Spaces:
Sleeping
Sleeping
| from numbers import Number | |
| import torch | |
| from torch.distributions import constraints | |
| from torch.distributions.exp_family import ExponentialFamily | |
| from torch.distributions.utils import broadcast_all | |
| __all__ = ["Exponential"] | |
| class Exponential(ExponentialFamily): | |
| r""" | |
| Creates a Exponential distribution parameterized by :attr:`rate`. | |
| Example:: | |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") | |
| >>> m = Exponential(torch.tensor([1.0])) | |
| >>> m.sample() # Exponential distributed with rate=1 | |
| tensor([ 0.1046]) | |
| Args: | |
| rate (float or Tensor): rate = 1 / scale of the distribution | |
| """ | |
| arg_constraints = {"rate": constraints.positive} | |
| support = constraints.nonnegative | |
| has_rsample = True | |
| _mean_carrier_measure = 0 | |
| def mean(self): | |
| return self.rate.reciprocal() | |
| def mode(self): | |
| return torch.zeros_like(self.rate) | |
| def stddev(self): | |
| return self.rate.reciprocal() | |
| def variance(self): | |
| return self.rate.pow(-2) | |
| def __init__(self, rate, validate_args=None): | |
| (self.rate,) = broadcast_all(rate) | |
| batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size() | |
| super().__init__(batch_shape, validate_args=validate_args) | |
| def expand(self, batch_shape, _instance=None): | |
| new = self._get_checked_instance(Exponential, _instance) | |
| batch_shape = torch.Size(batch_shape) | |
| new.rate = self.rate.expand(batch_shape) | |
| super(Exponential, new).__init__(batch_shape, validate_args=False) | |
| new._validate_args = self._validate_args | |
| return new | |
| def rsample(self, sample_shape=torch.Size()): | |
| shape = self._extended_shape(sample_shape) | |
| return self.rate.new(shape).exponential_() / self.rate | |
| def log_prob(self, value): | |
| if self._validate_args: | |
| self._validate_sample(value) | |
| return self.rate.log() - self.rate * value | |
| def cdf(self, value): | |
| if self._validate_args: | |
| self._validate_sample(value) | |
| return 1 - torch.exp(-self.rate * value) | |
| def icdf(self, value): | |
| return -torch.log1p(-value) / self.rate | |
| def entropy(self): | |
| return 1.0 - torch.log(self.rate) | |
| def _natural_params(self): | |
| return (-self.rate,) | |
| def _log_normalizer(self, x): | |
| return -torch.log(-x) | |