Spaces:
Sleeping
Sleeping
File size: 2,996 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from typing import Any, Dict, Iterable, List, Tuple
from torch.utils._pytree import (
_dict_flatten,
_dict_flatten_with_keys,
_dict_unflatten,
_list_flatten,
_list_flatten_with_keys,
_list_unflatten,
Context,
register_pytree_node,
)
from ._compatibility import compatibility
__all__ = ["immutable_list", "immutable_dict"]
_help_mutation = """\
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
instead create a new copy of it and assign the copy to the node:
new_args = ... # copy and mutate args
node.args = new_args
"""
def _no_mutation(self, *args, **kwargs):
raise NotImplementedError(
f"'{type(self).__name__}' object does not support mutation. {_help_mutation}",
)
def _create_immutable_container(base, mutable_functions):
container = type("immutable_" + base.__name__, (base,), {})
for attr in mutable_functions:
setattr(container, attr, _no_mutation)
return container
immutable_list = _create_immutable_container(
list,
[
"__delitem__",
"__iadd__",
"__imul__",
"__setitem__",
"append",
"clear",
"extend",
"insert",
"pop",
"remove",
],
)
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
immutable_list.__hash__ = lambda self: hash(tuple(self))
compatibility(is_backward_compatible=True)(immutable_list)
immutable_dict = _create_immutable_container(
dict,
[
"__delitem__",
"__setitem__",
"clear",
"pop",
"popitem",
"update",
],
)
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
compatibility(is_backward_compatible=True)(immutable_dict)
# Register immutable collections for PyTree operations
def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
return _dict_flatten(d)
def _immutable_dict_unflatten(
values: Iterable[Any],
context: Context,
) -> Dict[Any, Any]:
return immutable_dict(_dict_unflatten(values, context))
def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
return _list_flatten(d)
def _immutable_list_unflatten(
values: Iterable[Any],
context: Context,
) -> List[Any]:
return immutable_list(_list_unflatten(values, context))
register_pytree_node(
immutable_dict,
_immutable_dict_flatten,
_immutable_dict_unflatten,
serialized_type_name="torch.fx.immutable_collections.immutable_dict",
flatten_with_keys_fn=_dict_flatten_with_keys,
)
register_pytree_node(
immutable_list,
_immutable_list_flatten,
_immutable_list_unflatten,
serialized_type_name="torch.fx.immutable_collections.immutable_list",
flatten_with_keys_fn=_list_flatten_with_keys,
)
|