File size: 6,270 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import math

import torch
import torch.jit
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, lazy_property

__all__ = ["VonMises"]


def _eval_poly(y, coef):
    coef = list(coef)
    result = coef.pop()
    while coef:
        result = coef.pop() + y * result
    return result


_I0_COEF_SMALL = [
    1.0,
    3.5156229,
    3.0899424,
    1.2067492,
    0.2659732,
    0.360768e-1,
    0.45813e-2,
]
_I0_COEF_LARGE = [
    0.39894228,
    0.1328592e-1,
    0.225319e-2,
    -0.157565e-2,
    0.916281e-2,
    -0.2057706e-1,
    0.2635537e-1,
    -0.1647633e-1,
    0.392377e-2,
]
_I1_COEF_SMALL = [
    0.5,
    0.87890594,
    0.51498869,
    0.15084934,
    0.2658733e-1,
    0.301532e-2,
    0.32411e-3,
]
_I1_COEF_LARGE = [
    0.39894228,
    -0.3988024e-1,
    -0.362018e-2,
    0.163801e-2,
    -0.1031555e-1,
    0.2282967e-1,
    -0.2895312e-1,
    0.1787654e-1,
    -0.420059e-2,
]

_COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL]
_COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE]


def _log_modified_bessel_fn(x, order=0):
    """

    Returns ``log(I_order(x))`` for ``x > 0``,

    where `order` is either 0 or 1.

    """
    assert order == 0 or order == 1

    # compute small solution
    y = x / 3.75
    y = y * y
    small = _eval_poly(y, _COEF_SMALL[order])
    if order == 1:
        small = x.abs() * small
    small = small.log()

    # compute large solution
    y = 3.75 / x
    large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log()

    result = torch.where(x < 3.75, small, large)
    return result


@torch.jit.script_if_tracing
def _rejection_sample(loc, concentration, proposal_r, x):
    done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device)
    while not done.all():
        u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device)
        u1, u2, u3 = u.unbind()
        z = torch.cos(math.pi * u1)
        f = (1 + proposal_r * z) / (proposal_r + z)
        c = concentration * (proposal_r - f)
        accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0)
        if accept.any():
            x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x)
            done = done | accept
    return (x + math.pi + loc) % (2 * math.pi) - math.pi


class VonMises(Distribution):
    """

    A circular von Mises distribution.



    This implementation uses polar coordinates. The ``loc`` and ``value`` args

    can be any real number (to facilitate unconstrained optimization), but are

    interpreted as angles modulo 2 pi.



    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0]))

        >>> m.sample()  # von Mises distributed with loc=1 and concentration=1

        tensor([1.9777])



    :param torch.Tensor loc: an angle in radians.

    :param torch.Tensor concentration: concentration parameter

    """

    arg_constraints = {"loc": constraints.real, "concentration": constraints.positive}
    support = constraints.real
    has_rsample = False

    def __init__(self, loc, concentration, validate_args=None):
        self.loc, self.concentration = broadcast_all(loc, concentration)
        batch_shape = self.loc.shape
        event_shape = torch.Size()
        super().__init__(batch_shape, event_shape, validate_args)

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        log_prob = self.concentration * torch.cos(value - self.loc)
        log_prob = (
            log_prob
            - math.log(2 * math.pi)
            - _log_modified_bessel_fn(self.concentration, order=0)
        )
        return log_prob

    @lazy_property
    def _loc(self):
        return self.loc.to(torch.double)

    @lazy_property
    def _concentration(self):
        return self.concentration.to(torch.double)

    @lazy_property
    def _proposal_r(self):
        kappa = self._concentration
        tau = 1 + (1 + 4 * kappa**2).sqrt()
        rho = (tau - (2 * tau).sqrt()) / (2 * kappa)
        _proposal_r = (1 + rho**2) / (2 * rho)
        # second order Taylor expansion around 0 for small kappa
        _proposal_r_taylor = 1 / kappa + kappa
        return torch.where(kappa < 1e-5, _proposal_r_taylor, _proposal_r)

    @torch.no_grad()
    def sample(self, sample_shape=torch.Size()):
        """

        The sampling algorithm for the von Mises distribution is based on the

        following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the

        von Mises distribution." Applied Statistics (1979): 152-157.



        Sampling is always done in double precision internally to avoid a hang

        in _rejection_sample() for small values of the concentration, which

        starts to happen for single precision around 1e-4 (see issue #88443).

        """
        shape = self._extended_shape(sample_shape)
        x = torch.empty(shape, dtype=self._loc.dtype, device=self.loc.device)
        return _rejection_sample(
            self._loc, self._concentration, self._proposal_r, x
        ).to(self.loc.dtype)

    def expand(self, batch_shape):
        try:
            return super().expand(batch_shape)
        except NotImplementedError:
            validate_args = self.__dict__.get("_validate_args")
            loc = self.loc.expand(batch_shape)
            concentration = self.concentration.expand(batch_shape)
            return type(self)(loc, concentration, validate_args=validate_args)

    @property
    def mean(self):
        """

        The provided mean is the circular one.

        """
        return self.loc

    @property
    def mode(self):
        return self.loc

    @lazy_property
    def variance(self):
        """

        The provided variance is the circular one.

        """
        return (
            1
            - (
                _log_modified_bessel_fn(self.concentration, order=1)
                - _log_modified_bessel_fn(self.concentration, order=0)
            ).exp()
        )