File size: 2,522 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from numbers import Number

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all

__all__ = ["Exponential"]


class Exponential(ExponentialFamily):
    r"""

    Creates a Exponential distribution parameterized by :attr:`rate`.



    Example::



        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = Exponential(torch.tensor([1.0]))

        >>> m.sample()  # Exponential distributed with rate=1

        tensor([ 0.1046])



    Args:

        rate (float or Tensor): rate = 1 / scale of the distribution

    """
    arg_constraints = {"rate": constraints.positive}
    support = constraints.nonnegative
    has_rsample = True
    _mean_carrier_measure = 0

    @property
    def mean(self):
        return self.rate.reciprocal()

    @property
    def mode(self):
        return torch.zeros_like(self.rate)

    @property
    def stddev(self):
        return self.rate.reciprocal()

    @property
    def variance(self):
        return self.rate.pow(-2)

    def __init__(self, rate, validate_args=None):
        (self.rate,) = broadcast_all(rate)
        batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size()
        super().__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Exponential, _instance)
        batch_shape = torch.Size(batch_shape)
        new.rate = self.rate.expand(batch_shape)
        super(Exponential, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        return self.rate.new(shape).exponential_() / self.rate

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return self.rate.log() - self.rate * value

    def cdf(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return 1 - torch.exp(-self.rate * value)

    def icdf(self, value):
        return -torch.log1p(-value) / self.rate

    def entropy(self):
        return 1.0 - torch.log(self.rate)

    @property
    def _natural_params(self):
        return (-self.rate,)

    def _log_normalizer(self, x):
        return -torch.log(-x)