Spaces:
Sleeping
Sleeping
| import math | |
| import torch | |
| import torch.jit | |
| from torch.distributions import constraints | |
| from torch.distributions.distribution import Distribution | |
| from torch.distributions.utils import broadcast_all, lazy_property | |
| __all__ = ["VonMises"] | |
| def _eval_poly(y, coef): | |
| coef = list(coef) | |
| result = coef.pop() | |
| while coef: | |
| result = coef.pop() + y * result | |
| return result | |
| _I0_COEF_SMALL = [ | |
| 1.0, | |
| 3.5156229, | |
| 3.0899424, | |
| 1.2067492, | |
| 0.2659732, | |
| 0.360768e-1, | |
| 0.45813e-2, | |
| ] | |
| _I0_COEF_LARGE = [ | |
| 0.39894228, | |
| 0.1328592e-1, | |
| 0.225319e-2, | |
| -0.157565e-2, | |
| 0.916281e-2, | |
| -0.2057706e-1, | |
| 0.2635537e-1, | |
| -0.1647633e-1, | |
| 0.392377e-2, | |
| ] | |
| _I1_COEF_SMALL = [ | |
| 0.5, | |
| 0.87890594, | |
| 0.51498869, | |
| 0.15084934, | |
| 0.2658733e-1, | |
| 0.301532e-2, | |
| 0.32411e-3, | |
| ] | |
| _I1_COEF_LARGE = [ | |
| 0.39894228, | |
| -0.3988024e-1, | |
| -0.362018e-2, | |
| 0.163801e-2, | |
| -0.1031555e-1, | |
| 0.2282967e-1, | |
| -0.2895312e-1, | |
| 0.1787654e-1, | |
| -0.420059e-2, | |
| ] | |
| _COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL] | |
| _COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE] | |
| def _log_modified_bessel_fn(x, order=0): | |
| """ | |
| Returns ``log(I_order(x))`` for ``x > 0``, | |
| where `order` is either 0 or 1. | |
| """ | |
| assert order == 0 or order == 1 | |
| # compute small solution | |
| y = x / 3.75 | |
| y = y * y | |
| small = _eval_poly(y, _COEF_SMALL[order]) | |
| if order == 1: | |
| small = x.abs() * small | |
| small = small.log() | |
| # compute large solution | |
| y = 3.75 / x | |
| large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log() | |
| result = torch.where(x < 3.75, small, large) | |
| return result | |
| def _rejection_sample(loc, concentration, proposal_r, x): | |
| done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device) | |
| while not done.all(): | |
| u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device) | |
| u1, u2, u3 = u.unbind() | |
| z = torch.cos(math.pi * u1) | |
| f = (1 + proposal_r * z) / (proposal_r + z) | |
| c = concentration * (proposal_r - f) | |
| accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0) | |
| if accept.any(): | |
| x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x) | |
| done = done | accept | |
| return (x + math.pi + loc) % (2 * math.pi) - math.pi | |
| class VonMises(Distribution): | |
| """ | |
| A circular von Mises distribution. | |
| This implementation uses polar coordinates. The ``loc`` and ``value`` args | |
| can be any real number (to facilitate unconstrained optimization), but are | |
| interpreted as angles modulo 2 pi. | |
| Example:: | |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
| >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0])) | |
| >>> m.sample() # von Mises distributed with loc=1 and concentration=1 | |
| tensor([1.9777]) | |
| :param torch.Tensor loc: an angle in radians. | |
| :param torch.Tensor concentration: concentration parameter | |
| """ | |
| arg_constraints = {"loc": constraints.real, "concentration": constraints.positive} | |
| support = constraints.real | |
| has_rsample = False | |
| def __init__(self, loc, concentration, validate_args=None): | |
| self.loc, self.concentration = broadcast_all(loc, concentration) | |
| batch_shape = self.loc.shape | |
| event_shape = torch.Size() | |
| super().__init__(batch_shape, event_shape, validate_args) | |
| def log_prob(self, value): | |
| if self._validate_args: | |
| self._validate_sample(value) | |
| log_prob = self.concentration * torch.cos(value - self.loc) | |
| log_prob = ( | |
| log_prob | |
| - math.log(2 * math.pi) | |
| - _log_modified_bessel_fn(self.concentration, order=0) | |
| ) | |
| return log_prob | |
| def _loc(self): | |
| return self.loc.to(torch.double) | |
| def _concentration(self): | |
| return self.concentration.to(torch.double) | |
| def _proposal_r(self): | |
| kappa = self._concentration | |
| tau = 1 + (1 + 4 * kappa**2).sqrt() | |
| rho = (tau - (2 * tau).sqrt()) / (2 * kappa) | |
| _proposal_r = (1 + rho**2) / (2 * rho) | |
| # second order Taylor expansion around 0 for small kappa | |
| _proposal_r_taylor = 1 / kappa + kappa | |
| return torch.where(kappa < 1e-5, _proposal_r_taylor, _proposal_r) | |
| def sample(self, sample_shape=torch.Size()): | |
| """ | |
| The sampling algorithm for the von Mises distribution is based on the | |
| following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the | |
| von Mises distribution." Applied Statistics (1979): 152-157. | |
| Sampling is always done in double precision internally to avoid a hang | |
| in _rejection_sample() for small values of the concentration, which | |
| starts to happen for single precision around 1e-4 (see issue #88443). | |
| """ | |
| shape = self._extended_shape(sample_shape) | |
| x = torch.empty(shape, dtype=self._loc.dtype, device=self.loc.device) | |
| return _rejection_sample( | |
| self._loc, self._concentration, self._proposal_r, x | |
| ).to(self.loc.dtype) | |
| def expand(self, batch_shape): | |
| try: | |
| return super().expand(batch_shape) | |
| except NotImplementedError: | |
| validate_args = self.__dict__.get("_validate_args") | |
| loc = self.loc.expand(batch_shape) | |
| concentration = self.concentration.expand(batch_shape) | |
| return type(self)(loc, concentration, validate_args=validate_args) | |
| def mean(self): | |
| """ | |
| The provided mean is the circular one. | |
| """ | |
| return self.loc | |
| def mode(self): | |
| return self.loc | |
| def variance(self): | |
| """ | |
| The provided variance is the circular one. | |
| """ | |
| return ( | |
| 1 | |
| - ( | |
| _log_modified_bessel_fn(self.concentration, order=1) | |
| - _log_modified_bessel_fn(self.concentration, order=0) | |
| ).exp() | |
| ) | |