices.unsqueeze(-1), output_size).squeeze(-1)


def max_unpool2d(

    input: Tensor, indices: Tensor,

    kernel_size: BroadcastingList2[int],

    stride: Optional[BroadcastingList2[int]] = None,

    padding: BroadcastingList2[int] = 0,

    output_size: Optional[BroadcastingList2[int]] = None

) -> Tensor:
    r"""Compute a partial inverse of :class:`MaxPool2d`.



    See :class:`~torch.nn.MaxUnpool2d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_unpool2d,
            (input,),
            input,
            indices,
            kernel_size,
            stride=stride,
            padding=padding,
            output_size=output_size,
        )
    kernel_size = _pair(kernel_size)
    if stride is not None:
        _stride = _pair(stride)
    else:
        _stride = kernel_size
    padding = _pair(padding)
    output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
    return torch._C._nn.max_unpool2d(input, indices, output_size)


def max_unpool3d(

    input: Tensor, indices: Tensor,

    kernel_size: BroadcastingList3[int],

    stride: Optional[BroadcastingList3[int]] = None,

    padding: BroadcastingList3[int] = 0,

    output_size: Optional[BroadcastingList3[int]] = None

) -> Tensor:
    r"""Compute a partial inverse of :class:`MaxPool3d`.



    See :class:`~torch.nn.MaxUnpool3d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            max_unpool3d,
            (input,),
            input,
            indices,
            kernel_size,
            stride=stride,
            padding=padding,
            output_size=output_size,
        )
    kernel_size = _triple(kernel_size)
    if stride is not None:
        _stride = _triple(stride)
    else:
        _stride = kernel_size
    padding = _triple(padding)
    output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
    return torch._C._nn.max_unpool3d(input, indices, output_size, _stride, padding)


def lp_pool3d(

    input: Tensor, norm_type: Union[int, float],

    kernel_size: BroadcastingList3[int],

    stride: Optional[BroadcastingList3[int]] = None,

    ceil_mode: bool = False

) -> Tensor:
    r"""

    Apply a 3D power-average pooling over an input signal composed of several input planes.



    If the sum of all inputs to the power of `p` is

    zero, the gradient is set to zero as well.



    See :class:`~torch.nn.LPPool3d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            lp_pool3d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
        )
    kd, kw, kh = utils._triple(kernel_size)
    if stride is not None:
        out = avg_pool3d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
    else:
        out = avg_pool3d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)

    return (torch.sign(out) * relu(torch.abs(out))).mul(kd * kw * kh).pow(1.0 / norm_type)


def lp_pool2d(

    input: Tensor, norm_type: Union[int, float],

    kernel_size: BroadcastingList2[int],

    stride: Optional[BroadcastingList2[int]] = None,

    ceil_mode: bool = False

) -> Tensor:
    r"""

    Apply a 2D power-average pooling over an input signal composed of several input planes.



    If the sum of all inputs to the power of `p` is

    zero, the gradient is set to zero as well.



    See :class:`~torch.nn.LPPool2d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
        )
    kw, kh = utils._pair(kernel_size)
    if stride is not None:
        out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
    else:
        out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)

    return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1.0 / norm_type)


def lp_pool1d(

    input: Tensor, norm_type: Union[int, float],

    kernel_size: int,

    stride: Optional[BroadcastingList1[int]] = None,

    ceil_mode: bool = False

) -> Tensor:
    r"""Apply a 1D power-average pooling over an input signal composed of several input planes.



    If the sum of all inputs to the power of `p` is

    zero, the gradient is set to zero as well.



    See :class:`~torch.nn.LPPool1d` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
        )
    if stride is not None:
        out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
    else:
        out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)

    return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1.0 / norm_type)


def adaptive_max_pool1d_with_indices(

    input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    adaptive_max_pool1d(input, output_size, return_indices=False)



    Applies a 1D adaptive max pooling over an input signal composed of

    several input planes.



    See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.



    Args:

        output_size: the target output size (single integer)

        return_indices: whether to return pooling indices. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool1d_with_indices, (input,), input, output_size, return_indices=return_indices
        )
    return torch.adaptive_max_pool1d(input, output_size)


def _adaptive_max_pool1d(input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool1d, (input,), input, output_size, return_indices=return_indices
        )
    return adaptive_max_pool1d_with_indices(input, output_size)[0]


adaptive_max_pool1d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=2,
    default=False,
    if_true=adaptive_max_pool1d_with_indices,
    if_false=_adaptive_max_pool1d,
    module_name=__name__,
    func_name="adaptive_max_pool1d",
)


def adaptive_max_pool2d_with_indices(

    input: Tensor, output_size: BroadcastingList2[int],

    return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""adaptive_max_pool2d(input, output_size, return_indices=False)



    Applies a 2D adaptive max pooling over an input signal composed of

    several input planes.



    See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

            double-integer tuple)

        return_indices: whether to return pooling indices. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool2d_with_indices, (input,), input, output_size, return_indices=return_indices
        )
    output_size = _list_with_default(output_size, input.size())
    return torch._C._nn.adaptive_max_pool2d(input, output_size)


def _adaptive_max_pool2d(input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool2d, (input,), input, output_size, return_indices=return_indices
        )
    return adaptive_max_pool2d_with_indices(input, output_size)[0]


adaptive_max_pool2d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=2,
    default=False,
    if_true=adaptive_max_pool2d_with_indices,
    if_false=_adaptive_max_pool2d,
    module_name=__name__,
    func_name="adaptive_max_pool2d",
)


def adaptive_max_pool3d_with_indices(

    input: Tensor, output_size: BroadcastingList3[int],

    return_indices: bool = False

) -> Tuple[Tensor, Tensor]:  # noqa: D400
    r"""

    adaptive_max_pool3d(input, output_size, return_indices=False)



    Applies a 3D adaptive max pooling over an input signal composed of

    several input planes.



    See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

            triple-integer tuple)

        return_indices: whether to return pooling indices. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool3d_with_indices, (input,), input, output_size, return_indices=return_indices
        )
    output_size = _list_with_default(output_size, input.size())
    return torch._C._nn.adaptive_max_pool3d(input, output_size)


def _adaptive_max_pool3d(input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False) -> Tensor:
    if has_torch_function_unary(input):
        return handle_torch_function(
            adaptive_max_pool3d, (input,), input, output_size, return_indices=return_indices
        )
    return adaptive_max_pool3d_with_indices(input, output_size)[0]


adaptive_max_pool3d = boolean_dispatch(
    arg_name="return_indices",
    arg_index=2,
    default=False,
    if_true=adaptive_max_pool3d_with_indices,
    if_false=_adaptive_max_pool3d,
    module_name=__name__,
    func_name="adaptive_max_pool3d",
)


adaptive_avg_pool1d = _add_docstr(
    torch.adaptive_avg_pool1d,
    r"""

adaptive_avg_pool1d(input, output_size) -> Tensor



Applies a 1D adaptive average pooling over an input signal composed of

several input planes.



See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.



Args:

    output_size: the target output size (single integer)

""",
)


def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
    r"""Apply a 2D adaptive average pooling over an input signal composed of several input planes.



    See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

            double-integer tuple)

    """
    if has_torch_function_unary(input):
        return handle_torch_function(adaptive_avg_pool2d, (input,), input, output_size)
    _output_size = _list_with_default(output_size, input.size())
    return torch._C._nn.adaptive_avg_pool2d(input, _output_size)


def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList3[int]) -> Tensor:
    r"""Apply a 3D adaptive average pooling over an input signal composed of several input planes.



    See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.



    Args:

        output_size: the target output size (single integer or

            triple-integer tuple)

    """
    if has_torch_function_unary(input):
        return handle_torch_function(adaptive_avg_pool3d, (input,), input, output_size)
    _output_size = _list_with_default(output_size, input.size())
    return torch._C._nn.adaptive_avg_pool3d(input, _output_size)


# Activation functions
def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
    r"""During training, randomly zeroes some elements of the input tensor with probability :attr:`p`.



    Uses samples from a Bernoulli distribution.



    See :class:`~torch.nn.Dropout` for details.



    Args:

        p: probability of an element to be zeroed. Default: 0.5

        training: apply dropout if is ``True``. Default: ``True``

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace)
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training)


def alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
    r"""Apply alpha dropout to the input.



    See :class:`~torch.nn.AlphaDropout` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(alpha_dropout, (input,), input, p=p, training=training, inplace=inplace)
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    return _VF.alpha_dropout_(input, p, training) if inplace else _VF.alpha_dropout(input, p, training)


def dropout1d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
    r"""Randomly zero out entire channels (a channel is a 1D feature map).



    For example, the :math:`j`-th channel of the :math:`i`-th sample in the

    batched input is a 1D tensor :math:`\text{input}[i, j]` of the input tensor.

    Each channel will be zeroed out independently on every forward call with

    probability :attr:`p` using samples from a Bernoulli distribution.



    See :class:`~torch.nn.Dropout1d` for details.



    Args:

        p: probability of a channel to be zeroed. Default: 0.5

        training: apply dropout if is ``True``. Default: ``True``

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(dropout1d, (input,), input, p=p, training=training, inplace=inplace)
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    inp_dim = input.dim()
    if inp_dim not in (2, 3):
        raise RuntimeError(f"dropout1d: Expected 2D or 3D input, but received a {inp_dim}D input. "
                           "Note that dropout1d exists to provide channel-wise dropout on inputs with 1 "
                           "spatial dimension, a channel dimension, and an optional batch dimension "
                           "(i.e. 2D or 3D inputs).")

    is_batched = inp_dim == 3
    if not is_batched:
        input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)

    result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)

    if not is_batched:
        result = result.squeeze_(0) if inplace else result.squeeze(0)

    return result


def dropout2d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
    r"""Randomly zero out entire channels (a channel is a 2D feature map).



    For example, the :math:`j`-th channel of the :math:`i`-th sample in the

    batched input is a 2D tensor :math:`\text{input}[i, j]` of the input tensor.

    Each channel will be zeroed out independently on every forward call with

    probability :attr:`p` using samples from a Bernoulli distribution.



    See :class:`~torch.nn.Dropout2d` for details.



    Args:

        p: probability of a channel to be zeroed. Default: 0.5

        training: apply dropout if is ``True``. Default: ``True``

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(dropout2d, (input,), input, p=p, training=training, inplace=inplace)
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    inp_dim = input.dim()
    if inp_dim not in (3, 4):
        warn_msg = (f"dropout2d: Received a {inp_dim}-D input to dropout2d, which is deprecated "
                    "and will result in an error in a future release. To retain the behavior "
                    "and silence this warning, please use dropout instead. Note that dropout2d "
                    "exists to provide channel-wise dropout on inputs with 2 spatial dimensions, "
                    "a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).")
        warnings.warn(warn_msg)

    # TODO: Properly support no-batch-dim inputs. For now, these are NOT supported; passing
    # a 3D input will perform dropout1d behavior instead. This was done historically and the
    # behavior is maintained here for now.
    # See https://github.com/pytorch/pytorch/issues/77081
    if inp_dim == 3:
        warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "
                      "1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C "
                      "is the channel dim. This behavior will change in a future release to interpret the "
                      "input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D "
                      "channel-wise dropout behavior, please switch to using dropout1d instead.")

    result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)

    return result


def dropout3d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
    r"""Randomly zero out entire channels (a channel is a 3D feature map).



    For example, the :math:`j`-th channel of the :math:`i`-th sample in the

    batched input is a 3D tensor :math:`\text{input}[i, j]` of the input tensor.

    Each channel will be zeroed out independently on every forward call with

    probability :attr:`p` using samples from a Bernoulli distribution.



    See :class:`~torch.nn.Dropout3d` for details.



    Args:

        p: probability of a channel to be zeroed. Default: 0.5

        training: apply dropout if is ``True``. Default: ``True``

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(dropout3d, (input,), input, p=p, training=training, inplace=inplace)
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    inp_dim = input.dim()
    if inp_dim not in (4, 5):
        warn_msg = (f"dropout3d: Received a {inp_dim}-D input to dropout3d, which is deprecated "
                    "and will result in an error in a future release. To retain the behavior "
                    "and silence this warning, please use dropout instead. Note that dropout3d "
                    "exists to provide channel-wise dropout on inputs with 3 spatial dimensions, "
                    "a channel dimension, and an optional batch dimension (i.e. 4D or 5D inputs).")
        warnings.warn(warn_msg)

    is_batched = inp_dim == 5
    if not is_batched:
        input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)

    result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)

    if not is_batched:
        result = result.squeeze_(0) if inplace else result.squeeze(0)
    return result


def feature_alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
    r"""Randomly masks out entire channels (a channel is a feature map).



    For example, the :math:`j`-th channel of the :math:`i`-th sample in the batch input

    is a tensor :math:`\text{input}[i, j]` of the input tensor. Instead of

    setting activations to zero, as in regular Dropout, the activations are set

    to the negative saturation value of the SELU activation function.



    Each element will be masked independently on every forward call with

    probability :attr:`p` using samples from a Bernoulli distribution.

    The elements to be masked are randomized on every forward call, and scaled

    and shifted to maintain zero mean and unit variance.



    See :class:`~torch.nn.FeatureAlphaDropout` for details.



    Args:

        p: dropout probability of a channel to be zeroed. Default: 0.5

        training: apply dropout if is ``True``. Default: ``True``

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            feature_alpha_dropout, (input,), input, p=p, training=training, inplace=inplace
        )
    if p < 0.0 or p > 1.0:
        raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
    return _VF.feature_alpha_dropout_(input, p, training) if inplace else _VF.feature_alpha_dropout(input, p, training)


def _threshold(input: Tensor, threshold: float, value: float, inplace: bool = False) -> Tensor:
    r"""Apply a threshold to each element of the input Tensor.



    See :class:`~torch.nn.Threshold` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(_threshold, (input,), input, threshold, value, inplace=inplace)
    if inplace:
        result = _VF.threshold_(input, threshold, value)
    else:
        result = _VF.threshold(input, threshold, value)
    return result


# We define this function as _threshold because it takes an argument
# named threshold, which clobbers the recursive reference to the
# function needed for __torch_function__ support
threshold = _threshold

threshold_ = _add_docstr(
    _VF.threshold_,
    r"""

threshold_(input, threshold, value) -> Tensor



In-place version of :func:`~threshold`.

""",
)


def relu(input: Tensor, inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""relu(input, inplace=False) -> Tensor



    Applies the rectified linear unit function element-wise. See

    :class:`~torch.nn.ReLU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(relu, (input,), input, inplace=inplace)
    if inplace:
        result = torch.relu_(input)
    else:
        result = torch.relu(input)
    return result


relu_ = _add_docstr(
    torch.relu_,
    r"""

relu_(input) -> Tensor



In-place version of :func:`~relu`.

""",
)


def glu(input: Tensor, dim: int = -1) -> Tensor:  # noqa: D400,D402
    r"""

    glu(input, dim=-1) -> Tensor



    The gated linear unit. Computes:



    .. math ::

        \text{GLU}(a, b) = a \otimes \sigma(b)



    where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma`

    is the sigmoid function and :math:`\otimes` is the element-wise product between matrices.



    See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.



    Args:

        input (Tensor): input tensor

        dim (int): dimension on which to split the input. Default: -1

    """
    if has_torch_function_unary(input):
        return handle_torch_function(glu, (input,), input, dim=dim)
    if input.dim() == 0:
        raise RuntimeError("glu does not support scalars because halving size must be even")
    return torch._C._nn.glu(input, dim)


def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""

    hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor



    Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more

    details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(hardtanh, (input,), input, min_val=min_val, max_val=max_val, inplace=inplace)
    if inplace:
        result = torch._C._nn.hardtanh_(input, min_val, max_val)
    else:
        result = torch._C._nn.hardtanh(input, min_val, max_val)
    return result


hardtanh_ = _add_docstr(
    torch._C._nn.hardtanh_,
    r"""

hardtanh_(input, min_val=-1., max_val=1.) -> Tensor



In-place version of :func:`~hardtanh`.

""",
)


def relu6(input: Tensor, inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""relu6(input, inplace=False) -> Tensor



    Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`.



    See :class:`~torch.nn.ReLU6` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(relu6, (input,), input, inplace=inplace)
    if inplace:
        result = torch._C._nn.relu6_(input)
    else:
        result = torch._C._nn.relu6(input)
    return result


def elu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor:
    r"""Apply the Exponential Linear Unit (ELU) function element-wise.



    See :class:`~torch.nn.ELU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(elu, (input,), input, alpha=alpha, inplace=inplace)
    if inplace:
        result = torch._C._nn.elu_(input, alpha)
    else:
        result = torch._C._nn.elu(input, alpha)
    return result


elu_ = _add_docstr(
    torch._C._nn.elu_,
    r"""

elu_(input, alpha=1.) -> Tensor



In-place version of :func:`~elu`.

""",
)


def selu(input: Tensor, inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""selu(input, inplace=False) -> Tensor



    Applies element-wise,

    :math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`,

    with :math:`\alpha=1.6732632423543772848170429916717` and

    :math:`scale=1.0507009873554804934193349852946`.



    See :class:`~torch.nn.SELU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(selu, (input,), input, inplace=inplace)
    if inplace:
        result = torch.selu_(input)
    else:
        result = torch.selu(input)
    return result


selu_ = _add_docstr(
    torch.selu_,
    r"""

selu_(input) -> Tensor



In-place version of :func:`~selu`.

""",
)


def celu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""celu(input, alpha=1., inplace=False) -> Tensor



    Applies element-wise,

    :math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.



    See :class:`~torch.nn.CELU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(celu, (input,), input, alpha=alpha, inplace=inplace)
    if inplace:
        result = torch.celu_(input, alpha)
    else:
        result = torch.celu(input, alpha)
    return result


celu_ = _add_docstr(
    torch.celu_,
    r"""

celu_(input, alpha=1.) -> Tensor



In-place version of :func:`~celu`.

""",
)


def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor:  # noqa: D400,D402
    r"""

    leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor



    Applies element-wise,

    :math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`



    See :class:`~torch.nn.LeakyReLU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(leaky_relu, (input,), input, negative_slope=negative_slope, inplace=inplace)
    if inplace:
        result = torch._C._nn.leaky_relu_(input, negative_slope)
    else:
        result = torch._C._nn.leaky_relu(input, negative_slope)
    return result


leaky_relu_ = _add_docstr(
    torch._C._nn.leaky_relu_,
    r"""

leaky_relu_(input, negative_slope=0.01) -> Tensor



In-place version of :func:`~leaky_relu`.

""",
)


prelu = _add_docstr(
    torch.prelu,
    r"""prelu(input, weight) -> Tensor



Applies element-wise the function

:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a

learnable parameter.



.. note::

    `weight` is expected to be a scalar or 1-D tensor. If `weight` is 1-D,

    its size must match the number of input channels, determined by

    `input.size(1)` when `input.dim() >= 2`, otherwise 1.

    In the 1-D case, note that when `input` has dim > 2, `weight` can be expanded

    to the shape of `input` in a way that is not possible using normal

    :ref:`broadcasting semantics<broadcasting-semantics>`.



See :class:`~torch.nn.PReLU` for more details.

""")


def rrelu(

    input: Tensor, lower: float = 1.0 / 8, upper: float = 1.0 / 3, training: bool = False, inplace: bool = False

) -> Tensor:  # noqa: D400,D402
    r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor



    Randomized leaky ReLU.



    See :class:`~torch.nn.RReLU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            rrelu, (input,), input, lower=lower, upper=upper, training=training, inplace=inplace
        )
    if inplace:
        result = torch.rrelu_(input, lower, upper, training)
    else:
        result = torch.rrelu(input, lower, upper, training)
    return result


rrelu_ = _add_docstr(
    torch.rrelu_,
    r"""

rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor



In-place version of :func:`~rrelu`.

""",
)

logsigmoid = _add_docstr(
    torch._C._nn.log_sigmoid,
    r"""

logsigmoid(input) -> Tensor



Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)`



See :class:`~torch.nn.LogSigmoid` for more details.

""",
)

gelu = _add_docstr(
    torch._C._nn.gelu,
    r"""

gelu(input, approximate = 'none') -> Tensor



When the approximate argument is 'none', it applies element-wise the function

:math:`\text{GELU}(x) = x * \Phi(x)`



where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.



When the approximate argument is 'tanh', Gelu is estimated with



.. math::

    \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))



See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.

""")

hardshrink = _add_docstr(
    torch.hardshrink,
    r"""

hardshrink(input, lambd=0.5) -> Tensor



Applies the hard shrinkage function element-wise



See :class:`~torch.nn.Hardshrink` for more details.

""")


def tanhshrink(input):  # noqa: D400,D402
    r"""tanhshrink(input) -> Tensor



    Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)`



    See :class:`~torch.nn.Tanhshrink` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(tanhshrink, (input,), input)
    return input - input.tanh()


def softsign(input):  # noqa: D400,D402
    r"""softsign(input) -> Tensor



    Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}`



    See :class:`~torch.nn.Softsign` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(softsign, (input,), input)
    return input / (input.abs() + 1)


softplus = _add_docstr(
    torch._C._nn.softplus,
    r"""

softplus(input, beta=1, threshold=20) -> Tensor



Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`.



For numerical stability the implementation reverts to the linear function

when :math:`input \times \beta > threshold`.



See :class:`~torch.nn.Softplus` for more details.

""",
)


def _get_softmax_dim(name: str, ndim: int, stacklevel: int) -> int:
    warnings.warn(
        f"Implicit dimension choice for {name} has been deprecated. Change the call to include dim=X as an argument.",
        stacklevel=stacklevel,
    )
    if ndim == 0 or ndim == 1 or ndim == 3:
        ret = 0
    else:
        ret = 1
    return ret


def softmin(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
    r"""Apply a softmin function.



    Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula.



    See :class:`~torch.nn.Softmin` for more details.



    Args:

        input (Tensor): input

        dim (int): A dimension along which softmin will be computed (so every slice

            along dim will sum to 1).

        dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.

          If specified, the input tensor is casted to :attr:`dtype` before the operation

          is performed. This is useful for preventing data type overflows. Default: None.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
    if dim is None:
        dim = _get_softmax_dim("softmin", input.dim(), _stacklevel)
    if dtype is None:
        ret = (-input).softmax(dim)
    else:
        ret = (-input).softmax(dim, dtype=dtype)
    return ret


def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
    r"""Apply a softmax function.



    Softmax is defined as:



    :math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`



    It is applied to all slices along dim, and will re-scale them so that the elements

    lie in the range `[0, 1]` and sum to 1.



    See :class:`~torch.nn.Softmax` for more details.



    Args:

        input (Tensor): input

        dim (int): A dimension along which softmax will be computed.

        dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.

          If specified, the input tensor is casted to :attr:`dtype` before the operation

          is performed. This is useful for preventing data type overflows. Default: None.



    .. note::

        This function doesn't work directly with NLLLoss,

        which expects the Log to be computed between the Softmax and itself.

        Use log_softmax instead (it's faster and has better numerical properties).



    """
    if has_torch_function_unary(input):
        return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
    if dim is None:
        dim = _get_softmax_dim("softmax", input.dim(), _stacklevel)
    if dtype is None:
        ret = input.softmax(dim)
    else:
        ret = input.softmax(dim, dtype=dtype)
    return ret


def gumbel_softmax(logits: Tensor, tau: float = 1, hard: bool = False, eps: float = 1e-10, dim: int = -1) -> Tensor:
    r"""

    Sample from the Gumbel-Softmax distribution (`Link 1`_  `Link 2`_) and optionally discretize.



    Args:

      logits: `[..., num_features]` unnormalized log probabilities

      tau: non-negative scalar temperature

      hard: if ``True``, the returned samples will be discretized as one-hot vectors,

            but will be differentiated as if it is the soft sample in autograd

      dim (int): A dimension along which softmax will be computed. Default: -1.



    Returns:

      Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.

      If ``hard=True``, the returned samples will be one-hot, otherwise they will

      be probability distributions that sum to 1 across `dim`.



    .. note::

      This function is here for legacy reasons, may be removed from nn.Functional in the future.



    .. note::

      The main trick for `hard` is to do  `y_hard - y_soft.detach() + y_soft`



      It achieves two things:

      - makes the output value exactly one-hot

      (since we add then subtract y_soft value)

      - makes the gradient equal to y_soft gradient

      (since we strip all other gradients)



    Examples::

        >>> logits = torch.randn(20, 32)

        >>> # Sample soft categorical using reparametrization trick:

        >>> F.gumbel_softmax(logits, tau=1, hard=False)

        >>> # Sample hard categorical using "Straight-through" trick:

        >>> F.gumbel_softmax(logits, tau=1, hard=True)



    .. _Link 1:

        https://arxiv.org/abs/1611.00712

    .. _Link 2:

        https://arxiv.org/abs/1611.01144

    """
    if has_torch_function_unary(logits):
        return handle_torch_function(gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim)
    if eps != 1e-10:
        warnings.warn("`eps` parameter is deprecated and has no effect.")

    gumbels = (
        -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log()
    )  # ~Gumbel(0,1)
    gumbels = (logits + gumbels) / tau  # ~Gumbel(logits,tau)
    y_soft = gumbels.softmax(dim)

    if hard:
        # Straight through.
        index = y_soft.max(dim, keepdim=True)[1]
        y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
        ret = y_hard - y_soft.detach() + y_soft
    else:
        # Reparametrization trick.
        ret = y_soft
    return ret


def log_softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
    r"""Apply a softmax followed by a logarithm.



    While mathematically equivalent to log(softmax(x)), doing these two

    operations separately is slower and numerically unstable. This function

    uses an alternative formulation to compute the output and gradient correctly.



    See :class:`~torch.nn.LogSoftmax` for more details.



    Args:

        input (Tensor): input

        dim (int): A dimension along which log_softmax will be computed.

        dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.

          If specified, the input tensor is cast to :attr:`dtype` before the operation

          is performed. This is useful for preventing data type overflows. Default: None.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
    if dim is None:
        dim = _get_softmax_dim("log_softmax", input.dim(), _stacklevel)
    if dtype is None:
        ret = input.log_softmax(dim)
    else:
        ret = input.log_softmax(dim, dtype=dtype)
    return ret


softshrink = _add_docstr(
    torch._C._nn.softshrink,
    r"""

softshrink(input, lambd=0.5) -> Tensor



Applies the soft shrinkage function elementwise



See :class:`~torch.nn.Softshrink` for more details.

""",
)


def tanh(input):  # noqa: D400,D402
    r"""tanh(input) -> Tensor



    Applies element-wise,

    :math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}`



    See :class:`~torch.nn.Tanh` for more details.

    """
    return input.tanh()


def sigmoid(input):  # noqa: D400,D402
    r"""sigmoid(input) -> Tensor



    Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}`



    See :class:`~torch.nn.Sigmoid` for more details.

    """
    return input.sigmoid()


def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor:
    r"""Apply the Hardsigmoid function element-wise.



    .. math::

        \text{Hardsigmoid}(x) = \begin{cases}

            0 & \text{if~} x \le -3, \\

            1 & \text{if~} x \ge +3, \\

            x / 6 + 1 / 2 & \text{otherwise}

        \end{cases}



    Args:

        inplace: If set to ``True``, will do this operation in-place. Default: ``False``



    See :class:`~torch.nn.Hardsigmoid` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace)
    if inplace:
        return torch._C._nn.hardsigmoid_(input)
    return torch._C._nn.hardsigmoid(input)


linear = _add_docstr(
    torch._C._nn.linear,
    r"""

linear(input, weight, bias=None) -> Tensor



Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.



This operation supports 2-D :attr:`weight` with :ref:`sparse layout<sparse-docs>`



{sparse_beta_warning}



This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.



Shape:



    - Input: :math:`(*, in\_features)` where `*` means any number of

      additional dimensions, including none

    - Weight: :math:`(out\_features, in\_features)` or :math:`(in\_features)`

    - Bias: :math:`(out\_features)` or :math:`()`

    - Output: :math:`(*, out\_features)` or :math:`(*)`, based on the shape of the weight

""".format(**sparse_support_notes))


bilinear = _add_docstr(
    torch.bilinear,
    r"""

bilinear(input1, input2, weight, bias=None) -> Tensor



Applies a bilinear transformation to the incoming data:

:math:`y = x_1^T A x_2 + b`



Shape:



    - input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}`

      and :math:`*` means any number of additional dimensions.

      All but the last dimension of the inputs should be the same.

    - input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`

    - weight: :math:`(\text{out\_features}, \text{in1\_features},

      \text{in2\_features})`

    - bias: :math:`(\text{out\_features})`

    - output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`

      and all but the last dimension are the same shape as the input.

""")


def silu(input: Tensor, inplace: bool = False) -> Tensor:
    r"""Apply the Sigmoid Linear Unit (SiLU) function, element-wise.



    The SiLU function is also known as the swish function.



    .. math::

        \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}



    .. note::

        See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_

        where the SiLU (Sigmoid Linear Unit) was originally coined, and see

        `Sigmoid-Weighted Linear Units for Neural Network Function Approximation

        in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:

        a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_

        where the SiLU was experimented with later.



    See :class:`~torch.nn.SiLU` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(silu, (input,), input, inplace=inplace)
    if inplace:
        return torch._C._nn.silu_(input)
    return torch._C._nn.silu(input)


def mish(input: Tensor, inplace: bool = False) -> Tensor:
    r"""Apply the Mish function, element-wise.



    Mish: A Self Regularized Non-Monotonic Neural Activation Function.



    .. math::

        \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))



    .. note::

        See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_



    See :class:`~torch.nn.Mish` for more details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(mish, (input,), input, inplace=inplace)
    if inplace:
        return torch._C._nn.mish_(input)
    return torch._C._nn.mish(input)


def hardswish(input: Tensor, inplace: bool = False) -> Tensor:
    r"""Apply hardswish function, element-wise.



    Follows implementation as described in the paper:

    `Searching for MobileNetV3`_.



    .. math::

        \text{Hardswish}(x) = \begin{cases}

            0 & \text{if~} x \le -3, \\

            x & \text{if~} x \ge +3, \\

            x \cdot (x + 3) /6 & \text{otherwise}

        \end{cases}



    See :class:`~torch.nn.Hardswish` for more details.



    .. _`Searching for MobileNetV3`:

        https://arxiv.org/abs/1905.02244

    """
    if has_torch_function_unary(input):
        return handle_torch_function(hardswish, (input,), input, inplace=inplace)
    if inplace:
        return torch._C._nn.hardswish_(input)
    return torch._C._nn.hardswish(input)


def _no_grad_embedding_renorm_(weight: Tensor, input: Tensor, max_norm: float, norm_type: float) -> Tuple[Tensor, Tensor]:
    torch.embedding_renorm_(weight.detach(), input, max_norm, norm_type)


def embedding(

    input: Tensor,

    weight: Tensor,

    padding_idx: Optional[int] = None,

    max_norm: Optional[float] = None,

    norm_type: float = 2.0,

    scale_grad_by_freq: bool = False,

    sparse: bool = False,

) -> Tensor:
    r"""Generate a simple lookup table that looks up embeddings in a fixed dictionary and size.



    This module is often used to retrieve word embeddings using indices.

    The input to the module is a list of indices, and the embedding matrix,

    and the output is the corresponding word embeddings.



    See :class:`torch.nn.Embedding` for more details.



    .. note::

        Note that the analytical gradients of this function with respect to

        entries in :attr:`weight` at the row specified by :attr:`padding_idx`

        are expected to differ from the numerical ones.



    .. note::

        Note that `:class:`torch.nn.Embedding` differs from this function in

        that it initializes the row of :attr:`weight` specified by

        :attr:`padding_idx` to all zeros on construction.



    Args:

        input (LongTensor): Tensor containing indices into the embedding matrix

        weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,

            and number of columns equal to the embedding size

        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;

                                     therefore, the embedding vector at :attr:`padding_idx` is not updated during training,

                                     i.e. it remains as a fixed "pad".

        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`

                                    is renormalized to have norm :attr:`max_norm`.

                                    Note: this will modify :attr:`weight` in-place.

        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.

        scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of

                                                the words in the mini-batch. Default ``False``.

        sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under

                                 :class:`torch.nn.Embedding` for more details regarding sparse gradients.



    Shape:

        - Input: LongTensor of arbitrary shape containing the indices to extract

        - Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`,

          where V = maximum index + 1 and embedding_dim = the embedding size

        - Output: `(*, embedding_dim)`, where `*` is the input shape



    Examples::



        >>> # a batch of 2 samples of 4 indices each

        >>> input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]])

        >>> # an embedding matrix containing 10 tensors of size 3

        >>> embedding_matrix = torch.rand(10, 3)

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> F.embedding(input, embedding_matrix)

        tensor([[[ 0.8490,  0.9625,  0.6753],

                 [ 0.9666,  0.7761,  0.6108],

                 [ 0.6246,  0.9751,  0.3618],

                 [ 0.4161,  0.2419,  0.7383]],



                [[ 0.6246,  0.9751,  0.3618],

                 [ 0.0237,  0.7794,  0.0528],

                 [ 0.9666,  0.7761,  0.6108],

                 [ 0.3385,  0.8612,  0.1867]]])



        >>> # example with padding_idx

        >>> weights = torch.rand(10, 3)

        >>> weights[0, :].zero_()

        >>> embedding_matrix = weights

        >>> input = torch.tensor([[0, 2, 0, 5]])

        >>> F.embedding(input, embedding_matrix, padding_idx=0)

        tensor([[[ 0.0000,  0.0000,  0.0000],

                 [ 0.5609,  0.5384,  0.8720],

                 [ 0.0000,  0.0000,  0.0000],

                 [ 0.6262,  0.2438,  0.7471]]])

    """
    if has_torch_function_variadic(input, weight):
        return handle_torch_function(
            embedding,
            (input, weight),
            input,
            weight,
            padding_idx=padding_idx,
            max_norm=max_norm,
            norm_type=norm_type,
            scale_grad_by_freq=scale_grad_by_freq,
            sparse=sparse,
        )
    if padding_idx is not None:
        if padding_idx > 0:
            assert padding_idx < weight.size(0), "Padding_idx must be within num_embeddings"
        elif padding_idx < 0:
            assert padding_idx >= -weight.size(0), "Padding_idx must be within num_embeddings"
            padding_idx = weight.size(0) + padding_idx
    else:
        padding_idx = -1
    if max_norm is not None:
        # Note [embedding_renorm contiguous]
        # `embedding_renorm_` will call .contiguous() on input anyways, so we
        # call it here and take advantage of the improved locality in the
        # `embedding` call below too.
        input = input.contiguous()
        # Note [embedding_renorm set_grad_enabled]
        # XXX: equivalent to
        # with torch.no_grad():
        #   torch.embedding_renorm_
        # remove once script supports set_grad_enabled
        _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)


def embedding_bag(

    input: Tensor,

    weight: Tensor,

    offsets: Optional[Tensor] = None,

    max_norm: Optional[float] = None,

    norm_type: float = 2,

    scale_grad_by_freq: bool = False,

    mode: str = "mean",

    sparse: bool = False,

    per_sample_weights: Optional[Tensor] = None,

    include_last_offset: bool = False,

    padding_idx: Optional[int] = None,

) -> Tensor:
    r"""Compute sums, means or maxes of `bags` of embeddings.



    Calculation is done without instantiating the intermediate embeddings.

    See :class:`torch.nn.EmbeddingBag` for more details.



    Note:

        {backward_reproducibility_note}



    Args:

        input (LongTensor): Tensor containing bags of indices into the embedding matrix

        weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,

            and number of columns equal to the embedding size

        offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines

                             the starting index position of each bag (sequence) in :attr:`input`.

        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`

                                    is renormalized to have norm :attr:`max_norm`.

                                    Note: this will modify :attr:`weight` in-place.

        norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option.

                                     Default ``2``.

        scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of

                                                the words in the mini-batch. Default ``False``.

                                                Note: this option is not supported when ``mode="max"``.

        mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.

                                 Default: ``"mean"``

        sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under

                                 :class:`torch.nn.Embedding` for more details regarding sparse gradients.

                                 Note: this option is not supported when ``mode="max"``.

        per_sample_weights (Tensor, optional): a tensor of float / double weights, or None

            to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights`

            must have exactly the same shape as input and is treated as having the same

            :attr:`offsets`, if those are not None.



        include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1.

            The last element is the size of the input, or the ending index position of the last bag (sequence).



        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the

                                     gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated

                                     during training, i.e. it remains as a fixed "pad". Note that the embedding

                                     vector at :attr:`padding_idx` is excluded from the reduction.



    Shape:

        - :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional)



          - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)

            each of fixed length ``N``, and this will return ``B`` values aggregated in a way

            depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.



          - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of

            multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing

            the starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets`

            of shape `(B)`, :attr:`input` will be viewed as having ``B`` bags.

            Empty bags (i.e., having 0-length) will have returned vectors filled by zeros.



        - :attr:`weight` (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`



        - :attr:`per_sample_weights` (Tensor, optional). Has the same shape as :attr:`input`.



        - :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)`



    Examples::



        >>> # an Embedding module containing 10 tensors of size 3

        >>> embedding_matrix = torch.rand(10, 3)

        >>> # a batch of 2 samples of 4 indices each

        >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9])

        >>> offsets = torch.tensor([0, 4])

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> F.embedding_bag(input, embedding_matrix, offsets)

        tensor([[ 0.3397,  0.3552,  0.5545],

                [ 0.5893,  0.4386,  0.5882]])



        >>> # example with padding_idx

        >>> embedding_matrix = torch.rand(10, 3)

        >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9])

        >>> offsets = torch.tensor([0, 4])

        >>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum')

        tensor([[ 0.0000,  0.0000,  0.0000],

                [-0.7082,  3.2145, -2.6251]])

    """
    if has_torch_function_variadic(input, weight, offsets, per_sample_weights):
        return handle_torch_function(
            embedding_bag,
            (input, weight, offsets, per_sample_weights),
            input,
            weight,
            offsets=offsets,
            max_norm=max_norm,
            norm_type=norm_type,
            scale_grad_by_freq=scale_grad_by_freq,
            mode=mode,
            sparse=sparse,
            per_sample_weights=per_sample_weights,
            include_last_offset=include_last_offset,
            padding_idx=padding_idx,
        )
    # Check for backward compatibility.
    # Used to be embedding_bag(weight, input, ...)
    # Now is     embedding_bag(input, weight, ...)
    if weight.dtype == torch.long and input.is_floating_point():
        warnings.warn(
            "Argument order of nn.functional.embedding_bag was changed. "
            "Usage `embedding_bag(weight, input, ...)` is deprecated, "
            "and should now be `embedding_bag(input, weight, ...)`."
        )
        weight, input = input, weight

    if per_sample_weights is not None and input.size() != per_sample_weights.size():
        raise ValueError(
            f"embedding_bag: If per_sample_weights ({per_sample_weights.shape}) is not None, "
            f"then it must have the same shape as the input ({input.shape})"
        )

    if not weight.dim() == 2:
        raise ValueError(
            f"weight has to be a 2D Tensor, but got Tensor of dimension {weight.dim()}"
        )

    if input.dim() == 2:
        if offsets is not None:
            type_str = "<unknown>"
            # TODO: Remove this once script supports type() calls
            if not torch.jit.is_scripting():
                type_str = str(type(offsets))
            raise ValueError(
                "if input is 2D, then offsets has to be None"
                ", as input is treated is a mini-batch of"
                " fixed length sequences. However, found "
                f"offsets of type {type_str}"
            )
        offsets = torch.arange(0, input.numel(), input.size(1), dtype=input.dtype, device=input.device)

        input = input.reshape(-1)
        if per_sample_weights is not None:
            per_sample_weights = per_sample_weights.reshape(-1)
    elif input.dim() == 1:
        if offsets is None:
            raise ValueError("offsets has to be a 1D Tensor but got None")
        if offsets.dim() != 1:
            raise ValueError("offsets has to be a 1D Tensor")
    else:
        raise ValueError(f"input has to be 1D or 2D Tensor, but got Tensor of dimension {input.dim()}")
    if mode == "sum":
        mode_enum = 0
    elif mode == "mean":
        mode_enum = 1
    elif mode == "max":
        mode_enum = 2

        if scale_grad_by_freq:
            raise ValueError("max mode does not support scaling the gradient by the frequency")

        if sparse:
            raise ValueError("max mode does not support sparse weights")

    else:
        raise ValueError("mode has to be one of sum, mean or max")

    if max_norm is not None:
        # XXX: equivalent to
        # with torch.no_grad():
        #   torch.nembedding_renorm_
        # remove once script supports set_grad_enabled
        _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)

    if per_sample_weights is not None and mode != "sum":
        raise NotImplementedError(
            "embedding_bag: per_sample_weights was not None. "
            "per_sample_weights is only supported for mode='sum' "
            f"(got mode='{mode}'). Please open a feature request on GitHub."
        )

    ret, _, _, _ = torch.embedding_bag(
        weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights, include_last_offset, padding_idx
    )
    return ret


if embedding_bag.__doc__:
    embedding_bag.__doc__ = embedding_bag.__doc__.format(**reproducibility_notes)


def _verify_batch_size(size: List[int]) -> None:
    # XXX: JIT script does not support the reduce from functools, and mul op is a
    # builtin, which cannot be used as a value to a func yet, so rewrite this size
    # check to a simple equivalent for loop
    #
    # TODO: make use of reduce like below when JIT is ready with the missing features:
    # from operator import mul
    # from functools import reduce
    #
    #   if reduce(mul, size[2:], size[0]) == 1
    size_prods = size[0]
    for i in range(len(size) - 2):
        size_prods *= size[i + 2]
    if size_prods == 1:
        raise ValueError(f"Expected more than 1 value per channel when training, got input size {size}")


def batch_norm(

    input: Tensor,

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    weight: Optional[Tensor] = None,

    bias: Optional[Tensor] = None,

    training: bool = False,

    momentum: float = 0.1,

    eps: float = 1e-5,

) -> Tensor:
    r"""Apply Batch Normalization for each channel across a batch of data.



    See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,

    :class:`~torch.nn.BatchNorm3d` for details.

    """
    if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
        return handle_torch_function(
            batch_norm,
            (input, running_mean, running_var, weight, bias),
            input,
            running_mean,
            running_var,
            weight=weight,
            bias=bias,
            training=training,
            momentum=momentum,
            eps=eps,
        )
    if training:
        _verify_batch_size(input.size())

    return torch.batch_norm(
        input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled
    )


def _verify_spatial_size(size: List[int]) -> None:
    # Verify that there is > 1 spatial element for instance norm calculation.
    size_prods = 1
    for i in range(2, len(size)):
        size_prods *= size[i]
    if size_prods == 1:
        raise ValueError(f"Expected more than 1 spatial element when training, got input size {size}")


def instance_norm(

    input: Tensor,

    running_mean: Optional[Tensor] = None,

    running_var: Optional[Tensor] = None,

    weight: Optional[Tensor] = None,

    bias: Optional[Tensor] = None,

    use_input_stats: bool = True,

    momentum: float = 0.1,

    eps: float = 1e-5,

) -> Tensor:
    r"""Apply Instance Normalization independently for each channel in every data sample within a batch.



    See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`,

    :class:`~torch.nn.InstanceNorm3d` for details.

    """
    if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
        return handle_torch_function(
            instance_norm,
            (input, running_mean, running_var, weight, bias),
            input,
            running_mean=running_mean,
            running_var=running_var,
            weight=weight,
            bias=bias,
            use_input_stats=use_input_stats,
            momentum=momentum,
            eps=eps,
        )
    if use_input_stats:
        _verify_spatial_size(input.size())
    return torch.instance_norm(
        input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, torch.backends.cudnn.enabled
    )


def layer_norm(

    input: Tensor,

    normalized_shape: List[int],

    weight: Optional[Tensor] = None,

    bias: Optional[Tensor] = None,

    eps: float = 1e-5,

) -> Tensor:
    r"""Apply Layer Normalization for last certain number of dimensions.



    See :class:`~torch.nn.LayerNorm` for details.

    """
    if has_torch_function_variadic(input, weight, bias):
        return handle_torch_function(
            layer_norm, (input, weight, bias), input, normalized_shape, weight=weight, bias=bias, eps=eps
        )
    return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)


def group_norm(

    input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5

) -> Tensor:
    r"""Apply Group Normalization for last certain number of dimensions.



    See :class:`~torch.nn.GroupNorm` for details.

    """
    if has_torch_function_variadic(input, weight, bias):
        return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
    if input.dim() < 2:
        raise RuntimeError(f"Expected at least 2 dimensions for input tensor but received {input.dim()}")
    _verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:]))
    return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)


def local_response_norm(input: Tensor, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0) -> Tensor:
    r"""Apply local response normalization over an input signal.



    The input signal is composed of several input planes, where channels occupy the second dimension.

    Normalization is applied across channels.



    See :class:`~torch.nn.LocalResponseNorm` for details.

    """
    if has_torch_function_unary(input):
        return handle_torch_function(local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k)
    dim = input.dim()
    if dim < 3:
        raise ValueError(
            f"Expected 3D or higher dimensionality                          input (got {dim} dimensions)"
        )

    if input.numel() == 0:
        return input

    div = input.mul(input)
    if dim == 3:
        div = div.unsqueeze(1)
        div = pad(div, (0, 0, size // 2, (size - 1) // 2))
        div = avg_pool2d(div, (size, 1), stride=1).squeeze(1)
    else:
        sizes = input.size()
        div = div.view(sizes[0], 1, sizes[1], sizes[2], -1)
        div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2))
        div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1)
        div = div.view(sizes)
    div = div.mul(alpha).add(k).pow(beta)
    return input / div


# loss


def ctc_loss(

    log_probs: Tensor,

    targets: Tensor,

    input_lengths: Tensor,

    target_lengths: Tensor,

    blank: int = 0,

    reduction: str = "mean",

    zero_infinity: bool = False,

) -> Tensor:
    r"""Apply the Connectionist Temporal Classification loss.



    See :class:`~torch.nn.CTCLoss` for details.



    Note:

        {cudnn_reproducibility_note}



    Note:

        {backward_reproducibility_note}



    Args:

        log_probs: :math:`(T, N, C)` or :math:`(T, C)` where `C = number of characters in alphabet including blank`,

            `T = input length`, and `N = batch size`.

            The logarithmized probabilities of the outputs

            (e.g. obtained with :func:`torch.nn.functional.log_softmax`).

        targets: :math:`(N, S)` or `(sum(target_lengths))`.

            Targets cannot be blank. In the second form, the targets are assumed to be concatenated.

        input_lengths: :math:`(N)` or :math:`()`.

            Lengths of the inputs (must each be :math:`\leq T`)

        target_lengths: :math:`(N)` or :math:`()`.

            Lengths of the targets

        blank (int, optional):

            Blank label. Default :math:`0`.

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the output losses will be divided by the target lengths and

            then the mean over the batch is taken, ``'sum'``: the output will be

            summed. Default: ``'mean'``

        zero_infinity (bool, optional):

            Whether to zero infinite losses and the associated gradients.

            Default: ``False``

            Infinite losses mainly occur when the inputs are too short

            to be aligned to the targets.



    Example::



        >>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()

        >>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)

        >>> input_lengths = torch.full((16,), 50, dtype=torch.long)

        >>> target_lengths = torch.randint(10, 30, (16,), dtype=torch.long)

        >>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths)

        >>> loss.backward()

    """
    if has_torch_function_variadic(log_probs, targets, input_lengths, target_lengths):
        return handle_torch_function(
            ctc_loss,
            (log_probs, targets, input_lengths, target_lengths),
            log_probs, targets, input_lengths, target_lengths,
            blank=blank, reduction=reduction, zero_infinity=zero_infinity
        )
    return torch.ctc_loss(
        log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction), zero_infinity
    )


if ctc_loss.__doc__:
    ctc_loss.__doc__ = ctc_loss.__doc__.format(**reproducibility_notes)


def nll_loss(

    input: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    ignore_index: int = -100,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:
    r"""Compute the negative log likelihood loss.



    See :class:`~torch.nn.NLLLoss` for details.



    Args:

        input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`

            in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1`

            in the case of K-dimensional loss. `input` is expected to be log-probabilities.

        target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,

            or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for

            K-dimensional loss.

        weight (Tensor, optional): a manual rescaling weight given to each

            class. If given, has to be a Tensor of size `C`

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        ignore_index (int, optional): Specifies a target value that is ignored

            and does not contribute to the input gradient. When :attr:`size_average` is

            ``True``, the loss is averaged over non-ignored targets. Default: -100

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Example::



        >>> # input is of size N x C = 3 x 5

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> # each element in target has to have 0 <= value < C

        >>> target = torch.tensor([1, 0, 4])

        >>> output = F.nll_loss(F.log_softmax(input, dim=1), target)

        >>> output.backward()

    """
    if has_torch_function_variadic(input, target, weight):
        return handle_torch_function(
            nll_loss,
            (input, target, weight),
            input,
            target,
            weight=weight,
            size_average=size_average,
            ignore_index=ignore_index,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)
    return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index)


def poisson_nll_loss(

    input: Tensor,

    target: Tensor,

    log_input: bool = True,

    full: bool = False,

    size_average: Optional[bool] = None,

    eps: float = 1e-8,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:
    r"""Poisson negative log likelihood loss.



    See :class:`~torch.nn.PoissonNLLLoss` for details.



    Args:

        input: expectation of underlying Poisson distribution.

        target: random sample :math:`target \sim \text{Poisson}(input)`.

        log_input: if ``True`` the loss is computed as

            :math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is

            :math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True``

        full: whether to compute full loss, i. e. to add the Stirling

            approximation term. Default: ``False``

            :math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when

            :attr:`log_input`\ =\ ``False``. Default: 1e-8

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            poisson_nll_loss,
            (input, target),
            input,
            target,
            log_input=log_input,
            full=full,
            size_average=size_average,
            eps=eps,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)
    if reduction != "none" and reduction != "mean" and reduction != "sum":
        ret = input
        raise ValueError(reduction + " is not a valid value for reduction")

    ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction))
    return ret


def gaussian_nll_loss(

    input: Tensor,

    target: Tensor,

    var: Tensor,

    full: bool = False,

    eps: float = 1e-6,

    reduction: str = "mean",

) -> Tensor:
    r"""Gaussian negative log likelihood loss.



    See :class:`~torch.nn.GaussianNLLLoss` for details.



    Args:

        input: expectation of the Gaussian distribution.

        target: sample from the Gaussian distribution.

        var: tensor of positive variance(s), one for each of the expectations

            in the input (heteroscedastic), or a single one (homoscedastic).

        full (bool, optional): include the constant term in the loss calculation. Default: ``False``.

        eps (float, optional): value added to var, for stability. Default: 1e-6.

        reduction (str, optional): specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the output is the average of all batch member losses,

            ``'sum'``: the output is the sum of all batch member losses.

            Default: ``'mean'``.

    """
    if has_torch_function_variadic(input, target, var):
        return handle_torch_function(
            gaussian_nll_loss,
            (input, target, var),
            input,
            target,
            var,
            full=full,
            eps=eps,
            reduction=reduction,
        )

    # Check var size
    # If var.size == input.size, the case is heteroscedastic and no further checks are needed.
    # Otherwise:
    if var.size() != input.size():

        # If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case.
        # e.g. input.size = (10, 2, 3), var.size = (10, 2)
        # -> unsqueeze var so that var.shape = (10, 2, 1)
        # this is done so that broadcasting can happen in the loss calculation
        if input.size()[:-1] == var.size():
            var = torch.unsqueeze(var, -1)

        # This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1.
        # This is also a homoscedastic case.
        # e.g. input.size = (10, 2, 3), var.size = (10, 2, 1)
        elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1:  # Heteroscedastic case
            pass

        # If none of the above pass, then the size of var is incorrect.
        else:
            raise ValueError("var is of incorrect size")

    # Check validity of reduction mode
    if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
        raise ValueError(reduction + " is not valid")

    # Entries of var must be non-negative
    if torch.any(var < 0):
        raise ValueError("var has negative entry/entries")

    # Clamp for stability
    var = var.clone()
    with torch.no_grad():
        var.clamp_(min=eps)

    # Calculate the loss
    loss = 0.5 * (torch.log(var) + (input - target)**2 / var)
    if full:
        loss += 0.5 * math.log(2 * math.pi)

    if reduction == 'mean':
        return loss.mean()
    elif reduction == 'sum':
        return loss.sum()
    else:
        return loss


def kl_div(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

    log_target: bool = False,

) -> Tensor:
    r"""Compute the KL Divergence loss.



    Refer - The `Kullback-Leibler divergence Loss

    <https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__



    See :class:`~torch.nn.KLDivLoss` for details.



    Args:

        input: Tensor of arbitrary shape in log-probabilities.

        target: Tensor of the same shape as input. See :attr:`log_target` for

            the target's interpretation.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.

            ``'none'``: no reduction will be applied

            ``'batchmean'``: the sum of the output will be divided by the batchsize

            ``'sum'``: the output will be summed

            ``'mean'``: the output will be divided by the number of elements in the output

            Default: ``'mean'``

        log_target (bool): A flag indicating whether ``target`` is passed in the log space.

            It is recommended to pass certain distributions (like ``softmax``)

            in the log space to avoid numerical issues caused by explicit ``log``.

            Default: ``False``



    .. note::

        :attr:`size_average` and :attr:`reduce` are in the process of being deprecated,

        and in the meantime, specifying either of those two args will override :attr:`reduction`.



    .. warning::

        :attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use

        :attr:`reduction` = ``'batchmean'`` which aligns with KL math definition.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            kl_div,
            (input, target),
            input,
            target,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
            log_target=log_target,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        if reduction == "mean":
            warnings.warn(
                "reduction: 'mean' divides the total loss by both the batch size and the support size."
                "'batchmean' divides only by the batch size, and aligns with the KL div math definition."
                "'mean' will be changed to behave the same as 'batchmean' in the next major release."
            )

        # special case for batchmean
        if reduction == "batchmean":
            reduction_enum = _Reduction.get_enum("sum")
        else:
            reduction_enum = _Reduction.get_enum(reduction)

    reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)

    if reduction == "batchmean" and input.dim() != 0:
        reduced = reduced / input.size()[0]

    return reduced


def cross_entropy(

    input: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    ignore_index: int = -100,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

    label_smoothing: float = 0.0,

) -> Tensor:
    r"""Compute the cross entropy loss between input logits and target.



    See :class:`~torch.nn.CrossEntropyLoss` for details.



    Args:

        input (Tensor) : Predicted unnormalized logits;

            see Shape section below for supported shapes.

        target (Tensor) : Ground truth class indices or class probabilities;

            see Shape section below for supported shapes.

        weight (Tensor, optional): a manual rescaling weight given to each

            class. If given, has to be a Tensor of size `C`

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        ignore_index (int, optional): Specifies a target value that is ignored

            and does not contribute to the input gradient. When :attr:`size_average` is

            ``True``, the loss is averaged over non-ignored targets. Note that

            :attr:`ignore_index` is only applicable when the target contains class indices.

            Default: -100

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``

        label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount

            of smoothing when computing the loss, where 0.0 means no smoothing. The targets

            become a mixture of the original ground truth and a uniform distribution as described in

            `Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.



    Shape:

        - Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`

          in the case of `K`-dimensional loss.

        - Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with

          :math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`.

          If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`.



        where:



        .. math::

            \begin{aligned}

                C ={} & \text{number of classes} \\

                N ={} & \text{batch size} \\

            \end{aligned}



    Examples::



        >>> # Example of target with class indices

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.randint(5, (3,), dtype=torch.int64)

        >>> loss = F.cross_entropy(input, target)

        >>> loss.backward()

        >>>

        >>> # Example of target with class probabilities

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.randn(3, 5).softmax(dim=1)

        >>> loss = F.cross_entropy(input, target)

        >>> loss.backward()

    """
    if has_torch_function_variadic(input, target, weight):
        return handle_torch_function(
            cross_entropy,
            (input, target, weight),
            input,
            target,
            weight=weight,
            size_average=size_average,
            ignore_index=ignore_index,
            reduce=reduce,
            reduction=reduction,
            label_smoothing=label_smoothing,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)
    return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)


def binary_cross_entropy(

    input: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:
    r"""Measure Binary Cross Entropy between the target and input probabilities.



    See :class:`~torch.nn.BCELoss` for details.



    Args:

        input: Tensor of arbitrary shape as probabilities.

        target: Tensor of the same shape as input with values between 0 and 1.

        weight (Tensor, optional): a manual rescaling weight

                if provided it's repeated to match input tensor shape

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Examples::



        >>> input = torch.randn(3, 2, requires_grad=True)

        >>> target = torch.rand(3, 2, requires_grad=False)

        >>> loss = F.binary_cross_entropy(torch.sigmoid(input), target)

        >>> loss.backward()

    """
    if has_torch_function_variadic(input, target, weight):
        return handle_torch_function(
            binary_cross_entropy,
            (input, target, weight),
            input,
            target,
            weight=weight,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    if target.size() != input.size():
        raise ValueError(
            "Using a target size ({}) that is different to the input size ({}) is deprecated. "
            "Please ensure they have the same size.".format(target.size(), input.size())
        )

    if weight is not None:
        new_size = _infer_size(target.size(), weight.size())
        weight = weight.expand(new_size)

    return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum)


def binary_cross_entropy_with_logits(

    input: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

    pos_weight: Optional[Tensor] = None,

) -> Tensor:
    r"""Calculate Binary Cross Entropy between target and input logits.



    See :class:`~torch.nn.BCEWithLogitsLoss` for details.



    Args:

        input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits).

        target: Tensor of the same shape as input with values between 0 and 1

        weight (Tensor, optional): a manual rescaling weight

            if provided it's repeated to match input tensor shape

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when reduce is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``

        pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.

            Must be a tensor with equal size along the class dimension to the number of classes.

            Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired

            operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of

            size [B, C, H, W] will apply different pos_weights to each element of the batch or

            [C, H, W] the same pos_weights across the batch. To apply the same positive weight

            along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].

            Default: ``None``



    Examples::



         >>> input = torch.randn(3, requires_grad=True)

         >>> target = torch.empty(3).random_(2)

         >>> loss = F.binary_cross_entropy_with_logits(input, target)

         >>> loss.backward()

    """
    if has_torch_function_variadic(input, target, weight, pos_weight):
        return handle_torch_function(
            binary_cross_entropy_with_logits,
            (input, target, weight, pos_weight),
            input,
            target,
            weight=weight,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
            pos_weight=pos_weight,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)

    if not (target.size() == input.size()):
        raise ValueError(f"Target size ({target.size()}) must be the same as input size ({input.size()})")

    return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)


def smooth_l1_loss(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

    beta: float = 1.0,

) -> Tensor:
    r"""Compute the Smooth L1 loss.



    Function uses a squared term if the absolute

    element-wise error falls below beta and an L1 term otherwise.



    See :class:`~torch.nn.SmoothL1Loss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            smooth_l1_loss,
            (input, target),
            input,
            target,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
            beta=beta,
        )
    if not (target.size() == input.size()):
        warnings.warn(
            f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
            "This will likely lead to incorrect results due to broadcasting. "
            "Please ensure they have the same size.",
            stacklevel=2,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)

    expanded_input, expanded_target = torch.broadcast_tensors(input, target)

    if beta == 0.0:
        return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
    else:
        return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta)


def huber_loss(

    input: Tensor,

    target: Tensor,

    reduction: str = 'mean',

    delta: float = 1.0,

) -> Tensor:
    r"""Compute the Huber loss.



    Function uses a squared term if the absolute

    element-wise error falls below delta and a delta-scaled L1 term otherwise.



    When delta equals 1, this loss is equivalent to SmoothL1Loss.

    In general, Huber loss differs from SmoothL1Loss by a factor of delta (AKA beta in Smooth L1).



    See :class:`~torch.nn.HuberLoss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            huber_loss,
            (input, target),
            input,
            target,
            reduction=reduction,
            delta=delta,
        )
    if not (target.size() == input.size()):
        warnings.warn(f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
                      "This will likely lead to incorrect results due to broadcasting. "
                      "Please ensure they have the same size.",
                      stacklevel=2)

    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
    return torch._C._nn.huber_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), delta)


def l1_loss(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor



    Function that takes the mean element-wise absolute value difference.



    See :class:`~torch.nn.L1Loss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
        )
    if not (target.size() == input.size()):
        warnings.warn(
            f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
            "This will likely lead to incorrect results due to broadcasting. "
            "Please ensure they have the same size.",
            stacklevel=2,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)

    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
    return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))


def mse_loss(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor



    Measures the element-wise mean squared error.

    See :class:`~torch.nn.MSELoss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
        )
    if not (target.size() == input.size()):
        warnings.warn(
            f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
            "This will likely lead to incorrect results due to broadcasting. "
            "Please ensure they have the same size.",
            stacklevel=2,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)

    expanded_input, expanded_target = torch.broadcast_tensors(input, target)
    return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))


def margin_ranking_loss(

    input1: Tensor,

    input2: Tensor,

    target: Tensor,

    margin: float = 0,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.MarginRankingLoss` for details.

    """
    if has_torch_function_variadic(input1, input2, target):
        return handle_torch_function(
            margin_ranking_loss,
            (input1, input2, target),
            input1,
            input2,
            target,
            margin=margin,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    if (input1.dim() != input2.dim() or input1.dim() != target.dim()):
        raise RuntimeError(
            f"margin_ranking_loss : All input tensors should have same dimension but got sizes: "
            f"input1: {input1.size()}, input2: {input2.size()}, target: {target.size()} "
        )
    return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum)


def hinge_embedding_loss(

    input: Tensor,

    target: Tensor,

    margin: float = 1.0,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.HingeEmbeddingLoss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            hinge_embedding_loss,
            (input, target),
            input,
            target,
            margin=margin,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    return torch.hinge_embedding_loss(input, target, margin, reduction_enum)


def multilabel_margin_loss(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.MultiLabelMarginLoss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            multilabel_margin_loss,
            (input, target),
            input,
            target,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum)


def soft_margin_loss(

    input: Tensor,

    target: Tensor,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""

    soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.SoftMarginLoss` for details.

    """
    if has_torch_function_variadic(input, target):
        return handle_torch_function(
            soft_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    return torch._C._nn.soft_margin_loss(input, target, reduction_enum)


def multilabel_soft_margin_loss(

    input: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.

    """
    if has_torch_function_variadic(input, target, weight):
        return handle_torch_function(
            multilabel_soft_margin_loss,
            (input, target, weight),
            input,
            target,
            weight=weight,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)

    loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input))

    if weight is not None:
        loss = loss * weight

    class_dim = input.dim() - 1
    C = input.size(class_dim)
    loss = loss.sum(dim=class_dim) / C  # only return N loss values

    if reduction == "none":
        ret = loss
    elif reduction == "mean":
        ret = loss.mean()
    elif reduction == "sum":
        ret = loss.sum()
    else:
        ret = input
        raise ValueError(reduction + " is not valid")
    return ret


def cosine_embedding_loss(

    input1: Tensor,

    input2: Tensor,

    target: Tensor,

    margin: float = 0,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.CosineEmbeddingLoss` for details.

    """
    if has_torch_function_variadic(input1, input2, target):
        return handle_torch_function(
            cosine_embedding_loss,
            (input1, input2, target),
            input1,
            input2,
            target,
            margin=margin,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum)


def multi_margin_loss(

    input: Tensor,

    target: Tensor,

    p: int = 1,

    margin: float = 1.0,

    weight: Optional[Tensor] = None,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:  # noqa: D400,D402
    r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor



    See :class:`~torch.nn.MultiMarginLoss` for details.

    """
    if has_torch_function_variadic(input, target, weight):
        return handle_torch_function(
            multi_margin_loss,
            (input, target, weight),
            input,
            target,
            p=p,
            margin=margin,
            weight=weight,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    if p != 1 and p != 2:
        raise ValueError("only p == 1 and p == 2 supported")
    if weight is not None:
        if weight.dim() != 1:
            raise ValueError("weight must be one-dimensional")

    return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum)


pixel_shuffle = _add_docstr(
    torch.pixel_shuffle,
    r"""

pixel_shuffle(input, upscale_factor) -> Tensor



Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a

tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is the :attr:`upscale_factor`.



See :class:`~torch.nn.PixelShuffle` for details.



Args:

    input (Tensor): the input tensor

    upscale_factor (int): factor to increase spatial resolution by



Examples::



    >>> input = torch.randn(1, 9, 4, 4)

    >>> output = torch.nn.functional.pixel_shuffle(input, 3)

    >>> print(output.size())

    torch.Size([1, 1, 12, 12])

""",
)

pixel_unshuffle = _add_docstr(
    torch.pixel_unshuffle,
    r"""

pixel_unshuffle(input, downscale_factor) -> Tensor



Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements in a

tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape

:math:`(*, C \times r^2, H, W)`, where r is the :attr:`downscale_factor`.



See :class:`~torch.nn.PixelUnshuffle` for details.



Args:

    input (Tensor): the input tensor

    downscale_factor (int): factor to increase spatial resolution by



Examples::



    >>> input = torch.randn(1, 1, 12, 12)

    >>> output = torch.nn.functional.pixel_unshuffle(input, 3)

    >>> print(output.size())

    torch.Size([1, 9, 4, 4])

""",
)

channel_shuffle = _add_docstr(
    torch.channel_shuffle,
    r"""

channel_shuffle(input, groups) -> Tensor



Divide the channels in a tensor of shape :math:`(*, C , H, W)`

into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,

while keeping the original tensor shape.



See :class:`~torch.nn.ChannelShuffle` for details.



Args:

    input (Tensor): the input tensor

    groups (int): number of groups to divide channels in and rearrange.



Examples::



    >>> input = torch.randn(1, 4, 2, 2)

    >>> print(input)

    [[[[1, 2],

       [3, 4]],

      [[5, 6],

       [7, 8]],

      [[9, 10],

       [11, 12]],

      [[13, 14],

       [15, 16]],

     ]]

    >>> output = torch.nn.functional.channel_shuffle(input, 2)

    >>> print(output)

    [[[[1, 2],

       [3, 4]],

      [[9, 10],

       [11, 12]],

      [[5, 6],

       [7, 8]],

      [[13, 14],

       [15, 16]],

     ]]

""",
)

native_channel_shuffle = _add_docstr(
    torch.native_channel_shuffle,
    r"""

native_channel_shuffle(input, groups) -> Tensor



Native kernel level implementation of the `channel_shuffle`.

This function might become private in future releases, use with caution.



Divide the channels in a tensor of shape :math:`(*, C , H, W)`

into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,

while keeping the original tensor shape.



See :class:`~torch.nn.ChannelShuffle` for details.



Args:

    input (Tensor): the input tensor

    groups (int): number of groups to divide channels in and rearrange.



Examples::



    >>> input = torch.randn(1, 4, 2, 2)

    >>> print(input)

    [[[[1, 2],

       [3, 4]],

      [[5, 6],

       [7, 8]],

      [[9, 10],

       [11, 12]],

      [[13, 14],

       [15, 16]],

     ]]

    >>> output = torch.nn.functional.native_channel_shuffle(input, 2)

    >>> print(output)

    [[[[1, 2],

       [3, 4]],

      [[9, 10],

       [11, 12]],

      [[5, 6],

       [7, 8]],

      [[13, 14],

       [15, 16]],

     ]]

""",
)

@_overload  # noqa: F811
def upsample(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor:  # noqa: F811,B950
    pass


@_overload  # noqa: F811
def upsample(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor:  # noqa: F811,B950
    pass


def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None):  # noqa: F811
    r"""Upsample input.



    Provided tensor is upsampled to either the given :attr:`size` or the given

    :attr:`scale_factor`



    .. warning::

        This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.

        This is equivalent with ``nn.functional.interpolate(...)``.



    Note:

        {backward_reproducibility_note}



    The algorithm used for upsampling is determined by :attr:`mode`.



    Currently temporal, spatial and volumetric upsampling are supported, i.e.

    expected inputs are 3-D, 4-D or 5-D in shape.



    The input dimensions are interpreted in the form:

    `mini-batch x channels x [optional depth] x [optional height] x width`.



    The modes available for upsampling are: `nearest`, `linear` (3D-only),

    `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)



    Args:

        input (Tensor): the input tensor

        size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):

            output spatial size.

        scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.

        mode (str): algorithm used for upsampling:

            ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |

            ``'trilinear'``. Default: ``'nearest'``

        align_corners (bool, optional): Geometrically, we consider the pixels of the

            input and output as squares rather than points.

            If set to ``True``, the input and output tensors are aligned by the

            center points of their corner pixels, preserving the values at the corner pixels.

            If set to ``False``, the input and output tensors are aligned by the corner

            points of their corner pixels, and the interpolation uses edge value padding

            for out-of-boundary values, making this operation *independent* of input size

            when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`

            is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.

            Default: ``False``



    .. note::

        With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce

        negative values or values greater than 255 for images.

        Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot

        when displaying the image.



    .. warning::

        With ``align_corners = True``, the linearly interpolating modes

        (`linear`, `bilinear`, and `trilinear`) don't proportionally align the

        output and input pixels, and thus the output values can depend on the

        input size. This was the default behavior for these modes up to version

        0.3.1. Since then, the default behavior is ``align_corners = False``.

        See :class:`~torch.nn.Upsample` for concrete examples on how this

        affects the outputs.



    """
    warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode, align_corners)


if upsample.__doc__:
    upsample.__doc__ = upsample.__doc__.format(**reproducibility_notes)


def _is_integer(x) -> bool:
    r"""Type check the input number is an integer.



    Will return True for int, SymInt, Numpy integers and Tensors with integer elements.

    """
    if isinstance(x, (int, torch.SymInt)):
        return True
    if np is not None and isinstance(x, np.integer):
        return True
    return isinstance(x, Tensor) and not x.is_floating_point()


@_overload  # noqa: F811
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor:  # noqa: F811,B950
    pass


@_overload  # noqa: F811
def interpolate(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor:  # noqa: F811,B950
    pass


@_overload  # noqa: F811
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor:  # noqa: F811,B950
    pass


@_overload  # noqa: F811
def interpolate(  # noqa: F811

    input: Tensor,

    size: Optional[List[int]] = None,

    scale_factor: Optional[float] = None,

    mode: str = "nearest",

    align_corners: Optional[bool] = None,

    recompute_scale_factor: Optional[bool] = None,

    antialias: bool = False,

) -> Tensor:  # noqa: F811
    pass

def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor:  # noqa: F811,B950
    r"""Down/up samples the input.



    Tensor interpolated to either the given :attr:`size` or the given

    :attr:`scale_factor`



    The algorithm used for interpolation is determined by :attr:`mode`.



    Currently temporal, spatial and volumetric sampling are supported, i.e.

    expected inputs are 3-D, 4-D or 5-D in shape.



    The input dimensions are interpreted in the form:

    `mini-batch x channels x [optional depth] x [optional height] x width`.



    The modes available for resizing are: `nearest`, `linear` (3D-only),

    `bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`, `nearest-exact`



    Args:

        input (Tensor): the input tensor

        size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):

            output spatial size.

        scale_factor (float or Tuple[float]): multiplier for spatial size. If `scale_factor` is a tuple,

            its length has to match the number of spatial dimensions; `input.dim() - 2`.

        mode (str): algorithm used for upsampling:

            ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |

            ``'trilinear'`` | ``'area'`` | ``'nearest-exact'``. Default: ``'nearest'``

        align_corners (bool, optional): Geometrically, we consider the pixels of the

            input and output as squares rather than points.

            If set to ``True``, the input and output tensors are aligned by the

            center points of their corner pixels, preserving the values at the corner pixels.

            If set to ``False``, the input and output tensors are aligned by the corner

            points of their corner pixels, and the interpolation uses edge value padding

            for out-of-boundary values, making this operation *independent* of input size

            when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`

            is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.

            Default: ``False``

        recompute_scale_factor (bool, optional): recompute the scale_factor for use in the

            interpolation calculation. If `recompute_scale_factor` is ``True``, then

            `scale_factor` must be passed in and `scale_factor` is used to compute the

            output `size`. The computed output `size` will be used to infer new scales for

            the interpolation. Note that when `scale_factor` is floating-point, it may differ

            from the recomputed `scale_factor` due to rounding and precision issues.

            If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will

            be used directly for interpolation. Default: ``None``.

        antialias (bool, optional): flag to apply anti-aliasing. Default: ``False``. Using anti-alias

            option together with ``align_corners=False``, interpolation result would match Pillow

            result for downsampling operation. Supported modes: ``'bilinear'``, ``'bicubic'``.



    .. note::

        With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce

        negative values or values greater than 255 for images.

        Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot

        when displaying the image.



    .. note::

        Mode ``mode='nearest-exact'`` matches Scikit-Image and PIL nearest neighbours interpolation

        algorithms and fixes known issues with ``mode='nearest'``. This mode is introduced to keep

        backward compatibility.

        Mode ``mode='nearest'`` matches buggy OpenCV's ``INTER_NEAREST`` interpolation algorithm.



    .. note::

        The gradients for the dtype ``float16`` on CUDA may be inaccurate in the upsample operation

        when using modes ``['linear', 'bilinear', 'bicubic', 'trilinear', 'area']``.

        For more details, please refer to the discussion in

        `issue#104157 <https://github.com/pytorch/pytorch/issues/104157>`_.



    Note:

        {backward_reproducibility_note}

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            interpolate,
            (input,),
            input,
            size=size,
            scale_factor=scale_factor,
            mode=mode,
            align_corners=align_corners,
            recompute_scale_factor=recompute_scale_factor,
            antialias=antialias
        )

    if mode in ("nearest", "area", "nearest-exact"):
        if align_corners is not None:
            raise ValueError(
                "align_corners option can only be set with the "
                "interpolating modes: linear | bilinear | bicubic | trilinear"
            )
    else:
        if align_corners is None:
            align_corners = False

    dim = input.dim() - 2  # Number of spatial dimensions.

    # Process size and scale_factor.  Validate that exactly one is set.
    # Validate its length if it is a list, or expand it if it is a scalar.
    # After this block, exactly one of output_size and scale_factors will
    # be non-None, and it will be a list (or tuple).
    if size is not None and scale_factor is not None:
        raise ValueError("only one of size or scale_factor should be defined")
    elif size is not None:
        assert scale_factor is None
        scale_factors = None
        if isinstance(size, (list, tuple)):
            if len(size) != dim:
                raise ValueError(
                    "Input and output must have the same number of spatial dimensions, but got "
                    f"input with spatial dimensions of {list(input.shape[2:])} and output size of {size}. "
                    "Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
                    "output size in (o1, o2, ...,oK) format."
                )
            if not torch.jit.is_scripting():
                if not all(_is_integer(x) for x in size):
                    raise TypeError(
                        "expected size to be one of int or Tuple[int] or Tuple[int, int] or "
                        f"Tuple[int, int, int], but got size with types {[type(x) for x in size]}"
                    )
            output_size = size
        else:
            output_size = [size for _ in range(dim)]
    elif scale_factor is not None:
        assert size is None
        output_size = None
        if isinstance(scale_factor, (list, tuple)):
            if len(scale_factor) != dim:
                raise ValueError(
                    "Input and scale_factor must have the same number of spatial dimensions, but "
                    f"got input with spatial dimensions of {list(input.shape[2:])} and "
                    f"scale_factor of shape {scale_factor}. "
                    "Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
                    "scale_factor in (s1, s2, ...,sK) format."
                )
            scale_factors = scale_factor
        else:
            scale_factors = [scale_factor for _ in range(dim)]
    else:
        raise ValueError("either size or scale_factor should be defined")

    if recompute_scale_factor is not None and recompute_scale_factor and size is not None:
        raise ValueError("recompute_scale_factor is not meaningful with an explicit size.")

    # "area" mode always requires an explicit size rather than scale factor.
    # Re-use the recompute_scale_factor code path.
    if mode == "area" and output_size is None:
        recompute_scale_factor = True

    if recompute_scale_factor is not None and recompute_scale_factor:
        # We compute output_size here, then un-set scale_factors.
        # The C++ code will recompute it based on the (integer) output size.
        assert scale_factors is not None
        if not torch.jit.is_scripting() and torch._C._get_tracing_state():
            # make scale_factor a tensor in tracing so constant doesn't get baked in
            output_size = [
                (torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float()))
                for i in range(dim)
            ]
        elif torch.jit.is_scripting():
            output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i]))
                           for i in range(dim)]
        else:
            output_size = [
                _sym_int(input.size(i + 2) * scale_factors[i])
                for i in range(dim)
            ]
        scale_factors = None

    if antialias and not (mode in ("bilinear", "bicubic") and input.ndim == 4):
        raise ValueError("Anti-alias option is restricted to bilinear and bicubic modes and requires a 4-D tensor as input")

    if input.dim() == 3 and mode == "nearest":
        return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors)
    if input.dim() == 4 and mode == "nearest":
        return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
    if input.dim() == 5 and mode == "nearest":
        return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors)

    if input.dim() == 3 and mode == "nearest-exact":
        return torch._C._nn._upsample_nearest_exact1d(input, output_size, scale_factors)
    if input.dim() == 4 and mode == "nearest-exact":
        return torch._C._nn._upsample_nearest_exact2d(input, output_size, scale_factors)
    if input.dim() == 5 and mode == "nearest-exact":
        return torch._C._nn._upsample_nearest_exact3d(input, output_size, scale_factors)

    if input.dim() == 3 and mode == "area":
        assert output_size is not None
        return adaptive_avg_pool1d(input, output_size)
    if input.dim() == 4 and mode == "area":
        assert output_size is not None
        return adaptive_avg_pool2d(input, output_size)
    if input.dim() == 5 and mode == "area":
        assert output_size is not None
        return adaptive_avg_pool3d(input, output_size)

    if input.dim() == 3 and mode == "linear":
        assert align_corners is not None
        return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors)
    if input.dim() == 4 and mode == "bilinear":
        assert align_corners is not None
        if antialias:
            return torch._C._nn._upsample_bilinear2d_aa(input, output_size, align_corners, scale_factors)
        # Two levels are necessary to prevent TorchScript from touching
        # are_deterministic_algorithms_enabled.
        if not torch.jit.is_scripting():
            if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
                # Use slow decomp whose backward will be in terms of index_put
                # importlib is required because the import cannot be top level
                # (cycle) and cannot be nested (TS doesn't support)
                return importlib.import_module('torch._decomp.decompositions')._upsample_linear_vec(
                    input, output_size, align_corners, scale_factors)
        return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors)
    if input.dim() == 5 and mode == "trilinear":
        assert align_corners is not None
        return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors)
    if input.dim() == 4 and mode == "bicubic":
        assert align_corners is not None
        if antialias:
            return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors)
        return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors)

    if input.dim() == 3 and mode == "bilinear":
        raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
    if input.dim() == 3 and mode == "trilinear":
        raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
    if input.dim() == 4 and mode == "linear":
        raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
    if input.dim() == 4 and mode == "trilinear":
        raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
    if input.dim() == 5 and mode == "linear":
        raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
    if input.dim() == 5 and mode == "bilinear":
        raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")

    raise NotImplementedError(
        "Input Error: Only 3D, 4D and 5D input Tensors supported"
        f" (got {input.dim()}D) for the modes: nearest | linear | bilinear | bicubic | trilinear | area | nearest-exact"
        f" (got {mode})"
    )


if interpolate.__doc__:
    interpolate.__doc__ = interpolate.__doc__.format(**reproducibility_notes)


@_overload  # noqa: F811
def upsample_nearest(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None) -> Tensor:  # noqa: F811
    pass


@_overload  # noqa: F811
def upsample_nearest(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None) -> Tensor:  # noqa: F811
    pass


def upsample_nearest(input, size=None, scale_factor=None):  # noqa: F811
    r"""Upsamples the input, using nearest neighbours' pixel values.



    .. warning::

        This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.

        This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``.



    Currently spatial and volumetric upsampling are supported (i.e. expected

    inputs are 4 or 5 dimensional).



    Args:

        input (Tensor): input

        size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia

            size.

        scale_factor (int): multiplier for spatial size. Has to be an integer.



    Note:

        {backward_reproducibility_note}

    """
    # DeprecationWarning is ignored by default
    warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode="nearest")


if upsample_nearest.__doc__:
    upsample_nearest.__doc__ = upsample_nearest.__doc__.format(**reproducibility_notes)


@_overload  # noqa: F811
def upsample_bilinear(

    input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None

) -> Tensor:  # noqa: F811
    pass


@_overload  # noqa: F811
def upsample_bilinear(  # noqa: F811

    input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None

) -> Tensor:  # noqa: F811
    pass


@_overload  # noqa: F811
def upsample_bilinear(  # noqa: F811

    input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None

) -> Tensor:  # noqa: F811
    pass


@_overload  # noqa: F811
def upsample_bilinear(  # noqa: F811

    input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None

) -> Tensor:  # noqa: F811
    pass


def upsample_bilinear(input, size=None, scale_factor=None):  # noqa: F811
    r"""Upsamples the input, using bilinear upsampling.



    .. warning::

        This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.

        This is equivalent with

        ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.



    Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo

    volumetric (5 dimensional) inputs.



    Args:

        input (Tensor): input

        size (int or Tuple[int, int]): output spatial size.

        scale_factor (int or Tuple[int, int]): multiplier for spatial size



    Note:

        {backward_reproducibility_note}

    """
    # DeprecationWarning is ignored by default
    warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.")
    return interpolate(input, size, scale_factor, mode="bilinear", align_corners=True)


if upsample_bilinear.__doc__:
    upsample_bilinear.__doc__ = upsample_bilinear.__doc__.format(**reproducibility_notes)

GRID_SAMPLE_INTERPOLATION_MODES = {
    "bilinear": 0,
    "nearest": 1,
    "bicubic": 2,
}

GRID_SAMPLE_PADDING_MODES = {
    "zeros": 0,
    "border": 1,
    "reflection": 2,
}


def grid_sample(

    input: Tensor,

    grid: Tensor,

    mode: str = "bilinear",

    padding_mode: str = "zeros",

    align_corners: Optional[bool] = None,

) -> Tensor:
    r"""Compute grid sample.



    Given an :attr:`input` and a flow-field :attr:`grid`, computes the

    ``output`` using :attr:`input` values and pixel locations from :attr:`grid`.



    Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are

    supported.



    In the spatial (4-D) case, for :attr:`input` with shape

    :math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape

    :math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape

    :math:`(N, C, H_\text{out}, W_\text{out})`.



    For each output location ``output[n, :, h, w]``, the size-2 vector

    ``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``,

    which are used to interpolate the output value ``output[n, :, h, w]``.

    In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the

    ``x``, ``y``, ``z`` pixel locations for interpolating

    ``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or

    ``bilinear`` interpolation method to sample the input pixels.



    :attr:`grid` specifies the sampling pixel locations normalized by the

    :attr:`input` spatial dimensions. Therefore, it should have most values in

    the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the

    left-top pixel of :attr:`input`, and values  ``x = 1, y = 1`` is the

    right-bottom pixel of :attr:`input`.



    If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding

    outputs are handled as defined by :attr:`padding_mode`. Options are



        * ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations,

        * ``padding_mode="border"``: use border values for out-of-bound grid locations,

        * ``padding_mode="reflection"``: use values at locations reflected by

          the border for out-of-bound grid locations. For location far away

          from the border, it will keep being reflected until becoming in bound,

          e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1``

          and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes

          ``x'' = -0.5``.



    Note:

        This function is often used in conjunction with :func:`affine_grid`

        to build `Spatial Transformer Networks`_ .



    Note:

        When using the CUDA backend, this operation may induce nondeterministic

        behaviour in its backward pass that is not easily switched off.

        Please see the notes on :doc:`/notes/randomness` for background.



    Note:

        NaN values in :attr:`grid` would be interpreted as ``-1``.



    Args:

        input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case)

                        or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case)

        grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case)

                       or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case)

        mode (str): interpolation mode to calculate output values

            ``'bilinear'`` | ``'nearest'`` | ``'bicubic'``. Default: ``'bilinear'``

            Note: ``mode='bicubic'`` supports only 4-D input.

            When ``mode='bilinear'`` and the input is 5-D, the interpolation mode

            used internally will actually be trilinear. However, when the input is 4-D,

            the interpolation mode will legitimately be bilinear.

        padding_mode (str): padding mode for outside grid values

            ``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'``

        align_corners (bool, optional): Geometrically, we consider the pixels of the

            input  as squares rather than points.

            If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring

            to the center points of the input's corner pixels. If set to ``False``, they

            are instead considered as referring to the corner points of the input's corner

            pixels, making the sampling more resolution agnostic.

            This option parallels the ``align_corners`` option in

            :func:`interpolate`, and so whichever option is used here

            should also be used there to resize the input image before grid sampling.

            Default: ``False``



    Returns:

        output (Tensor): output Tensor



    .. _`Spatial Transformer Networks`:

        https://arxiv.org/abs/1506.02025



    .. warning::

        When ``align_corners = True``, the grid positions depend on the pixel

        size relative to the input image size, and so the locations sampled by

        :func:`grid_sample` will differ for the same input given at different

        resolutions (that is, after being upsampled or downsampled).

        The default behavior up to version 1.2.0 was ``align_corners = True``.

        Since then, the default behavior has been changed to ``align_corners = False``,

        in order to bring it in line with the default for :func:`interpolate`.



    .. note::

        ``mode='bicubic'`` is implemented using the `cubic convolution algorithm`_ with :math:`\alpha=-0.75`.

        The constant :math:`\alpha` might be different from packages to packages.

        For example, `PIL`_ and `OpenCV`_ use -0.5 and -0.75 respectively.

        This algorithm may "overshoot" the range of values it's interpolating.

        For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255].

        Clamp the results with :func:`torch.clamp` to ensure they are within the valid range.

    .. _`cubic convolution algorithm`: https://en.wikipedia.org/wiki/Bicubic_interpolation

    .. _`PIL`: https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/src/libImaging/Resample.c#L51

    .. _`OpenCV`: https://github.com/opencv/opencv/blob/f345ed564a06178670750bad59526cfa4033be55/modules/imgproc/src/resize.cpp#L908

    """
    if has_torch_function_variadic(input, grid):
        return handle_torch_function(
            grid_sample, (input, grid), input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners
        )
    if mode != "bilinear" and mode != "nearest" and mode != "bicubic":
        raise ValueError(
            f"nn.functional.grid_sample(): expected mode to be 'bilinear', 'nearest' or 'bicubic', but got: '{mode}'"
        )
    if padding_mode != "zeros" and padding_mode != "border" and padding_mode != "reflection":
        raise ValueError(
            "nn.functional.grid_sample(): expected padding_mode "
            "to be 'zeros', 'border', or 'reflection', "
            f"but got: '{padding_mode}'"
        )

    if mode == "bilinear":
        mode_enum = 0
    elif mode == "nearest":
        mode_enum = 1
    else:  # mode == 'bicubic'
        mode_enum = 2

    if padding_mode == "zeros":
        padding_mode_enum = 0
    elif padding_mode == "border":
        padding_mode_enum = 1
    else:  # padding_mode == 'reflection'
        padding_mode_enum = 2

    if align_corners is None:
        warnings.warn(
            "Default grid_sample and affine_grid behavior has changed "
            "to align_corners=False since 1.3.0. Please specify "
            "align_corners=True if the old behavior is desired. "
            "See the documentation of grid_sample for details."
        )
        align_corners = False

    return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners)


def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[bool] = None) -> Tensor:
    r"""Generate 2D or 3D flow field (sampling grid), given a batch of affine matrices :attr:`theta`.



    .. note::

        This function is often used in conjunction with :func:`grid_sample`

        to build `Spatial Transformer Networks`_ .



    Args:

        theta (Tensor): input batch of affine matrices with shape

            (:math:`N \times 2 \times 3`) for 2D or

            (:math:`N \times 3 \times 4`) for 3D

        size (torch.Size): the target output image size.

            (:math:`N \times C \times H \times W` for 2D or

            :math:`N \times C \times D \times H \times W` for 3D)

            Example: torch.Size((32, 3, 24, 24))

        align_corners (bool, optional): if ``True``, consider ``-1`` and ``1``

            to refer to the centers of the corner pixels rather than the image corners.

            Refer to :func:`grid_sample` for a more complete description.

            A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample`

            with the same setting for this option.

            Default: ``False``



    Returns:

        output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)



    .. _`Spatial Transformer Networks`:

        https://arxiv.org/abs/1506.02025



    .. warning::

        When ``align_corners = True``, the grid positions depend on the pixel

        size relative to the input image size, and so the locations sampled by

        :func:`grid_sample` will differ for the same input given at different

        resolutions (that is, after being upsampled or downsampled).

        The default behavior up to version 1.2.0 was ``align_corners = True``.

        Since then, the default behavior has been changed to ``align_corners = False``,

        in order to bring it in line with the default for :func:`interpolate`.

    .. warning::

        When ``align_corners = True``, 2D affine transforms on 1D data and

        3D affine transforms on 2D data (that is, when one of the spatial

        dimensions has unit size) are ill-defined, and not an intended use case.

        This is not a problem when ``align_corners = False``.

        Up to version 1.2.0, all grid points along a unit dimension were

        considered arbitrarily to be at ``-1``.

        From version 1.3.0, under ``align_corners = True`` all grid points

        along a unit dimension are considered to be at ``0``

        (the center of the input image).

    """
    if has_torch_function_unary(theta):
        return handle_torch_function(affine_grid, (theta,), theta, size, align_corners=align_corners)
    if align_corners is None:
        warnings.warn(
            "Default grid_sample and affine_grid behavior has changed "
            "to align_corners=False since 1.3.0. Please specify "
            "align_corners=True if the old behavior is desired. "
            "See the documentation of grid_sample for details."
        )
        align_corners = False

    # enforce floating point dtype on theta
    if not theta.is_floating_point():
        raise ValueError(f"Expected theta to have floating point type, but got {theta.dtype}")
    # check that shapes and sizes match
    if len(size) == 4:
        if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3:
            raise ValueError(
                f"Expected a batch of 2D affine matrices of shape Nx2x3 for size {size}. Got {theta.shape}."
            )
        spatial_size = size[-2:]  # spatial dimension sizes
    elif len(size) == 5:
        if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4:
            raise ValueError(
                f"Expected a batch of 3D affine matrices of shape Nx3x4 for size {size}. Got {theta.shape}."
            )
        spatial_size = size[-3:]  # spatial dimension sizes
    else:
        raise NotImplementedError(
            "affine_grid only supports 4D and 5D sizes, "
            "for 2D and 3D affine transforms, respectively. "
            f"Got size {size}."
        )
    # check for empty span
    if align_corners and min(spatial_size) == 1:
        warnings.warn(
            "Since version 1.3.0, affine_grid behavior has changed "
            "for unit-size grids when align_corners=True. "
            "This is not an intended use case of affine_grid. "
            "See the documentation of affine_grid for details."
        )
    elif min(size) <= 0:
        raise ValueError(f"Expected non-zero, positive output size. Got {size}")

    return torch.affine_grid_generator(theta, size, align_corners)


def pad(input: Tensor, pad: List[int], mode: str = "constant", value: Optional[float] = None) -> Tensor:
    r"""

pad(input, pad, mode="constant", value=None) -> Tensor



Pads tensor.



Padding size:

    The padding size by which to pad some dimensions of :attr:`input`

    are described starting from the last dimension and moving forward.

    :math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions

    of ``input`` will be padded.

    For example, to pad only the last dimension of the input tensor, then

    :attr:`pad` has the form

    :math:`(\text{padding\_left}, \text{padding\_right})`;

    to pad the last 2 dimensions of the input tensor, then use

    :math:`(\text{padding\_left}, \text{padding\_right},`

    :math:`\text{padding\_top}, \text{padding\_bottom})`;

    to pad the last 3 dimensions, use

    :math:`(\text{padding\_left}, \text{padding\_right},`

    :math:`\text{padding\_top}, \text{padding\_bottom}`

    :math:`\text{padding\_front}, \text{padding\_back})`.



Padding mode:

    See :class:`torch.nn.CircularPad2d`, :class:`torch.nn.ConstantPad2d`,

    :class:`torch.nn.ReflectionPad2d`, and :class:`torch.nn.ReplicationPad2d`

    for concrete examples on how each of the padding modes works. Constant

    padding is implemented for arbitrary dimensions. Circular, replicate and

    reflection padding are implemented for padding the last 3 dimensions of a

    4D or 5D input tensor, the last 2 dimensions of a 3D or 4D input tensor,

    or the last dimension of a 2D or 3D input tensor.



Note:

    When using the CUDA backend, this operation may induce nondeterministic

    behaviour in its backward pass that is not easily switched off.

    Please see the notes on :doc:`/notes/randomness` for background.



Args:

    input (Tensor): N-dimensional tensor

    pad (tuple): m-elements tuple, where

        :math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.

    mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.

        Default: ``'constant'``

    value: fill value for ``'constant'`` padding. Default: ``0``



Examples::



    >>> t4d = torch.empty(3, 3, 4, 2)

    >>> p1d = (1, 1) # pad last dim by 1 on each side

    >>> out = F.pad(t4d, p1d, "constant", 0)  # effectively zero padding

    >>> print(out.size())

    torch.Size([3, 3, 4, 4])

    >>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)

    >>> out = F.pad(t4d, p2d, "constant", 0)

    >>> print(out.size())

    torch.Size([3, 3, 8, 4])

    >>> t4d = torch.empty(3, 3, 4, 2)

    >>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)

    >>> out = F.pad(t4d, p3d, "constant", 0)

    >>> print(out.size())

    torch.Size([3, 9, 7, 3])



"""
    if has_torch_function_unary(input):
        return handle_torch_function(
            torch.nn.functional.pad, (input,), input, pad, mode=mode, value=value)
    if not torch.jit.is_scripting():
        if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
            if mode == 'replicate':
                # Use slow decomp whose backward will be in terms of index_put.
                # importlib is required because the import cannot be top level
                # (cycle) and cannot be nested (TS doesn't support)
                return importlib.import_module('torch._decomp.decompositions')._replication_pad(
                    input, pad
                )
    return torch._C._nn.pad(input, pad, mode, value)

# TODO: Fix via https://github.com/pytorch/pytorch/issues/75798
pad.__module__ = "torch.nn.functional"

# distance


pairwise_distance = _add_docstr(
    torch.pairwise_distance,
    r"""

pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor



See :class:`torch.nn.PairwiseDistance` for details

""")


pdist = _add_docstr(
    torch.pdist,
    r"""

pdist(input, p=2) -> Tensor



Computes the p-norm distance between every pair of row vectors in the input.

This is identical to the upper triangular portion, excluding the diagonal, of

`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster

if the rows are contiguous.



If input has shape :math:`N \times M` then the output will have shape

:math:`\frac{1}{2} N (N - 1)`.



This function is equivalent to ``scipy.spatial.distance.pdist(input,

'minkowski', p=p)`` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is

equivalent to ``scipy.spatial.distance.pdist(input, 'hamming') * M``.

When :math:`p = \infty`, the closest scipy function is

``scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())``.



Args:

    input: input tensor of shape :math:`N \times M`.

    p: p value for the p-norm distance to calculate between each vector pair

        :math:`\in [0, \infty]`.

""",
)


cosine_similarity = _add_docstr(
    torch.cosine_similarity,
    r"""

cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor



Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable

to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is

squeezed (see :func:`torch.squeeze`), resulting in the

output tensor having 1 fewer dimension.



.. math ::

    \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2, \epsilon) \cdot \max(\Vert x_2 \Vert _2, \epsilon)}



Supports :ref:`type promotion <type-promotion-doc>`.



Args:

    x1 (Tensor): First input.

    x2 (Tensor): Second input.

    dim (int, optional): Dimension along which cosine similarity is computed. Default: 1

    eps (float, optional): Small value to avoid division by zero.

        Default: 1e-8



Example::



    >>> input1 = torch.randn(100, 128)

    >>> input2 = torch.randn(100, 128)

    >>> output = F.cosine_similarity(input1, input2)

    >>> print(output)

""",
)


one_hot = _add_docstr(
    torch._C._nn.one_hot,
    r"""

one_hot(tensor, num_classes=-1) -> LongTensor



Takes LongTensor with index values of shape ``(*)`` and returns a tensor

of shape ``(*, num_classes)`` that have zeros everywhere except where the

index of last dimension matches the corresponding value of the input tensor,

in which case it will be 1.



See also `One-hot on Wikipedia`_ .



.. _One-hot on Wikipedia:

    https://en.wikipedia.org/wiki/One-hot



Arguments:

    tensor (LongTensor): class values of any shape.

    num_classes (int):  Total number of classes. If set to -1, the number

        of classes will be inferred as one greater than the largest class

        value in the input tensor.



Returns:

    LongTensor that has one more dimension with 1 values at the

    index of last dimension indicated by the input, and 0 everywhere

    else.



Examples:

    >>> F.one_hot(torch.arange(0, 5) % 3)

    tensor([[1, 0, 0],

            [0, 1, 0],

            [0, 0, 1],

            [1, 0, 0],

            [0, 1, 0]])

    >>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5)

    tensor([[1, 0, 0, 0, 0],

            [0, 1, 0, 0, 0],

            [0, 0, 1, 0, 0],

            [1, 0, 0, 0, 0],

            [0, 1, 0, 0, 0]])

    >>> F.one_hot(torch.arange(0, 6).view(3,2) % 3)

    tensor([[[1, 0, 0],

             [0, 1, 0]],

            [[0, 0, 1],

             [1, 0, 0]],

            [[0, 1, 0],

             [0, 0, 1]]])

""",
)


def triplet_margin_loss(

    anchor: Tensor,

    positive: Tensor,

    negative: Tensor,

    margin: float = 1.0,

    p: float = 2,

    eps: float = 1e-6,

    swap: bool = False,

    size_average: Optional[bool] = None,

    reduce: Optional[bool] = None,

    reduction: str = "mean",

) -> Tensor:
    r"""Compute the triplet loss between given input tensors and a margin greater than 0.



    See :class:`~torch.nn.TripletMarginLoss` for details.

    """
    if has_torch_function_variadic(anchor, positive, negative):
        return handle_torch_function(
            triplet_margin_loss,
            (anchor, positive, negative),
            anchor,
            positive,
            negative,
            margin=margin,
            p=p,
            eps=eps,
            swap=swap,
            size_average=size_average,
            reduce=reduce,
            reduction=reduction,
        )
    if size_average is not None or reduce is not None:
        reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
    else:
        reduction_enum = _Reduction.get_enum(reduction)
    return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction_enum)


def triplet_margin_with_distance_loss(

    anchor: Tensor,

    positive: Tensor,

    negative: Tensor,

    *,

    distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,

    margin: float = 1.0,

    swap: bool = False,

    reduction: str = "mean"

) -> Tensor:
    r"""Compute the triplet margin loss for input tensors using a custom distance function.



    See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details.

    """
    if torch.jit.is_scripting():
        raise NotImplementedError(
            "F.triplet_margin_with_distance_loss does not support JIT scripting: "
            "functions requiring Callables cannot be scripted."
        )

    if has_torch_function_variadic(anchor, positive, negative):
        return handle_torch_function(
            triplet_margin_with_distance_loss,
            (anchor, positive, negative),
            anchor,
            positive,
            negative,
            distance_function=distance_function,
            margin=margin,
            swap=swap,
            reduction=reduction,
        )

    # Check validity of reduction mode
    if reduction not in ("mean", "sum", "none"):
        raise ValueError(f"{reduction} is not a valid value for reduction")

    # Check dimensions
    a_dim = anchor.ndim
    p_dim = positive.ndim
    n_dim = negative.ndim
    if not (a_dim == p_dim and p_dim == n_dim):
        raise RuntimeError(
            f"The anchor, positive, and negative tensors are expected to have "
            f"the same number of dimensions, but got: anchor {a_dim}D, "
            f"positive {p_dim}D, and negative {n_dim}D inputs")

    # Calculate loss
    if distance_function is None:
        distance_function = torch.pairwise_distance

    dist_pos = distance_function(anchor, positive)
    dist_neg = distance_function(anchor, negative)
    # The distance swap is described in the paper "Learning shallow
    # convolutional feature descriptors with triplet losses" by V. Balntas, E.
    # Riba et al.  If True, and if the positive example is closer to the
    # negative example than the anchor is, swaps the positive example and the
    # anchor in the loss computation.
    if swap:
        dist_swap = distance_function(positive, negative)
        dist_neg = torch.minimum(dist_neg, dist_swap)
    loss = torch.clamp_min(margin + dist_pos - dist_neg, 0)

    # Apply reduction
    if reduction == "sum":
        return torch.sum(loss)
    elif reduction == "mean":
        return torch.mean(loss)
    else:  # reduction == "none"
        return loss


def normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12, out: Optional[Tensor] = None) -> Tensor:
    r"""Perform :math:`L_p` normalization of inputs over specified dimension.



    For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each

    :math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as



    .. math::

        v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.



    With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization.



    Args:

        input: input tensor of any shape

        p (float): the exponent value in the norm formulation. Default: 2

        dim (int or tuple of ints): the dimension to reduce. Default: 1

        eps (float): small value to avoid division by zero. Default: 1e-12

        out (Tensor, optional): the output tensor. If :attr:`out` is used, this

                                operation won't be differentiable.

    """
    if has_torch_function_variadic(input, out):
        return handle_torch_function(normalize, (input, out), input, p=p, dim=dim, eps=eps, out=out)
    if out is None:
        denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input)
        return input / denom
    else:
        denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input)
        return torch.div(input, denom, out=out)


def assert_int_or_pair(arg: List[int], arg_name: str, message: str) -> None:
    assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name)


def unfold(

    input: Tensor, kernel_size: BroadcastingList2[int],

    dilation: BroadcastingList2[int] = 1,

    padding: BroadcastingList2[int] = 0,

    stride: BroadcastingList2[int] = 1

) -> Tensor:
    r"""Extract sliding local blocks from a batched input tensor.



    .. warning::

        Currently, only 4-D input tensors (batched image-like tensors) are

        supported.



    .. warning::



        More than one element of the unfolded tensor may refer to a single

        memory location. As a result, in-place operations (especially ones that

        are vectorized) may result in incorrect behavior. If you need to write

        to the tensor, please clone it first.





    See :class:`torch.nn.Unfold` for details

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            unfold, (input,), input, kernel_size, dilation=dilation, padding=padding, stride=stride
        )
    return torch._C._nn.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride))


def fold(

    input: Tensor, output_size: BroadcastingList2[int],

    kernel_size: BroadcastingList2[int],

    dilation: BroadcastingList2[int] = 1,

    padding: BroadcastingList2[int] = 0,

    stride: BroadcastingList2[int] = 1

) -> Tensor:
    r"""Combine an array of sliding local blocks into a large containing tensor.



    .. warning::

        Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported.



    See :class:`torch.nn.Fold` for details

    """
    if has_torch_function_unary(input):
        return handle_torch_function(
            fold, (input,), input, output_size, kernel_size, dilation=dilation, padding=padding, stride=stride
        )
    return torch._C._nn.col2im(
        input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)
    )

#
# multihead attention
#

def _in_projection_packed(

    q: Tensor,

    k: Tensor,

    v: Tensor,

    w: Tensor,

    b: Optional[Tensor] = None,

) -> List[Tensor]:
    r"""Perform the in-projection step of the attention operation, using packed weights.



    Output is a triple containing projection tensors for query, key and value.



    Args:

        q, k, v: query, key and value tensors to be projected. For self-attention,

            these are typically the same tensor; for encoder-decoder attention,

            k and v are typically the same tensor. (We take advantage of these

            identities for performance if they are present.) Regardless, q, k and v

            must share a common embedding dimension; otherwise their shapes may vary.

        w: projection weights for q, k and v, packed into a single tensor. Weights

            are packed along dimension 0, in q, k, v order.

        b: optional projection biases for q, k and v, packed into a single tensor

            in q, k, v order.



    Shape:

        Inputs:

        - q: :math:`(..., E)` where E is the embedding dimension

        - k: :math:`(..., E)` where E is the embedding dimension

        - v: :math:`(..., E)` where E is the embedding dimension

        - w: :math:`(E * 3, E)` where E is the embedding dimension

        - b: :math:`E * 3` where E is the embedding dimension



        Output:

        - in output list :math:`[q', k', v']`, each output tensor will have the

            same shape as the corresponding input tensor.

    """
    E = q.size(-1)
    if k is v:
        if q is k:
            # self-attention
            proj = linear(q, w, b)
            # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
            proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
            return proj[0], proj[1], proj[2]
        else:
            # encoder-decoder attention
            w_q, w_kv = w.split([E, E * 2])
            if b is None:
                b_q = b_kv = None
            else:
                b_q, b_kv = b.split([E, E * 2])
            q_proj = linear(q, w_q, b_q)
            kv_proj = linear(k, w_kv, b_kv)
            # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
            kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
            return (q_proj, kv_proj[0], kv_proj[1])
    else:
        w_q, w_k, w_v = w.chunk(3)
        if b is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = b.chunk(3)
        return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)


def _in_projection(

    q: Tensor,

    k: Tensor,

    v: Tensor,

    w_q: Tensor,

    w_k: Tensor,

    w_v: Tensor,

    b_q: Optional[Tensor] = None,

    b_k: Optional[Tensor] = None,

    b_v: Optional[Tensor] = None,

) -> Tuple[Tensor, Tensor, Tensor]:
    r"""Perform the in-projection step of the attention operation.



    This is simply a triple of linear projections,

    with shape constraints on the weights which

    ensure embedding dimension uniformity in the projected outputs.

    Output is a triple containing projection tensors for query, key and value.



    Args:

        q, k, v: query, key and value tensors to be projected.

        w_q, w_k, w_v: weights for q, k and v, respectively.

        b_q, b_k, b_v: optional biases for q, k and v, respectively.



    Shape:

        Inputs:

        - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any

            number of leading dimensions.

        - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any

            number of leading dimensions.

        - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any

            number of leading dimensions.

        - w_q: :math:`(Eq, Eq)`

        - w_k: :math:`(Eq, Ek)`

        - w_v: :math:`(Eq, Ev)`

        - b_q: :math:`(Eq)`

        - b_k: :math:`(Eq)`

        - b_v: :math:`(Eq)`



        Output: in output triple :math:`(q', k', v')`,

         - q': :math:`[Qdims..., Eq]`

         - k': :math:`[Kdims..., Eq]`

         - v': :math:`[Vdims..., Eq]`



    """
    Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
    assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
    assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
    assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
    assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
    assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
    assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
    return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)

scaled_dot_product_attention = _add_docstr(
    torch._C._nn.scaled_dot_product_attention, r"""

scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> Tensor:



Computes scaled dot product attention on query, key and value tensors, using

an optional attention mask if passed, and applying dropout if a probability

greater than 0.0 is specified. The optional scale argument can only be specified as a keyword argument.



.. code-block:: python



    # Efficient implementation equivalent to the following:

    def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:

        L, S = query.size(-2), key.size(-2)

        scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale

        attn_bias = torch.zeros(L, S, dtype=query.dtype)

        if is_causal:

            assert attn_mask is None

            temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)

            attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))

            attn_bias.to(query.dtype)



        if attn_mask is not None:

            if attn_mask.dtype == torch.bool:

                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))

            else:

                attn_bias += attn_mask

        attn_weight = query @ key.transpose(-2, -1) * scale_factor

        attn_weight += attn_bias

        attn_weight = torch.softmax(attn_weight, dim=-1)

        attn_weight = torch.dropout(attn_weight, dropout_p, train=True)

        return attn_weight @ value



.. warning:: This function is beta and subject to change.



Note:



    There are currently three supported implementations of scaled dot product attention:



        - `FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning`_

        - `Memory-Efficient Attention`_

        - A PyTorch implementation defined in C++ matching the above formulation



    The function may call optimized kernels for improved performance when using the CUDA backend.

    For all other backends, the PyTorch implementation will be used.



    All implementations are enabled by default. Scaled dot product attention attempts to automatically select the

    most optimal implementation based on the inputs. In order to provide more fine-grained control over what implementation

    is used, the following functions are provided for enabling and disabling implementations.

    The context manager is the preferred mechanism:



        - :func:`torch.nn.attention.sdpa_kernel`: A context manager used to enable or disable any of the implementations.

        - :func:`torch.backends.cuda.enable_flash_sdp`: Globally enables or disables FlashAttention.

        - :func:`torch.backends.cuda.enable_mem_efficient_sdp`: Globally enables or disables  Memory-Efficient Attention.

        - :func:`torch.backends.cuda.enable_math_sdp`: Globally enables or disables  the PyTorch C++ implementation.



    Each of the fused kernels has specific input limitations. If the user requires the use of a specific fused implementation,

    disable the PyTorch C++ implementation using :func:`torch.nn.attention.sdpa_kernel`.

    In the event that a fused implementation is not available, a warning will be raised with the

    reasons why the fused implementation cannot run.



    Due to the nature of fusing floating point operations, the output of this function may be different

    depending on what backend kernel is chosen.

    The c++ implementation supports torch.float64 and can be used when higher precision is required.

    For more information please see :doc:`/notes/numerical_accuracy`



Note:

    {cudnn_reproducibility_note}

""".format(**reproducibility_notes)
    + r"""

Args:

    query (Tensor): Query tensor; shape :math:`(N, ..., L, E)`.

    key (Tensor): Key tensor; shape :math:`(N, ..., S, E)`.

    value (Tensor): Value tensor; shape :math:`(N, ..., S, Ev)`.

    attn_mask (optional Tensor): Attention mask; shape must be broadcastable to the shape of attention weights,

        which is :math:`(N,..., L, S)`. Two types of masks are supported.

        A boolean mask where a value of True indicates that the element *should* take part in attention.

        A float mask of the same type as query, key, value that is added to the attention score.

    dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied

    is_causal (bool): If true, assumes upper left causal attention masking and errors if both attn_mask and is_causal

        are set.

    scale (optional float, keyword-only): Scaling factor applied prior to softmax. If None, the default value is set

        to :math:`\frac{1}{\sqrt{E}}`.





Returns:

    output (Tensor): Attention output; shape :math:`(N, ..., L, Ev)`.



Shape legend:

    - :math:`N: \text{Batch size} ... : \text{Any number of other batch dimensions (optional)}`

    - :math:`S: \text{Source sequence length}`

    - :math:`L: \text{Target sequence length}`

    - :math:`E: \text{Embedding dimension of the query and key}`

    - :math:`Ev: \text{Embedding dimension of the value}`



Examples:



    >>> # Optionally use the context manager to ensure one of the fused kernels is run

    >>> query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")

    >>> key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")

    >>> value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")

    >>> with torch.backends.cuda.sdp_kernel(enable_math=False):

    >>>     F.scaled_dot_product_attention(query,key,value)





.. _FlashAttention-2\: Faster Attention with Better Parallelism and Work Partitioning:

    https://arxiv.org/abs/2307.08691

.. _Memory-Efficient Attention:

    https://github.com/facebookresearch/xformers



""")

def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,

                     key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
    # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
    # and returns if the input is batched or not.
    # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.

    # Shape check.
    if query.dim() == 3:
        # Batched Inputs
        is_batched = True
        assert key.dim() == 3 and value.dim() == 3, \
            ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
             f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
        if key_padding_mask is not None:
            assert key_padding_mask.dim() == 2, \
                ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
                 f" but found {key_padding_mask.dim()}-D tensor instead")
        if attn_mask is not None:
            assert attn_mask.dim() in (2, 3), \
                ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
                 f" but found {attn_mask.dim()}-D tensor instead")
    elif query.dim() == 2:
        # Unbatched Inputs
        is_batched = False
        assert key.dim() == 2 and value.dim() == 2, \
            ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
             f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")

        if key_padding_mask is not None:
            assert key_padding_mask.dim() == 1, \
                ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
                 f" but found {key_padding_mask.dim()}-D tensor instead")

        if attn_mask is not None:
            assert attn_mask.dim() in (2, 3), \
                ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
                 f" but found {attn_mask.dim()}-D tensor instead")
            if attn_mask.dim() == 3:
                expected_shape = (num_heads, query.shape[0], key.shape[0])
                assert attn_mask.shape == expected_shape, \
                    (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
    else:
        raise AssertionError(
            f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")

    return is_batched

def _canonical_mask(

        mask: Optional[Tensor],

        mask_name: str,

        other_type: Optional[DType],

        other_name: str,

        target_type: DType,

        check_other: bool = True,

) -> Optional[Tensor]:

    if mask is not None:
        _mask_dtype = mask.dtype
        _mask_is_float = torch.is_floating_point(mask)
        if _mask_dtype != torch.bool and not _mask_is_float:
            raise AssertionError(
                f"only bool and floating types of {mask_name} are supported")
        if check_other and other_type is not None:
            if _mask_dtype != other_type:
                warnings.warn(
                    f"Support for mismatched {mask_name} and {other_name} "
                    "is deprecated. Use same type for both instead."
                )
        if not _mask_is_float:
            mask = (
                torch.zeros_like(mask, dtype=target_type)
                .masked_fill_(mask, float("-inf"))
            )
    return mask

def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
    if input is None:
        return None
    elif isinstance(input, torch.Tensor):
        return input.dtype
    raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")

def multi_head_attention_forward(

    query: Tensor,

    key: Tensor,

    value: Tensor,

    embed_dim_to_check: int,

    num_heads: int,

    in_proj_weight: Optional[Tensor],

    in_proj_bias: Optional[Tensor],

    bias_k: Optional[Tensor],

    bias_v: Optional[Tensor],

    add_zero_attn: bool,

    dropout_p: float,

    out_proj_weight: Tensor,

    out_proj_bias: Optional[Tensor],

    training: bool = True,

    key_padding_mask: Optional[Tensor] = None,

    need_weights: bool = True,

    attn_mask: Optional[Tensor] = None,

    use_separate_proj_weight: bool = False,

    q_proj_weight: Optional[Tensor] = None,

    k_proj_weight: Optional[Tensor] = None,

    v_proj_weight: Optional[Tensor] = None,

    static_k: Optional[Tensor] = None,

    static_v: Optional[Tensor] = None,

    average_attn_weights: bool = True,

    is_causal: bool = False,

) -> Tuple[Tensor, Optional[Tensor]]:
    r"""Forward method for MultiHeadAttention.



    See :class:`torch.nn.MultiheadAttention` for details.



    Args:

        query, key, value: map a query and a set of key-value pairs to an output.

            See "Attention Is All You Need" for more details.

        embed_dim_to_check: total dimension of the model.

        num_heads: parallel attention heads.

        in_proj_weight, in_proj_bias: input projection weight and bias.

        bias_k, bias_v: bias of the key and value sequences to be added at dim=0.

        add_zero_attn: add a new batch of zeros to the key and

                       value sequences at dim=1.

        dropout_p: probability of an element to be zeroed.

        out_proj_weight, out_proj_bias: the output projection weight and bias.

        training: apply dropout if is ``True``.

        key_padding_mask: if provided, specified padding elements in the key will

            be ignored by the attention. This is an binary mask. When the value is True,

            the corresponding value on the attention layer will be filled with -inf.

        need_weights: output attn_output_weights.

            Default: `True`

            Note: `needs_weight` defaults to `True`, but should be set to `False`

            For best performance when attention weights are not needed.

            *Setting needs_weights to `True`

            leads to a significant performance degradation.*

        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all

            the batches while a 3D mask allows to specify a different mask for the entries of each batch.

        is_causal: If specified, applies a causal mask as attention mask, and ignores

            attn_mask for computing scaled dot product attention.

            Default: ``False``.

            .. warning::

                is_causal is provides a hint that the attn_mask is the

                causal mask.Providing incorrect hints can result in

                incorrect execution, including forward and backward

                compatibility.

        use_separate_proj_weight: the function accept the proj. weights for query, key,

            and value in different forms. If false, in_proj_weight will be used, which is

            a combination of q_proj_weight, k_proj_weight, v_proj_weight.

        q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.

        static_k, static_v: static key and value used for attention operators.

        average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.

            Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect

            when ``need_weights=True.``. Default: True





    Shape:

        Inputs:

        - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is

          the embedding dimension.

        - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is

          the embedding dimension.

        - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is

          the embedding dimension.

        - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.

          If a FloatTensor is provided, it will be directly added to the value.

          If a BoolTensor is provided, the positions with the

          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.

        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.

          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,

          S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked

          positions. If a BoolTensor is provided, positions with ``True``

          are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor

          is provided, it will be added to the attention weight.

        - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,

          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.

        - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,

          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.



        Outputs:

        - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,

          E is the embedding dimension.

        - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns

          attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or

          :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and

          :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per

          head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.

    """
    tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
    if has_torch_function(tens_ops):
        return handle_torch_function(
            multi_head_attention_forward,
            tens_ops,
            query,
            key,
            value,
            embed_dim_to_check,
            num_heads,
            in_proj_weight,
            in_proj_bias,
            bias_k,
            bias_v,
            add_zero_attn,
            dropout_p,
            out_proj_weight,
            out_proj_bias,
            training=training,
            key_padding_mask=key_padding_mask,
            need_weights=need_weights,
            attn_mask=attn_mask,
            is_causal=is_causal,
            use_separate_proj_weight=use_separate_proj_weight,
            q_proj_weight=q_proj_weight,
            k_proj_weight=k_proj_weight,
            v_proj_weight=v_proj_weight,
            static_k=static_k,
            static_v=static_v,
            average_attn_weights=average_attn_weights,
        )

    is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)

    # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
    # is batched, run the computation and before returning squeeze the
    # batch dimension so that the output doesn't carry this temporary batch dimension.
    if not is_batched:
        # unsqueeze if the input is unbatched
        query = query.unsqueeze(1)
        key = key.unsqueeze(1)
        value = value.unsqueeze(1)
        if key_padding_mask is not None:
            key_padding_mask = key_padding_mask.unsqueeze(0)

    # set up shape vars
    tgt_len, bsz, embed_dim = query.shape
    src_len, _, _ = key.shape

    key_padding_mask = _canonical_mask(
        mask=key_padding_mask,
        mask_name="key_padding_mask",
        other_type=_none_or_dtype(attn_mask),
        other_name="attn_mask",
        target_type=query.dtype
    )

    if is_causal and attn_mask is None:
        raise RuntimeError(
            "Need attn_mask if specifying the is_causal hint. "
            "You may use the Transformer module method "
            "`generate_square_subsequent_mask` to create this mask."
        )

    if is_causal and key_padding_mask is None and not need_weights:
        # when we have a kpm or need weights, we need attn_mask
        # Otherwise, we use the is_causal hint go as is_causal
        # indicator to SDPA.
        attn_mask = None
    else:
        attn_mask = _canonical_mask(
            mask=attn_mask,
            mask_name="attn_mask",
            other_type=None,
            other_name="",
            target_type=query.dtype,
            check_other=False,
        )

        if key_padding_mask is not None:
            # We have the attn_mask, and use that to merge kpm into it.
            # Turn off use of is_causal hint, as the merged mask is no
            # longer causal.
            is_causal = False

    assert embed_dim == embed_dim_to_check, \
        f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
    if isinstance(embed_dim, torch.Tensor):
        # embed_dim can be a tensor when JIT tracing
        head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
    else:
        head_dim = embed_dim // num_heads
    assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
    if use_separate_proj_weight:
        # allow MHA to have different embedding dimensions when separate projection weights are used
        assert key.shape[:2] == value.shape[:2], \
            f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
    else:
        assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"

    #
    # compute in-projection
    #
    if not use_separate_proj_weight:
        assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
        q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
    else:
        assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
        assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
        assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
        if in_proj_bias is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = in_proj_bias.chunk(3)
        q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)

    # prep attention mask

    if attn_mask is not None:
        # ensure attn_mask's dim is 3
        if attn_mask.dim() == 2:
            correct_2d_size = (tgt_len, src_len)
            if attn_mask.shape != correct_2d_size:
                raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
            attn_mask = attn_mask.unsqueeze(0)
        elif attn_mask.dim() == 3:
            correct_3d_size = (bsz * num_heads, tgt_len, src_len)
            if attn_mask.shape != correct_3d_size:
                raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
        else:
            raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")

    # add bias along batch dimension (currently second)
    if bias_k is not None and bias_v is not None:
        assert static_k is None, "bias cannot be added to static key."
        assert static_v is None, "bias cannot be added to static value."
        k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
        v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))
    else:
        assert bias_k is None
        assert bias_v is None

    #
    # reshape q, k, v for multihead attention and make em batch first
    #
    q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    if static_k is None:
        k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert static_k.size(0) == bsz * num_heads, \
            f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
        assert static_k.size(2) == head_dim, \
            f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
        k = static_k
    if static_v is None:
        v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert static_v.size(0) == bsz * num_heads, \
            f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
        assert static_v.size(2) == head_dim, \
            f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
        v = static_v

    # add zero attention along batch dimension (now first)
    if add_zero_attn:
        zero_attn_shape = (bsz * num_heads, 1, head_dim)
        k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
        v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))

    # update source sequence length after adjustments
    src_len = k.size(1)

    # merge key padding and attention masks
    if key_padding_mask is not None:
        assert key_padding_mask.shape == (bsz, src_len), \
            f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
        key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).   \
            expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
        if attn_mask is None:
            attn_mask = key_padding_mask
        else:
            attn_mask = attn_mask + key_padding_mask

    # adjust dropout probability
    if not training:
        dropout_p = 0.0

    #
    # (deep breath) calculate attention and out projection
    #

    if need_weights:
        B, Nt, E = q.shape
        q_scaled = q * math.sqrt(1.0 / float(E))

        assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"

        if attn_mask is not None:
            attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
        else:
            attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
        attn_output_weights = softmax(attn_output_weights, dim=-1)
        if dropout_p > 0.0:
            attn_output_weights = dropout(attn_output_weights, p=dropout_p)

        attn_output = torch.bmm(attn_output_weights, v)

        attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
        attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
        attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))

        # optionally average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        if average_attn_weights:
            attn_output_weights = attn_output_weights.mean(dim=1)

        if not is_batched:
            # squeeze the output if input was unbatched
            attn_output = attn_output.squeeze(1)
            attn_output_weights = attn_output_weights.squeeze(0)
        return attn_output, attn_output_weights
    else:
        # attn_mask can be either (L,S) or (N*num_heads, L, S)
        # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
        # in order to match the input for SDPA of (N, num_heads, L, S)
        if attn_mask is not None:
            if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
                attn_mask = attn_mask.unsqueeze(0)
            else:
                attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)

        q = q.view(bsz, num_heads, tgt_len, head_dim)
        k = k.view(bsz, num_heads, src_len, head_dim)
        v = v.view(bsz, num_heads, src_len, head_dim)

        attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
        attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)

        attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
        attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
        if not is_batched:
            # squeeze the output if input was unbatched
            attn_output = attn_output.squeeze(1)
        return attn_output, None