Spaces:
Sleeping
Sleeping
| from typing import Any, Dict, Iterable, List, Tuple | |
| from torch.utils._pytree import ( | |
| _dict_flatten, | |
| _dict_flatten_with_keys, | |
| _dict_unflatten, | |
| _list_flatten, | |
| _list_flatten_with_keys, | |
| _list_unflatten, | |
| Context, | |
| register_pytree_node, | |
| ) | |
| from ._compatibility import compatibility | |
| __all__ = ["immutable_list", "immutable_dict"] | |
| _help_mutation = """\ | |
| If you are attempting to modify the kwargs or args of a torch.fx.Node object, | |
| instead create a new copy of it and assign the copy to the node: | |
| new_args = ... # copy and mutate args | |
| node.args = new_args | |
| """ | |
| def _no_mutation(self, *args, **kwargs): | |
| raise NotImplementedError( | |
| f"'{type(self).__name__}' object does not support mutation. {_help_mutation}", | |
| ) | |
| def _create_immutable_container(base, mutable_functions): | |
| container = type("immutable_" + base.__name__, (base,), {}) | |
| for attr in mutable_functions: | |
| setattr(container, attr, _no_mutation) | |
| return container | |
| immutable_list = _create_immutable_container( | |
| list, | |
| [ | |
| "__delitem__", | |
| "__iadd__", | |
| "__imul__", | |
| "__setitem__", | |
| "append", | |
| "clear", | |
| "extend", | |
| "insert", | |
| "pop", | |
| "remove", | |
| ], | |
| ) | |
| immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),)) | |
| immutable_list.__hash__ = lambda self: hash(tuple(self)) | |
| compatibility(is_backward_compatible=True)(immutable_list) | |
| immutable_dict = _create_immutable_container( | |
| dict, | |
| [ | |
| "__delitem__", | |
| "__setitem__", | |
| "clear", | |
| "pop", | |
| "popitem", | |
| "update", | |
| ], | |
| ) | |
| immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),)) | |
| immutable_dict.__hash__ = lambda self: hash(tuple(self.items())) | |
| compatibility(is_backward_compatible=True)(immutable_dict) | |
| # Register immutable collections for PyTree operations | |
| def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]: | |
| return _dict_flatten(d) | |
| def _immutable_dict_unflatten( | |
| values: Iterable[Any], | |
| context: Context, | |
| ) -> Dict[Any, Any]: | |
| return immutable_dict(_dict_unflatten(values, context)) | |
| def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]: | |
| return _list_flatten(d) | |
| def _immutable_list_unflatten( | |
| values: Iterable[Any], | |
| context: Context, | |
| ) -> List[Any]: | |
| return immutable_list(_list_unflatten(values, context)) | |
| register_pytree_node( | |
| immutable_dict, | |
| _immutable_dict_flatten, | |
| _immutable_dict_unflatten, | |
| serialized_type_name="torch.fx.immutable_collections.immutable_dict", | |
| flatten_with_keys_fn=_dict_flatten_with_keys, | |
| ) | |
| register_pytree_node( | |
| immutable_list, | |
| _immutable_list_flatten, | |
| _immutable_list_unflatten, | |
| serialized_type_name="torch.fx.immutable_collections.immutable_list", | |
| flatten_with_keys_fn=_list_flatten_with_keys, | |
| ) | |