Spaces:
Sleeping
Sleeping
static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) { | |
return (uint64_t) __emulu((unsigned int) a, (unsigned int) b); | |
return (uint64_t) a * (uint64_t) b; | |
} | |
static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) { | |
return mul_hi(a, b); | |
return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b); | |
return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32); | |
return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b); | |
return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32); | |
} | |
static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) { | |
return mul_hi(a, b); | |
return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b); | |
return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b); | |
return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64); | |
const uint32_t a_lo = (uint32_t) a; | |
const uint32_t a_hi = (uint32_t) (a >> 32); | |
const uint32_t b_lo = (uint32_t) b; | |
const uint32_t b_hi = (uint32_t) (b >> 32); | |
const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) + | |
(uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo); | |
return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) + | |
((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32); | |
} | |
static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) { | |
return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b); | |
return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b); | |
} | |
struct fxdiv_divisor_uint32_t { | |
uint32_t value; | |
uint32_t m; | |
uint8_t s1; | |
uint8_t s2; | |
}; | |
struct fxdiv_result_uint32_t { | |
uint32_t quotient; | |
uint32_t remainder; | |
}; | |
struct fxdiv_divisor_uint64_t { | |
uint64_t value; | |
uint64_t m; | |
uint8_t s1; | |
uint8_t s2; | |
}; | |
struct fxdiv_result_uint64_t { | |
uint64_t quotient; | |
uint64_t remainder; | |
}; | |
struct fxdiv_divisor_size_t { | |
size_t value; | |
size_t m; | |
uint8_t s1; | |
uint8_t s2; | |
}; | |
struct fxdiv_result_size_t { | |
size_t quotient; | |
size_t remainder; | |
}; | |
static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) { | |
struct fxdiv_divisor_uint32_t result = { d }; | |
if (d == 1) { | |
result.m = UINT32_C(1); | |
result.s1 = 0; | |
result.s2 = 0; | |
} else { | |
const uint32_t l_minus_1 = 31 - clz(d - 1); | |
const uint32_t l_minus_1 = 31 - __clz((int) (d - 1)); | |
unsigned long l_minus_1; | |
_BitScanReverse(&l_minus_1, (unsigned long) (d - 1)); | |
uint32_t l_minus_1; | |
__asm__("BSRL %[d_minus_1], %[l_minus_1]" | |
: [l_minus_1] "=r" (l_minus_1) | |
: [d_minus_1] "r" (d - 1) | |
: "cc"); | |
const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1); | |
/* Based on Algorithm 2 from Hacker's delight */ | |
uint32_t l_minus_1 = 0; | |
uint32_t x = d - 1; | |
uint32_t y = x >> 16; | |
if (y != 0) { | |
l_minus_1 += 16; | |
x = y; | |
} | |
y = x >> 8; | |
if (y != 0) { | |
l_minus_1 += 8; | |
x = y; | |
} | |
y = x >> 4; | |
if (y != 0) { | |
l_minus_1 += 4; | |
x = y; | |
} | |
y = x >> 2; | |
if (y != 0) { | |
l_minus_1 += 2; | |
x = y; | |
} | |
if ((x & 2) != 0) { | |
l_minus_1 += 1; | |
} | |
uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d; | |
/* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */ | |
uint32_t q; | |
__asm__("DIVL %[d]" | |
: "=a" (q), "+d" (u_hi) | |
: [d] "r" (d), "a" (0) | |
: "cc"); | |
unsigned int remainder; | |
const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder); | |
const uint32_t q = ((uint64_t) u_hi << 32) / d; | |
result.m = q + UINT32_C(1); | |
result.s1 = 1; | |
result.s2 = (uint8_t) l_minus_1; | |
} | |
return result; | |
} | |
static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) { | |
struct fxdiv_divisor_uint64_t result = { d }; | |
if (d == 1) { | |
result.m = UINT64_C(1); | |
result.s1 = 0; | |
result.s2 = 0; | |
} else { | |
const uint32_t nlz_d = clz(d); | |
const uint32_t l_minus_1 = 63 - clz(d - 1); | |
const uint32_t nlz_d = __clzll((long long) d); | |
const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1)); | |
unsigned long l_minus_1; | |
_BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1)); | |
unsigned long bsr_d; | |
_BitScanReverse64(&bsr_d, (unsigned __int64) d); | |
const uint32_t nlz_d = bsr_d ^ 0x3F; | |
const uint64_t d_minus_1 = d - 1; | |
const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0; | |
unsigned long l_minus_1; | |
if ((uint32_t) (d_minus_1 >> 32) == 0) { | |
_BitScanReverse(&l_minus_1, (unsigned long) d_minus_1); | |
} else { | |
_BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32)); | |
l_minus_1 += 32; | |
} | |
const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2; | |
uint64_t l_minus_1; | |
__asm__("BSRQ %[d_minus_1], %[l_minus_1]" | |
: [l_minus_1] "=r" (l_minus_1) | |
: [d_minus_1] "r" (d - 1) | |
: "cc"); | |
const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1); | |
const uint32_t nlz_d = __builtin_clzll(d); | |
/* Based on Algorithm 2 from Hacker's delight */ | |
const uint64_t d_minus_1 = d - 1; | |
const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0; | |
uint32_t l_minus_1 = 0; | |
uint32_t x = (uint32_t) d_minus_1; | |
uint32_t y = d_minus_1 >> 32; | |
if (y != 0) { | |
l_minus_1 += 32; | |
x = y; | |
} | |
y = x >> 16; | |
if (y != 0) { | |
l_minus_1 += 16; | |
x = y; | |
} | |
y = x >> 8; | |
if (y != 0) { | |
l_minus_1 += 8; | |
x = y; | |
} | |
y = x >> 4; | |
if (y != 0) { | |
l_minus_1 += 4; | |
x = y; | |
} | |
y = x >> 2; | |
if (y != 0) { | |
l_minus_1 += 2; | |
x = y; | |
} | |
if ((x & 2) != 0) { | |
l_minus_1 += 1; | |
} | |
const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2; | |
uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d; | |
/* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */ | |
uint64_t q; | |
__asm__("DIVQ %[d]" | |
: "=a" (q), "+d" (u_hi) | |
: [d] "r" (d), "a" (UINT64_C(0)) | |
: "cc"); | |
/* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */ | |
const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d)); | |
unsigned __int64 remainder; | |
const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder); | |
/* Implementation based on code from Hacker's delight */ | |
/* Normalize divisor and shift divident left */ | |
d <<= nlz_d; | |
u_hi <<= nlz_d; | |
/* Break divisor up into two 32-bit digits */ | |
const uint64_t d_hi = (uint32_t) (d >> 32); | |
const uint32_t d_lo = (uint32_t) d; | |
/* Compute the first quotient digit, q1 */ | |
uint64_t q1 = u_hi / d_hi; | |
uint64_t r1 = u_hi - q1 * d_hi; | |
while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) { | |
q1 -= 1; | |
r1 += d_hi; | |
if ((r1 >> 32) != 0) { | |
break; | |
} | |
} | |
/* Multiply and subtract. */ | |
u_hi = (u_hi << 32) - q1 * d; | |
/* Compute the second quotient digit, q0 */ | |
uint64_t q0 = u_hi / d_hi; | |
uint64_t r0 = u_hi - q0 * d_hi; | |
while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) { | |
q0 -= 1; | |
r0 += d_hi; | |
if ((r0 >> 32) != 0) { | |
break; | |
} | |
} | |
const uint64_t q = (q1 << 32) | (uint32_t) q0; | |
result.m = q + UINT64_C(1); | |
result.s1 = 1; | |
result.s2 = (uint8_t) l_minus_1; | |
} | |
return result; | |
} | |
static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) { | |
const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d); | |
const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d); | |
struct fxdiv_divisor_size_t size_result = { | |
(size_t) uint_result.value, | |
(size_t) uint_result.m, | |
uint_result.s1, | |
uint_result.s2 | |
}; | |
return size_result; | |
} | |
static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { | |
const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m); | |
return (t + ((n - t) >> divisor.s1)) >> divisor.s2; | |
} | |
static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { | |
const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m); | |
return (t + ((n - t) >> divisor.s1)) >> divisor.s2; | |
} | |
static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { | |
const struct fxdiv_divisor_uint32_t uint32_divisor = { | |
(uint32_t) divisor.value, | |
(uint32_t) divisor.m, | |
divisor.s1, | |
divisor.s2 | |
}; | |
return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor); | |
const struct fxdiv_divisor_uint64_t uint64_divisor = { | |
(uint64_t) divisor.value, | |
(uint64_t) divisor.m, | |
divisor.s1, | |
divisor.s2 | |
}; | |
return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor); | |
} | |
static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { | |
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor); | |
return n - quotient * divisor.value; | |
} | |
static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { | |
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor); | |
return n - quotient * divisor.value; | |
} | |
static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { | |
const size_t quotient = fxdiv_quotient_size_t(n, divisor); | |
return n - quotient * divisor.value; | |
} | |
static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) { | |
const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity); | |
return quotient * granularity.value; | |
} | |
static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) { | |
const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity); | |
return quotient * granularity.value; | |
} | |
static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) { | |
const size_t quotient = fxdiv_quotient_size_t(n, granularity); | |
return quotient * granularity.value; | |
} | |
static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { | |
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor); | |
const uint32_t remainder = n - quotient * divisor.value; | |
struct fxdiv_result_uint32_t result = { quotient, remainder }; | |
return result; | |
} | |
static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { | |
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor); | |
const uint64_t remainder = n - quotient * divisor.value; | |
struct fxdiv_result_uint64_t result = { quotient, remainder }; | |
return result; | |
} | |
static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { | |
const size_t quotient = fxdiv_quotient_size_t(n, divisor); | |
const size_t remainder = n - quotient * divisor.value; | |
struct fxdiv_result_size_t result = { quotient, remainder }; | |
return result; | |
} | |