Spaces:
Sleeping
Sleeping
File size: 13,574 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
#pragma once
#ifndef FXDIV_H
#define FXDIV_H
#if defined(__cplusplus) && (__cplusplus >= 201103L)
#include <cstddef>
#include <cstdint>
#include <climits>
#elif !defined(__OPENCL_VERSION__)
#include <stddef.h>
#include <stdint.h>
#include <limits.h>
#endif
#if defined(_MSC_VER)
#include <intrin.h>
#if defined(_M_IX86) || defined(_M_X64)
#include <immintrin.h>
#endif
#endif
#ifndef FXDIV_USE_INLINE_ASSEMBLY
#define FXDIV_USE_INLINE_ASSEMBLY 0
#endif
static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) {
#if defined(_MSC_VER) && defined(_M_IX86)
return (uint64_t) __emulu((unsigned int) a, (unsigned int) b);
#else
return (uint64_t) a * (uint64_t) b;
#endif
}
static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) {
#if defined(__OPENCL_VERSION__)
return mul_hi(a, b);
#elif defined(__CUDA_ARCH__)
return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b);
#elif defined(_MSC_VER) && defined(_M_IX86)
return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32);
#elif defined(_MSC_VER) && defined(_M_ARM)
return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b);
#else
return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32);
#endif
}
static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) {
#if defined(__OPENCL_VERSION__)
return mul_hi(a, b);
#elif defined(__CUDA_ARCH__)
return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b);
#elif defined(_MSC_VER) && defined(_M_X64)
return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b);
#elif defined(__GNUC__) && defined(__SIZEOF_INT128__)
return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64);
#else
const uint32_t a_lo = (uint32_t) a;
const uint32_t a_hi = (uint32_t) (a >> 32);
const uint32_t b_lo = (uint32_t) b;
const uint32_t b_hi = (uint32_t) (b >> 32);
const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) +
(uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo);
return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) +
((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32);
#endif
}
static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) {
#if SIZE_MAX == UINT32_MAX
return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b);
#elif SIZE_MAX == UINT64_MAX
return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b);
#else
#error Unsupported platform
#endif
}
struct fxdiv_divisor_uint32_t {
uint32_t value;
uint32_t m;
uint8_t s1;
uint8_t s2;
};
struct fxdiv_result_uint32_t {
uint32_t quotient;
uint32_t remainder;
};
struct fxdiv_divisor_uint64_t {
uint64_t value;
uint64_t m;
uint8_t s1;
uint8_t s2;
};
struct fxdiv_result_uint64_t {
uint64_t quotient;
uint64_t remainder;
};
struct fxdiv_divisor_size_t {
size_t value;
size_t m;
uint8_t s1;
uint8_t s2;
};
struct fxdiv_result_size_t {
size_t quotient;
size_t remainder;
};
static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) {
struct fxdiv_divisor_uint32_t result = { d };
if (d == 1) {
result.m = UINT32_C(1);
result.s1 = 0;
result.s2 = 0;
} else {
#if defined(__OPENCL_VERSION__)
const uint32_t l_minus_1 = 31 - clz(d - 1);
#elif defined(__CUDA_ARCH__)
const uint32_t l_minus_1 = 31 - __clz((int) (d - 1));
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64))
unsigned long l_minus_1;
_BitScanReverse(&l_minus_1, (unsigned long) (d - 1));
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && FXDIV_USE_INLINE_ASSEMBLY
uint32_t l_minus_1;
__asm__("BSRL %[d_minus_1], %[l_minus_1]"
: [l_minus_1] "=r" (l_minus_1)
: [d_minus_1] "r" (d - 1)
: "cc");
#elif defined(__GNUC__)
const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1);
#else
/* Based on Algorithm 2 from Hacker's delight */
uint32_t l_minus_1 = 0;
uint32_t x = d - 1;
uint32_t y = x >> 16;
if (y != 0) {
l_minus_1 += 16;
x = y;
}
y = x >> 8;
if (y != 0) {
l_minus_1 += 8;
x = y;
}
y = x >> 4;
if (y != 0) {
l_minus_1 += 4;
x = y;
}
y = x >> 2;
if (y != 0) {
l_minus_1 += 2;
x = y;
}
if ((x & 2) != 0) {
l_minus_1 += 1;
}
#endif
uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d;
/* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */
#if defined(__GNUC__) && defined(__i386__) && FXDIV_USE_INLINE_ASSEMBLY
uint32_t q;
__asm__("DIVL %[d]"
: "=a" (q), "+d" (u_hi)
: [d] "r" (d), "a" (0)
: "cc");
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64))
unsigned int remainder;
const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder);
#else
const uint32_t q = ((uint64_t) u_hi << 32) / d;
#endif
result.m = q + UINT32_C(1);
result.s1 = 1;
result.s2 = (uint8_t) l_minus_1;
}
return result;
}
static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) {
struct fxdiv_divisor_uint64_t result = { d };
if (d == 1) {
result.m = UINT64_C(1);
result.s1 = 0;
result.s2 = 0;
} else {
#if defined(__OPENCL_VERSION__)
const uint32_t nlz_d = clz(d);
const uint32_t l_minus_1 = 63 - clz(d - 1);
#elif defined(__CUDA_ARCH__)
const uint32_t nlz_d = __clzll((long long) d);
const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1));
#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
unsigned long l_minus_1;
_BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1));
unsigned long bsr_d;
_BitScanReverse64(&bsr_d, (unsigned __int64) d);
const uint32_t nlz_d = bsr_d ^ 0x3F;
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_ARM))
const uint64_t d_minus_1 = d - 1;
const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0;
unsigned long l_minus_1;
if ((uint32_t) (d_minus_1 >> 32) == 0) {
_BitScanReverse(&l_minus_1, (unsigned long) d_minus_1);
} else {
_BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32));
l_minus_1 += 32;
}
const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2;
#elif defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
uint64_t l_minus_1;
__asm__("BSRQ %[d_minus_1], %[l_minus_1]"
: [l_minus_1] "=r" (l_minus_1)
: [d_minus_1] "r" (d - 1)
: "cc");
#elif defined(__GNUC__)
const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1);
const uint32_t nlz_d = __builtin_clzll(d);
#else
/* Based on Algorithm 2 from Hacker's delight */
const uint64_t d_minus_1 = d - 1;
const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0;
uint32_t l_minus_1 = 0;
uint32_t x = (uint32_t) d_minus_1;
uint32_t y = d_minus_1 >> 32;
if (y != 0) {
l_minus_1 += 32;
x = y;
}
y = x >> 16;
if (y != 0) {
l_minus_1 += 16;
x = y;
}
y = x >> 8;
if (y != 0) {
l_minus_1 += 8;
x = y;
}
y = x >> 4;
if (y != 0) {
l_minus_1 += 4;
x = y;
}
y = x >> 2;
if (y != 0) {
l_minus_1 += 2;
x = y;
}
if ((x & 2) != 0) {
l_minus_1 += 1;
}
const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2;
#endif
uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d;
/* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */
#if defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY
uint64_t q;
__asm__("DIVQ %[d]"
: "=a" (q), "+d" (u_hi)
: [d] "r" (d), "a" (UINT64_C(0))
: "cc");
#elif 0 && defined(__GNUC__) && defined(__SIZEOF_INT128__)
/* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */
const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d));
#elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && defined(_M_X64)
unsigned __int64 remainder;
const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder);
#else
/* Implementation based on code from Hacker's delight */
/* Normalize divisor and shift divident left */
d <<= nlz_d;
u_hi <<= nlz_d;
/* Break divisor up into two 32-bit digits */
const uint64_t d_hi = (uint32_t) (d >> 32);
const uint32_t d_lo = (uint32_t) d;
/* Compute the first quotient digit, q1 */
uint64_t q1 = u_hi / d_hi;
uint64_t r1 = u_hi - q1 * d_hi;
while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) {
q1 -= 1;
r1 += d_hi;
if ((r1 >> 32) != 0) {
break;
}
}
/* Multiply and subtract. */
u_hi = (u_hi << 32) - q1 * d;
/* Compute the second quotient digit, q0 */
uint64_t q0 = u_hi / d_hi;
uint64_t r0 = u_hi - q0 * d_hi;
while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) {
q0 -= 1;
r0 += d_hi;
if ((r0 >> 32) != 0) {
break;
}
}
const uint64_t q = (q1 << 32) | (uint32_t) q0;
#endif
result.m = q + UINT64_C(1);
result.s1 = 1;
result.s2 = (uint8_t) l_minus_1;
}
return result;
}
static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) {
#if SIZE_MAX == UINT32_MAX
const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d);
#elif SIZE_MAX == UINT64_MAX
const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d);
#else
#error Unsupported platform
#endif
struct fxdiv_divisor_size_t size_result = {
(size_t) uint_result.value,
(size_t) uint_result.m,
uint_result.s1,
uint_result.s2
};
return size_result;
}
static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m);
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
}
static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m);
return (t + ((n - t) >> divisor.s1)) >> divisor.s2;
}
static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
#if SIZE_MAX == UINT32_MAX
const struct fxdiv_divisor_uint32_t uint32_divisor = {
(uint32_t) divisor.value,
(uint32_t) divisor.m,
divisor.s1,
divisor.s2
};
return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor);
#elif SIZE_MAX == UINT64_MAX
const struct fxdiv_divisor_uint64_t uint64_divisor = {
(uint64_t) divisor.value,
(uint64_t) divisor.m,
divisor.s1,
divisor.s2
};
return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor);
#else
#error Unsupported platform
#endif
}
static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
return n - quotient * divisor.value;
}
static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
return n - quotient * divisor.value;
}
static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
return n - quotient * divisor.value;
}
static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) {
const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity);
return quotient * granularity.value;
}
static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) {
const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity);
return quotient * granularity.value;
}
static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) {
const size_t quotient = fxdiv_quotient_size_t(n, granularity);
return quotient * granularity.value;
}
static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) {
const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor);
const uint32_t remainder = n - quotient * divisor.value;
struct fxdiv_result_uint32_t result = { quotient, remainder };
return result;
}
static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) {
const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor);
const uint64_t remainder = n - quotient * divisor.value;
struct fxdiv_result_uint64_t result = { quotient, remainder };
return result;
}
static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) {
const size_t quotient = fxdiv_quotient_size_t(n, divisor);
const size_t remainder = n - quotient * divisor.value;
struct fxdiv_result_size_t result = { quotient, remainder };
return result;
}
#endif /* FXDIV_H */
|