Spaces:
Sleeping
Sleeping
import functools | |
import numbers | |
import operator | |
import sys | |
from enum import Enum | |
from functools import partial, reduce | |
from itertools import chain, product | |
from typing import Any, Callable, cast, Iterable, List, Optional, Tuple, Union | |
import torch | |
import torch._prims as prims | |
import torch._prims_common as utils | |
import torch.nn.functional as F | |
from torch import sym_float, sym_int, Tensor | |
from torch._decomp import register_decomposition | |
from torch._higher_order_ops.out_dtype import out_dtype | |
from torch._prims_common import IntLike, NumberType, TensorLike, TensorSequenceType | |
from torch._prims_common.wrappers import ( | |
_maybe_convert_to_dtype, | |
_maybe_resize_out, | |
_safe_copy_out, | |
out_wrapper, | |
) | |
from torch.utils import _pytree as pytree | |
from torch.utils._pytree import tree_map | |
DispatchKey = torch._C.DispatchKey # type: ignore[attr-defined] | |
# None of these functions are publicly accessible; get at them | |
# from torch._decomps | |
__all__: List[str] = [] | |
aten = torch._ops.ops.aten | |
class Reduction(Enum): | |
NONE = 0 | |
MEAN = 1 | |
SUM = 2 | |
# This wraps a decomposition and performs various type promotion logic within it, depending on the strategy provided | |
# We're currently re-using ELEMENTWISE_TYPE_PROMOTION_KIND, although some of the usages are on non-elementwise ops | |
# Will need to validate the non-elementwise uses | |
def type_casts( | |
f: Callable, | |
type_promotion: utils.ELEMENTWISE_TYPE_PROMOTION_KIND, | |
compute_dtype_only: bool = False, | |
): | |
def inner(*args, **kwargs): | |
flat_args = [ | |
x for x in pytree.arg_tree_leaves(*args, **kwargs) if isinstance(x, Tensor) | |
] | |
computation_dtype, result_dtype = utils.elementwise_dtypes( | |
*flat_args, type_promotion_kind=type_promotion | |
) | |
# TODO: pretty sure this is not quite right | |
def increase_prec(x): | |
if isinstance(x, Tensor): | |
return x.to(computation_dtype) | |
else: | |
return x | |
def decrease_prec(x): | |
if isinstance(x, Tensor): | |
return x.to(result_dtype) | |
else: | |
return x | |
r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs)) | |
if compute_dtype_only: | |
return r | |
else: | |
return tree_map(decrease_prec, r) | |
return inner | |
compute_only_pw_cast_for_opmath = partial( | |
type_casts, | |
type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT, | |
compute_dtype_only=True, | |
) | |
pw_cast_for_opmath = partial( | |
type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT | |
) | |
pw_cast_for_int_to_real = partial( | |
type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT | |
) | |
# This expands x until x.dim() == dim. Might be useful as an operator | |
def _unsqueeze_to_dim(x: Tensor, dim: int) -> Tensor: | |
for _ in range(dim - x.dim()): | |
x = x.unsqueeze(-1) | |
return x | |
def tanh_backward(out_grad: Tensor, y: Tensor): | |
return out_grad * (1 - y * y).conj_physical() | |
def sigmoid_backward(out_grad: Tensor, y: Tensor): | |
return out_grad * (y * (1 - y)).conj_physical() | |
def softplus_backward(out_grad: Tensor, x: Tensor, beta: float, threshold: float): | |
z = (x * beta).exp() | |
return torch.where((x * beta) > threshold, out_grad, out_grad * z / (z + 1.0)) | |
def elu_backward( | |
grad_output: Tensor, | |
alpha: float, | |
scale: float, | |
input_scale: float, | |
is_result: bool, | |
self_or_result: Tensor, | |
): | |
negcoef = alpha * scale | |
poscoef = scale | |
negiptcoef = input_scale | |
if is_result: | |
return torch.where( | |
self_or_result <= 0, | |
grad_output * negiptcoef * (self_or_result + negcoef), | |
grad_output * poscoef, | |
) | |
else: | |
return torch.where( | |
self_or_result <= 0, | |
grad_output * negiptcoef * negcoef * torch.exp(self_or_result * negiptcoef), | |
grad_output * poscoef, | |
) | |
def fill_scalar(self, value): | |
return torch.full_like(self, value) | |
def fill_tensor(self, value: Tensor): | |
torch._check( | |
value.dim() == 0, | |
lambda: f"fill only supports 0-dimension value tensor but got tensor with {value.dim()} dimensions", | |
) | |
return aten.copy(self, value) | |
def hardsigmoid(self: Tensor) -> Tensor: | |
return torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6 | |
def hardsigmoid_backward(grad_output: Tensor, self: Tensor): | |
return torch.where( | |
(self > -3.0) & (self < 3.0), | |
grad_output * (1.0 / 6.0), | |
0.0, | |
) | |
def hardtanh_backward( | |
grad_output: Tensor, self: Tensor, min_val: float, max_val: float | |
): | |
return torch.where((self <= min_val) | (self >= max_val), 0.0, grad_output) | |
def hardswish(self: Tensor) -> Tensor: | |
return self * torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6 | |
def hardswish_backward(grad_output: Tensor, self: Tensor) -> Tensor: | |
return torch.where( | |
self < -3, | |
0.0, | |
torch.where(self <= 3, grad_output * ((self / 3) + 0.5), grad_output), | |
) | |
def threshold_backward(grad_output: Tensor, self: Tensor, threshold: float): | |
return torch.where(self <= threshold, 0, grad_output) | |
def leaky_relu_backward( | |
grad_output: Tensor, self: Tensor, negative_slope: float, self_is_result: bool | |
): | |
return torch.where(self > 0, grad_output, grad_output * negative_slope) | |
def gelu_backward(grad: Tensor, self: Tensor, approximate: str = "none"): | |
M_SQRT2 = 1.41421356237309504880 | |
M_SQRT1_2 = 0.70710678118654752440 | |
M_2_SQRTPI = 1.12837916709551257390 | |
if approximate == "tanh": | |
kBeta = M_SQRT2 * M_2_SQRTPI * 0.5 | |
kKappa = 0.044715 | |
x_sq = self * self | |
x_cube = x_sq * self | |
inner = kBeta * (self + kKappa * x_cube) | |
tanh_inner = torch.tanh(inner) | |
left = 0.5 * self | |
right = 1 + tanh_inner | |
left_derivative = 0.5 * right | |
tanh_derivative = 1 - tanh_inner * tanh_inner | |
inner_derivative = kBeta * (1 + 3 * kKappa * x_sq) | |
right_derivative = left * tanh_derivative * inner_derivative | |
return grad * (left_derivative + right_derivative) | |
else: | |
kAlpha = M_SQRT1_2 | |
kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5 | |
cdf = 0.5 * (1 + torch.erf(self * kAlpha)) | |
pdf = kBeta * torch.exp(self * self * -0.5) | |
return grad * (cdf + self * pdf) | |
def mish_backward(grad_output: Tensor, input: Tensor): | |
input_tanh_softplus = torch.tanh(F.softplus(input)) | |
input_sigmoid = torch.sigmoid(input) | |
out = input * input_sigmoid * (1 - input_tanh_softplus * input_tanh_softplus) | |
return grad_output * (input_tanh_softplus + out) | |
def silu(self: Tensor) -> Tensor: | |
return self * torch.sigmoid(self) | |
def silu_backward(grad_output: Tensor, self: Tensor) -> Tensor: | |
sigmoid = 1 / (1 + torch.exp(-self)) | |
return grad_output * sigmoid * (1 + self * (1 - sigmoid)) | |
def _prelu_kernel(self: Tensor, weight: Tensor) -> Tensor: | |
return torch.where(self > 0, self, weight * self) | |
def _prelu_kernel_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
weight: Tensor, | |
) -> Tuple[Tensor, Tensor]: | |
input_grad = torch.where(self > 0, grad_output, weight * grad_output) | |
weight_grad = torch.where(self > 0, 0.0, self * grad_output) | |
return (input_grad, weight_grad) | |
def rrelu_with_noise( | |
self: Tensor, | |
noise: Tensor, | |
lower: float = 0.125, | |
upper: float = 0.3333333333333333, | |
training: bool = False, | |
generator: Optional[torch.Generator] = None, | |
) -> Tensor: | |
assert generator is None | |
if training: | |
not_positive = self <= 0 | |
r = aten.uniform(self, lower, upper) | |
output = torch.where(not_positive, self * r, self) | |
noise.copy_(torch.where(not_positive, r, 1)) | |
return output | |
else: | |
negative_slope = (lower + upper) / 2 | |
return aten.leaky_relu(self, negative_slope) | |
def rrelu_with_noise_( | |
self: Tensor, | |
noise: Tensor, | |
lower: float, | |
upper: float, | |
training: bool = False, | |
generator: Optional[torch.Generator] = None, | |
) -> Tensor: | |
return self.copy_(rrelu_with_noise(self, noise, lower, upper, training, generator)) | |
def rrelu_with_noise_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
noise: Tensor, | |
lower: float, | |
upper: float, | |
training: bool, | |
self_is_result: bool, | |
) -> Tensor: | |
if training and upper - lower > 1e-6: | |
return grad_output.mul(noise) | |
else: | |
negative_slope = (lower + upper) / 2 | |
return aten.leaky_relu_backward( | |
grad_output, self, negative_slope, self_is_result | |
) | |
def log_sigmoid_backward(grad_output: Tensor, self: Tensor, buffer: Tensor) -> Tensor: | |
in_negative = self < 0 | |
max_deriv = torch.where(in_negative, 1, 0) | |
sign = torch.where(in_negative, 1, -1) | |
z = torch.exp(-torch.abs(self)) | |
return grad_output * (max_deriv - sign * (z / (1 + z))) | |
# CPU has a special formula that uses buffer, but disabled for convenience sake | |
# return (max_deriv - sign * (buffer / (1 + buffer))) * grad_output | |
def apply_loss_reduction(loss: Tensor, reduction: int): | |
if reduction == Reduction.MEAN.value: | |
return torch.mean(loss) | |
elif reduction == Reduction.SUM.value: | |
return torch.sum(loss) | |
else: | |
return loss | |
def to_real_dtype(dtype: torch.dtype): | |
if dtype == torch.complex32: | |
return torch.float16 | |
elif dtype == torch.complex64: | |
return torch.float32 | |
elif dtype == torch.complex128: | |
return torch.float64 | |
# TODO: None of these loss castings are quite correct, see | |
# https://github.com/pytorch/pytorch/issues/76870. Also, the ATen kernels | |
# perform the pointwise portion in opmath, but don't maintain it between the | |
# pointwise portion and the reduction | |
def mse_loss( | |
self: Tensor, target: Tensor, reduction: int = Reduction.MEAN.value | |
) -> Tensor: | |
loss = (self - target) ** 2 | |
return apply_loss_reduction(loss, reduction) | |
def mse_loss_backward( | |
grad_output: Tensor, input: Tensor, target: Tensor, reduction: int | |
): | |
norm = 2.0 / input.numel() if reduction == Reduction.MEAN.value else 2.0 | |
return norm * (input - target) * grad_output | |
def smooth_l1_loss( | |
self: Tensor, | |
target: Tensor, | |
reduction: int = Reduction.MEAN.value, | |
beta: float = 1.0, | |
): | |
loss = (self - target).abs() | |
loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta) | |
return apply_loss_reduction(loss, reduction) | |
def smooth_l1_loss_backward( | |
grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, beta: float | |
): | |
norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0 | |
x = self - target | |
abs_x = torch.abs(x) | |
norm_grad = norm * grad_output | |
return torch.where( | |
abs_x < beta, | |
norm_grad * x / beta, | |
norm_grad * torch.sign(x), | |
) | |
def smooth_l1_loss_backward_out( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
reduction: int, | |
beta: float, | |
grad_input: Tensor, | |
): | |
result = smooth_l1_loss_backward(grad_output, self, target, reduction, beta) | |
_maybe_resize_out(grad_input, result.shape) | |
return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True) | |
def huber_loss_backward( | |
grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, delta: float | |
): | |
norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0 | |
x = self - target | |
return torch.where( | |
x < -delta, | |
-norm * grad_output * delta, | |
torch.where(x > delta, norm * grad_output * delta, norm * x * grad_output), | |
) | |
# We cannot use @out_wrapper() here, because the output tensor is not named 'out', it's 'grad_input' | |
def huber_loss_backward_out( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
reduction: int, | |
delta: float, | |
grad_input: Tensor, | |
): | |
result = huber_loss_backward(grad_output, self, target, reduction, delta) | |
_maybe_resize_out(grad_input, result.shape) | |
return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True) | |
def _nll_loss_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
total_weight: Tensor, | |
) -> Tensor: | |
channel_dim = 0 if self.dim() < 2 else 1 | |
if reduction == Reduction.MEAN.value: | |
grad_output = grad_output / total_weight | |
target = target.unsqueeze(channel_dim) | |
safe_target = torch.where(target != ignore_index, target, 0) | |
grad_input = torch.zeros_like(self) | |
grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0) | |
if grad_input.dim() > grad_output.dim() > 0: | |
grad_output = grad_output.unsqueeze(channel_dim) | |
if weight is not None: | |
new_shape = [1 for _ in range(self.dim())] | |
new_shape[channel_dim] = weight.shape[0] | |
weight = weight.reshape(new_shape) | |
grad_output = grad_output * weight | |
grad_output = torch.where(target != ignore_index, grad_output, 0) | |
return grad_input * grad_output | |
def glu_backward(grad_output: Tensor, self: Tensor, dim: int) -> Tensor: | |
assert self.dim() > 0, "glu does not support 0-dimensional tensors" | |
wrap_dim = utils.canonicalize_dim(self.dim(), dim) | |
nIn = self.size(wrap_dim) | |
assert ( | |
nIn % 2 == 0 | |
), f"Halving dimension must be even, but dimension {wrap_dim} is size {nIn}" | |
inputSize = nIn // 2 | |
firstHalf = self.narrow(wrap_dim, 0, inputSize) | |
secondHalf = self.narrow(wrap_dim, inputSize, inputSize) | |
gradInputFirstHalf = torch.sigmoid(secondHalf) | |
gradInputSecondHalf = ( | |
(1.0 - gradInputFirstHalf) * gradInputFirstHalf * firstHalf * grad_output | |
) | |
gradInputFirstHalf = gradInputFirstHalf * grad_output | |
return torch.cat([gradInputFirstHalf, gradInputSecondHalf], dim=wrap_dim) | |
def nll_loss_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
total_weight: Tensor, | |
) -> Tensor: | |
assert 0 <= self.dim() <= 2, "input tensor should be 1D or 2D" | |
assert ( | |
target.dim() <= 1 | |
), "0D or 1D target tensor expected, multi-target not supported" | |
no_batch_dim = self.dim() == 1 and target.dim() == 0 | |
assert no_batch_dim or ( | |
self.shape[0] == target.shape[0] | |
), f"size mismatch (got input: {self.shape}, target: {target.shape})" | |
assert total_weight.numel() == 1, ( | |
"expected total_weight to be a single element tensor, got: ", | |
f"{total_weight.shape} ({total_weight.numel()} elements)", | |
) | |
assert ( | |
weight is None or weight.numel() == self.shape[-1] | |
), "weight tensor should be defined either for all or no classes" | |
if reduction == Reduction.NONE.value and self.dim() == 2: | |
assert grad_output.dim() == 1 and grad_output.shape[0] == self.shape[0], ( | |
f"Expected a tensor of dimension 1 and tensor.size[0] == {self.shape[0]} but " | |
f"got: dimension {grad_output.dim()} and tensor.size[0] == {grad_output.shape[0]}" | |
) | |
else: | |
assert ( | |
grad_output.dim() <= 1 and grad_output.numel() == 1 | |
), f"Expected a single element grad_output tensor, but got: {grad_output.shape}" | |
return _nll_loss_backward( | |
grad_output, self, target, weight, reduction, ignore_index, total_weight | |
) | |
def nll_loss2d_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
total_weight: Tensor, | |
) -> Tensor: | |
assert ( | |
self.dim() == 4 | |
), f"only batches of spatial inputs supported (4D tensors), but got input of dimension: {self.dim()}" | |
assert ( | |
target.dim() == 3 | |
), f"only batches of spatial targets supported (3D tensors) but got targets of dimension: {target.dim()}" | |
assert ( | |
self.shape[0] == target.shape[0] | |
and self.shape[2] == target.shape[1] | |
and self.shape[3] == target.shape[2] | |
), f"size mismatch (got input: {self.shape}, target: {target.shape}" | |
assert total_weight.numel() == 1, ( | |
"expected total_weight to be a single element tensor, " | |
f"got: {total_weight.shape} ( {total_weight.numel()}, elements)" | |
) | |
return _nll_loss_backward( | |
grad_output, self, target, weight, reduction, ignore_index, total_weight | |
) | |
def binary_cross_entropy( | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
reduction: int = Reduction.MEAN.value, | |
) -> Tensor: | |
# We cannot currently model this without introducing data-dependent control flow | |
# TORCH_CHECK( | |
# (input_val >= 0) && (input_val <= 1), | |
# "all elements of input should be between 0 and 1" | |
# ) | |
loss = (target - 1) * torch.maximum( | |
torch.log1p(-self), self.new_full((), -100) | |
) - target * torch.maximum(torch.log(self), self.new_full((), -100)) | |
if weight is not None: | |
loss = loss * weight | |
return apply_loss_reduction(loss, reduction) | |
def binary_cross_entropy_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor] = None, | |
reduction: int = Reduction.MEAN.value, | |
) -> Tensor: | |
EPSILON = 1e-12 | |
result = grad_output * (self - target) / torch.clamp(self * (1 - self), min=EPSILON) | |
if weight is not None: | |
result = result * weight | |
if reduction == Reduction.MEAN.value: | |
result = result / self.numel() | |
return result | |
def soft_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
reduction: int = Reduction.MEAN.value, | |
) -> Tensor: | |
loss = torch.log1p(torch.exp(-input * target)) | |
return apply_loss_reduction(loss, reduction) | |
def soft_margin_loss_backward( | |
grad_output: Tensor, | |
self: Tensor, | |
target: Tensor, | |
reduction: int = Reduction.MEAN.value, | |
) -> Tensor: | |
grad_input = target * grad_output * (torch.sigmoid(target * self) - 1) | |
if reduction == Reduction.MEAN.value: | |
grad_input = grad_input / self.numel() | |
return grad_input | |
def dist(input: Tensor, other: Tensor, p: float = 2): | |
return aten.norm(input - other, p=p) | |
def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor: | |
x1_norm = x1.pow(2).sum(-1, True) | |
x1_pad = torch.ones_like(x1_norm, memory_format=torch.contiguous_format) | |
x2_norm = x2.pow(2).sum(-1, True) | |
x2_pad = torch.ones_like(x2_norm, memory_format=torch.contiguous_format) | |
x1_ = torch.cat([x1.mul(-2), x1_norm, x1_pad], -1) | |
x2_ = torch.cat([x2, x2_pad, x2_norm], -1) | |
result = x1_.matmul(x2_.mT) | |
return result.clamp_min(0).sqrt() | |
def slice_backward( | |
grad_output: Tensor, | |
input_sizes: List[int], | |
dim: int, | |
start: int, | |
end: int, | |
step: int, | |
): | |
grad_input = grad_output.new_zeros(input_sizes) | |
return torch.slice_scatter(grad_input, grad_output, dim, start, end, step) | |
def slice_forward( | |
# Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1 | |
self: Tensor, | |
dim: int = 0, | |
start: Optional[int] = None, | |
end: Optional[int] = None, | |
step: int = 1, | |
): | |
ndim = self.dim() | |
if ndim == 0: | |
raise RuntimeError("slice() cannot be applied to a 0-dim tensor.") | |
dim = utils.canonicalize_dim(self.dim(), dim) | |
sizes = list(self.size()) | |
strides = list(self.stride()) | |
if step <= 0: | |
raise RuntimeError("slice step must be positive") | |
start_val = start if start is not None else 0 | |
end_val = end if end is not None else sys.maxsize # 2^63 – 1 | |
if start_val < 0: | |
start_val += sizes[dim] | |
if end_val < 0: | |
end_val += sizes[dim] | |
if start_val < 0: | |
start_val = 0 | |
elif start_val > sizes[dim]: | |
start_val = sizes[dim] | |
if end_val < start_val: | |
end_val = start_val | |
elif end_val > sizes[dim]: | |
end_val = sizes[dim] | |
storage_offset = self.storage_offset() + start_val * strides[dim] | |
len = end_val - start_val | |
sizes[dim] = (len + step - 1) // step | |
strides[dim] *= step | |
if self.is_quantized: | |
raise NotImplementedError( | |
"Slice decomposition for quantized tensors aren't implemented" | |
) | |
else: | |
return self.as_strided(sizes, strides, storage_offset) | |
def select_backward(grad_output: Tensor, input_sizes: List[int], dim: int, index: int): | |
grad_input = grad_output.new_zeros(input_sizes) | |
return torch.select_scatter(grad_input, grad_output, dim, index) | |
def diagonal_backward( | |
grad_output: Tensor, input_sizes: List[int], offset: int, dim1: int, dim2: int | |
): | |
grad_input = grad_output.new_zeros(input_sizes) | |
return torch.diagonal_scatter(grad_input, grad_output, offset, dim1, dim2) | |
def _cast_grad_to_input_dtype( | |
grad_output: Tensor, grad_input: Tensor, input_dtype: torch.dtype | |
): | |
if grad_output.dtype != input_dtype: | |
grad_input = grad_input.to(input_dtype) | |
return grad_input | |
def _softmax_backward_data( | |
grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype | |
): | |
new_grad_output = grad_output * output | |
grad_input = new_grad_output - output * torch.sum( | |
new_grad_output, dim=dim, keepdim=True | |
) | |
# CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor | |
# if grad_output.device == torch.device("cpu"): | |
# return grad_input.contiguous() | |
return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype).contiguous() | |
def _log_softmax_backward_data( | |
grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype | |
): | |
grad_input = grad_output - torch.exp(output) * torch.sum( | |
grad_output, dim=dim, keepdim=True | |
) | |
return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype) | |
def _im2col_col2im_indices_along_dim( | |
input_d, kernel_d, dilation_d, padding_d, stride_d, device | |
): | |
"""Utility function to implement im2col and col2im""" | |
blocks_d = input_d + padding_d * 2 - dilation_d * (kernel_d - 1) | |
arange_kw = partial(torch.arange, dtype=torch.int64, device=device) | |
# Stride kernel over input and find starting indices along dim d | |
blocks_d_indices = arange_kw(0, blocks_d, stride_d).unsqueeze(0) | |
# Apply dilation on kernel and find its indices along dim d | |
kernel_grid = arange_kw(0, kernel_d * dilation_d, dilation_d).unsqueeze(-1) | |
# Broadcast and add kernel starting positions (indices) with | |
# kernel_grid along dim d, to get block indices along dim d | |
return blocks_d_indices + kernel_grid | |
def im2col( | |
input: Tensor, | |
kernel_size: List[int], | |
dilation: List[int], | |
padding: List[int], | |
stride: List[int], | |
) -> Tensor: | |
torch._check(len(kernel_size) == 2, lambda: "im2col(): only 2D kernel supported") | |
torch._check(len(dilation) == 2, lambda: "im2col(): only 2D dilation supported") | |
torch._check(len(padding) == 2, lambda: "im2col(): only 2D padding supported") | |
torch._check(len(stride) == 2, lambda: "im2col(): only 2D stride supported") | |
def check_positive(param, param_name, strict=True): | |
cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param) | |
torch._check( | |
cond, lambda: "{param_name} should be greater {'than' zero, but got {param}" | |
) | |
check_positive(kernel_size, "kernel_size") | |
check_positive(dilation, "dilation") | |
check_positive(dilation, "padding", strict=False) | |
check_positive(stride, "stride") | |
shape = input.shape | |
ndim = len(shape) | |
torch._check( | |
ndim in (3, 4) and all(d != 0 for d in shape[-3:]), | |
lambda: "Expected 3D or 4D (batch mode) tensor for input with possible 0 batch size " | |
f"and non-zero dimensions, but got: {tuple(shape)}", | |
) | |
output_size = tuple( | |
1 + (out + 2 * pad - dil * (ker - 1) - 1) // st | |
for out, pad, dil, ker, st in zip( | |
shape[-2:], padding, dilation, kernel_size, stride | |
) | |
) | |
torch._check( | |
all(c > 0 for c in output_size), | |
lambda: f"Given an input with spacial size {tuple(shape[-2:])}, " | |
f"kernel_size={kernel_size}, dilation={dilation}, " | |
f"padding={padding}, stride={stride}, " | |
"the calculated shape of the array of sliding blocks " | |
f"is {output_size}, but its components must be at least one.", | |
) | |
batched_input = ndim == 4 | |
if not batched_input: | |
input = input.unsqueeze(0) | |
batch_dim, channel_dim, input_h, input_w = input.shape | |
stride_h, stride_w = stride | |
padding_h, padding_w = padding | |
dilation_h, dilation_w = dilation | |
kernel_h, kernel_w = kernel_size | |
blocks_row_indices = _im2col_col2im_indices_along_dim( | |
input_h, kernel_h, dilation_h, padding_h, stride_h, input.device | |
) | |
blocks_col_indices = _im2col_col2im_indices_along_dim( | |
input_w, kernel_w, dilation_w, padding_w, stride_w, input.device | |
) | |
# Note that F.pad takes (padding_left, padding_right, padding_top, padding_bottom) | |
# ugh | |
padded_input = F.pad(input, (padding_w, padding_w, padding_h, padding_h)) | |
blocks_row_indices = blocks_row_indices.unsqueeze(-1).unsqueeze(-1) | |
output = padded_input[:, :, blocks_row_indices, blocks_col_indices] | |
output = output.permute(0, 1, 2, 4, 3, 5) | |
num_blocks_row = blocks_row_indices.size(1) | |
num_blocks_col = blocks_col_indices.size(1) | |
output = output.reshape( | |
batch_dim, channel_dim * kernel_h * kernel_w, num_blocks_row * num_blocks_col | |
) | |
if not batched_input: | |
output = output.squeeze(0) | |
return output | |
def col2im( | |
input: Tensor, | |
output_size: List[int], | |
kernel_size: List[int], | |
dilation: List[int], | |
padding: List[int], | |
stride: List[int], | |
) -> Tensor: | |
torch._check(len(output_size) == 2, lambda: "only 2D output_size supported") | |
torch._check(len(kernel_size) == 2, lambda: "only 2D kernel supported") | |
torch._check(len(dilation) == 2, lambda: "only 2D dilation supported") | |
torch._check(len(padding) == 2, lambda: "only 2D padding supported") | |
torch._check(len(stride) == 2, lambda: "only 2D stride supported") | |
def check_positive(param, param_name, strict=True): | |
cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param) | |
torch._check( | |
cond, lambda: "{param_name} should be greater than zero, but got {param}" | |
) | |
check_positive(kernel_size, "kernel_size") | |
check_positive(dilation, "dilation") | |
check_positive(padding, "padding", strict=False) | |
check_positive(stride, "stride") | |
check_positive(output_size, "output_size") | |
shape = input.shape | |
ndim = len(shape) | |
torch._check( | |
ndim in (2, 3) and all(d != 0 for d in shape[-2:]), | |
lambda: "Expected 2D or 3D (batch mode) tensor for input with possible 0 batch size " | |
f"and non-zero dimensions, but got: {tuple(shape)}", | |
) | |
prod_kernel_size = kernel_size[0] * kernel_size[1] | |
torch._check( | |
shape[-2] % prod_kernel_size == 0, | |
lambda: "Expected size of input's first non-batch dimension to be divisible by the " | |
f"product of kernel_size, but got input.shape[-2] = {shape[-2]} and " | |
f"kernel_size={kernel_size}", | |
) | |
col = [ | |
1 + (out + 2 * pad - dil * (ker - 1) - 1) // st | |
for out, pad, dil, ker, st in zip( | |
output_size, padding, dilation, kernel_size, stride | |
) | |
] | |
L = col[0] * col[1] | |
torch._check( | |
shape[-1] == L, | |
lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, " | |
f"dilation={dilation}, padding={padding}, stride={stride}, " | |
f"expected input.size(-1) to be {L} but got {shape[-1]}.", | |
) | |
torch._check( | |
L > 0, | |
lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, " | |
f"dilation={dilation}, padding={padding}, stride={stride}, " | |
f"expected input.size(-1) to be {L} but got {shape[-1]}.", | |
) | |
batched_input = ndim == 3 | |
if not batched_input: | |
input = input.unsqueeze(0) | |
shape = input.shape | |
out_h, out_w = output_size | |
stride_h, stride_w = stride | |
padding_h, padding_w = padding | |
dilation_h, dilation_w = dilation | |
kernel_h, kernel_w = kernel_size | |
# col2im is defined as the backwards of im2col, so we differentiate its decomposition by hand | |
input = input.reshape([shape[0], shape[1] // prod_kernel_size] + kernel_size + col) | |
input = input.permute(0, 1, 2, 4, 3, 5) | |
indices_row = _im2col_col2im_indices_along_dim( | |
out_h, kernel_h, dilation_h, padding_h, stride_h, input.device | |
) | |
indices_row = _unsqueeze_to_dim(indices_row, 4) | |
indices_col = _im2col_col2im_indices_along_dim( | |
out_w, kernel_w, dilation_w, padding_w, stride_w, input.device | |
) | |
output_padded_size = [o + 2 * p for o, p in zip(output_size, padding)] | |
output = input.new_zeros( | |
[shape[0], shape[1] // prod(kernel_size)] + output_padded_size | |
) | |
idx = (None, None, indices_row, indices_col) | |
output = aten._unsafe_index_put(output, idx, input, accumulate=True) | |
output = F.pad(output, (-padding_w, -padding_w, -padding_h, -padding_h)) | |
if not batched_input: | |
output = output.squeeze(0) | |
return output | |
def native_dropout_backward(grad_output: Tensor, mask: Tensor, scale: float): | |
# According to the CUDA kernel implementation we should have this test; | |
# but it seems to fail tests! | |
# torch._check(mask.dtype == torch.bool, lambda: f"Mask should be Bool Scalar Type {mask.dtype}") | |
# Mimicking CUDA kernel's behavior for output stride: output follow input's memory format | |
# This different from TensorIterator's behavior | |
r = (grad_output * (mask.type_as(grad_output) * scale)).clone( | |
memory_format=utils.suggest_memory_format(grad_output) | |
) | |
return r | |
def unfold_backward( | |
grad: Tensor, input_size: List[int], dimension: int, size: int, step: int | |
) -> Tensor: | |
if len(input_size) == 0: | |
return torch.squeeze_copy(grad, 0) | |
dim = utils.canonicalize_dim(len(input_size), dimension) | |
idx = torch.arange(input_size[dim], device=grad.device, dtype=torch.int32) | |
idx = idx.unfold(0, size, step).flatten() | |
grad = grad.movedim(-1, dim + 1).flatten(dim, dim + 1) | |
# nb. At the moment this generates two kernels in triton | |
# It could potentially be fused into one call to scatter_reduce, | |
# in the case step <= size provided scatter_reduce generates 1 kernel | |
grad_input = grad.new_zeros(input_size) | |
index = (None,) * dim + (idx,) | |
return aten._unsafe_index_put(grad_input, index, grad, accumulate=True).contiguous() | |
def logit_backward( | |
grad_output: Tensor, self: Tensor, eps: Optional[float] = None | |
) -> Tensor: | |
if eps is not None: | |
lo = eps | |
hi = 1.0 - lo | |
return torch.where( | |
torch.logical_and(self >= lo, self <= hi), | |
grad_output / (self * (1.0 - self)), | |
0.0, | |
) | |
else: | |
return torch.where( | |
torch.logical_and(self >= 0.0, self <= 1.0), | |
grad_output / (self * (1.0 - self)), | |
self.new_full((), float("nan")), | |
) | |
def dropout(input: Tensor, p: float, train: Optional[bool]): | |
if train and p != 0: | |
return aten.native_dropout(input, p, train)[0] | |
else: | |
return input.clone() | |
def native_dropout(input: Tensor, p: float, train: Optional[bool]): | |
if train and p != 0: | |
if p == 1: | |
return (torch.zeros_like(input), torch.zeros_like(input, dtype=torch.bool)) | |
if not input.dtype.is_floating_point: | |
raise RuntimeError( | |
"result type Float can't be cast to the desired output type Long" | |
) | |
bool_mask = torch.rand_like(input) > p | |
res = bool_mask * input * float(1.0 / (1.0 - p)) | |
return (res, bool_mask) | |
else: | |
return (input, torch.ones_like(input, dtype=torch.bool)) | |
def _softmax(x: Tensor, dim: int, half_to_float: bool): | |
# eager softmax returns a contiguous tensor. Ensure that decomp also returns | |
# a contiguous tensor. | |
x = x.contiguous() | |
if half_to_float: | |
assert x.dtype == torch.half | |
computation_dtype, result_dtype = utils.elementwise_dtypes( | |
x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT | |
) | |
x = x.to(computation_dtype) | |
if x.numel() == 0: | |
unnormalized = torch.exp(x) | |
else: | |
x_max = torch.amax(x, dim, keepdim=True) | |
unnormalized = torch.exp(x - x_max) | |
result = unnormalized / torch.sum(unnormalized, dim, keepdim=True) | |
if not half_to_float: | |
result = result.to(result_dtype) | |
return result | |
def _log_softmax(x: Tensor, dim: int, half_to_float: bool): | |
# eager log_softmax returns a contiguous tensor. Ensure that decomp also | |
# returns a contiguous tensor. | |
x = x.contiguous() | |
if half_to_float: | |
assert x.dtype == torch.half | |
computation_dtype, result_dtype = utils.elementwise_dtypes( | |
x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT | |
) | |
x = x.to(computation_dtype) | |
if x.numel() == 0: | |
shifted = x | |
else: | |
x_max = torch.amax(x, dim, keepdim=True) | |
shifted = x - x_max | |
shifted_logsumexp = torch.log(torch.sum(torch.exp(shifted), dim, keepdim=True)) | |
result = shifted - shifted_logsumexp | |
if not half_to_float: | |
result = result.to(result_dtype) | |
return result | |
def embedding( | |
weight: Tensor, | |
indices: Tensor, | |
padding_idx: int = -1, | |
scale_grad_by_freq: bool = False, | |
sparse: bool = False, | |
) -> Tensor: | |
assert weight.dim() == 2, "'weight' must be 2-D" | |
# Nb. scale_grad_by_freq is not used in the forward | |
if indices.ndim <= 1: | |
# We need this one as weight[indices] calls item() in these cases | |
out = weight.index_select(0, indices) | |
if indices.ndim == 0: | |
out = out.squeeze(0) | |
return out | |
else: | |
return weight[indices] | |
def embedding_dense_backward( | |
grad_output: Tensor, | |
indices: Tensor, | |
num_weights: int, | |
padding_idx: int, | |
scale_grad_by_freq: bool, | |
): | |
computation_dtype, result_dtype = utils.elementwise_dtypes( | |
grad_output, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT | |
) | |
grad_output = grad_output.to(computation_dtype) | |
indices = _maybe_convert_to_dtype(indices, torch.long) # type: ignore[assignment] | |
if scale_grad_by_freq: | |
counts = indices.new_zeros((num_weights,)) | |
ones = torch.ones_like(indices) | |
counts = aten._unsafe_index_put(counts, [indices], ones, accumulate=True) | |
grad_weights_scale = counts[indices] | |
grad_output = grad_output / grad_weights_scale.unsqueeze(-1) | |
mask = _unsqueeze_to_dim(indices == padding_idx, grad_output.ndim) | |
grad = grad_output.masked_fill(mask, 0) | |
grad_weight = grad_output.new_zeros( | |
(num_weights,) + grad_output.shape[indices.ndim :] | |
) | |
return aten._unsafe_index_put(grad_weight, [indices], grad, accumulate=True).to( | |
result_dtype | |
) | |
def prod(x: List[int]): | |
r = 1 | |
for i in x: | |
r *= i | |
return r | |
def _pad_chunk( | |
tensors: List[Tensor], | |
dim: int, | |
num_chunks: int, | |
) -> List[Tensor]: | |
padded_tensors = [] | |
for tensor in tensors: | |
tensor_size = tensor.size() | |
pad_along_dim = (tensor_size[dim] + num_chunks - 1) // num_chunks * num_chunks | |
if pad_along_dim != tensor_size[dim]: | |
# Use aten.constant_pad_nd instead of copy_ for functionalization | |
pad = [0] * 2 * (tensor.ndim - dim - 1) + [ | |
0, | |
pad_along_dim - tensor_size[dim], | |
] | |
tensor = aten.constant_pad_nd(tensor, pad, 0) | |
view_size = tensor_size[:dim] + torch.Size([num_chunks, -1]) | |
padded_tensors.append(tensor.view(view_size)) | |
return padded_tensors | |
def have_same_ndims(tensors: List[Tensor]): | |
ndim = tensors[0].ndim | |
for tensor in tensors: | |
if tensor.ndim != ndim: | |
return False | |
return True | |
def leading_dimension_matches(tensors: List[Tensor], dim: int): | |
leading_dim_sizes = tensors[0].size()[:dim] | |
for tensor in tensors: | |
torch._check( | |
tensor.size()[:dim] == leading_dim_sizes, | |
lambda: "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors", | |
) | |
def _preprocess_chunk_cat_inputs( | |
tensors: List[Tensor], | |
dim: int, | |
num_chunks: int, | |
): | |
torch._check(num_chunks >= 1, lambda: "_chunk_cat expects positive num_chunks") | |
torch._check( | |
len(tensors) > 0, lambda: "_chunk_cat expects a non-empty input tensor list" | |
) | |
expected_dtype = tensors[0].dtype | |
expected_device = tensors[0].device | |
for tensor in tensors: | |
torch._check(tensor.numel() > 0, lambda: "_chunk_cat expects non-empty tensor") | |
torch._check( | |
tensor.dtype == expected_dtype, | |
lambda: "_chunk_cat expects all input tensors with the same dtype", | |
) | |
torch._check( | |
tensor.device == expected_device, | |
lambda: "_chunk_cat expects all inputs tensors on the same device", | |
) | |
if have_same_ndims(tensors): | |
dim = utils.canonicalize_dim(tensors[0].dim(), dim) | |
else: | |
torch._check( | |
dim >= 0, | |
lambda: "_chunk_cat expects non-negative dim when input tensors have different ndims", | |
) | |
for tensor in tensors: | |
torch._check( | |
dim < tensor.ndim, | |
lambda: "_chunk_cat expects dim < ndim for all input tensors", | |
) | |
leading_dimension_matches(tensors, dim) | |
return dim | |
def _chunk_cat( | |
tensors: List[Tensor], | |
dim: int, | |
num_chunks: int, | |
out: Optional[Tensor] = None, | |
) -> Tensor: | |
dim = _preprocess_chunk_cat_inputs(tensors, dim, num_chunks) | |
padded_tensors = _pad_chunk(tensors, dim, num_chunks) | |
if out is None: | |
return torch.cat(padded_tensors, dim + 1) | |
else: | |
torch.cat(padded_tensors, dim + 1, out=out) | |
return out | |
def split_with_sizes( | |
self: Tensor, split_sizes: List[int], dim: int = 0 | |
) -> List[Tensor]: | |
# NB: Perform the check_is_size tests first so that the | |
# sum test does not try to do a replacement | |
for i in range(len(split_sizes)): | |
torch._check_is_size( | |
split_sizes[i], | |
lambda: "split_with_sizes expects split_sizes have only non-negative entries", | |
) | |
torch._check_with( | |
ValueError, | |
sum(split_sizes) == self.shape[dim], | |
lambda: f"Split sizes add up to {sum(split_sizes)} but got the tensor's size of {self.shape[dim]}", | |
) | |
num_splits = len(split_sizes) | |
splits = [] | |
start_idx = 0 | |
# Avoid importing sympy at a module level | |
from torch.fx.experimental.symbolic_shapes import expect_true | |
for i in range(num_splits): | |
length = split_sizes[i] | |
# We know this is true thanks to the sum, but this assertion helps | |
# out our internal reasoning | |
expect_true(start_idx + length <= self.shape[dim]) | |
splits.append(self.narrow(dim, start_idx, length)) | |
start_idx += length | |
return splits | |
# out_wrapper currently does not allow optional outputs | |
def split_with_sizes_copy( | |
self: Tensor, | |
split_sizes: List[int], | |
dim: int = 0, | |
out: Optional[List[Tensor]] = None, | |
) -> Optional[List[Tensor]]: | |
splits = split_with_sizes(self, split_sizes, dim=dim) | |
if out is None: | |
return [s.clone(memory_format=torch.contiguous_format) for s in splits] | |
else: | |
for output, split in zip(out, splits): | |
_maybe_resize_out(output, split.shape) | |
_safe_copy_out(copy_from=split, copy_to=output, exact_dtype=True) | |
return None | |
def unsafe_split(input: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]: | |
return aten.split.Tensor(input, split_size, dim) | |
def unsafe_split_with_sizes( | |
input: Tensor, split_sizes: List[int], dim: int = 0 | |
) -> Tuple[Tensor, ...]: | |
return aten.split_with_sizes.default(input, split_sizes, dim) | |
def split(self: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]: | |
input_sizes = self.shape | |
dim_size = input_sizes[dim] | |
if split_size == 0: | |
assert dim_size == 0 | |
return (self,) | |
chunks = (dim_size + split_size - 1) // split_size | |
# Avoid importing sympy at a module level | |
from torch.fx.experimental.symbolic_shapes import guard_int | |
chunks = guard_int(chunks) | |
split_sizes = [split_size for i in range(chunks)] | |
split_sizes[-1] = split_size - (split_size * chunks - dim_size) | |
return torch.split(self, split_sizes, dim) | |
def tensor_split_tensor_indices_or_sections_py_impl( | |
self: Tensor, | |
tensor_indices_or_sections: Tensor, | |
dim: int = 0, | |
) -> Tuple[Tensor, ...]: | |
assert tensor_indices_or_sections.device.type == "cpu" | |
assert tensor_indices_or_sections.dtype == torch.int64 | |
split_dim = tensor_indices_or_sections.dim() | |
torch._check( | |
split_dim == 1 or split_dim == 0, | |
lambda: "tensor_split expected tensor_indices_or_sections to be a zero-dimensional " | |
f"or one-dimensional tensor, but got a tensor with {split_dim} dims", | |
) | |
if split_dim == 0: | |
sections = tensor_indices_or_sections.item() | |
assert isinstance(sections, IntLike) | |
return self.tensor_split(sections, dim) | |
else: | |
indices = [i.item() for i in tensor_indices_or_sections] | |
return self.tensor_split(indices, dim) | |
# TODO: this doesn't appear to have enough precision in bfloat16 | |
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, beta: int = 1, alpha: int = 1): | |
if not self.is_floating_point() and not self.is_complex(): | |
beta = int(beta) | |
alpha = int(alpha) | |
out = alpha * torch.mm(mat1, mat2) | |
if beta == 0: | |
return out | |
# The output of aten.addmm is contiguous, we need to match this behavior in the decomposition. | |
# The original implementation 'beta * self + out' would return a strided tensor if `self` is strided. | |
# We thus use `out`, the output of torch.mm, which is always contiguous, as the first argument for addition. | |
# This is relying on TensorIterator's behavior that it takes higher precedence on the stride of first input. | |
# Alternative, we can write `(beta * self + out).contiguous()`, but it introduces another copy in some cases. | |
# This implementation is not ideal, and we should revisit this when we have a better solution. | |
return out + beta * self | |
def _addmm_activation( | |
self: Tensor, | |
mat1: Tensor, | |
mat2: Tensor, | |
beta: int = 1, | |
alpha: int = 1, | |
use_gelu: bool = False, | |
): | |
out = addmm(self, mat1, mat2, beta, alpha) | |
if use_gelu: | |
if self.is_cuda: | |
return aten.gelu(out, approximate="tanh") | |
else: | |
return aten.gelu(out) | |
return aten.relu(out) | |
def addmv(self: Tensor, mat1: Tensor, vec: Tensor, beta: int = 1, alpha: int = 1): | |
if not self.is_floating_point() and not self.is_complex(): | |
beta = int(beta) | |
alpha = int(alpha) | |
out = alpha * torch.mv(mat1, vec) | |
if beta == 0: | |
return out | |
return out + beta * self | |
def native_group_norm_backward( | |
grad_output: Tensor, | |
input: Tensor, | |
mean: Tensor, | |
rstd: Tensor, | |
gamma: Optional[Tensor], | |
N: int, | |
C: int, | |
HxW: int, | |
group: int, | |
output_mask: List[bool], | |
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: | |
utils.check_same_device( | |
grad_output, input, mean, rstd, allow_cpu_scalar_tensors=False | |
) | |
utils.check_same_shape(input, grad_output, allow_cpu_scalar_tensors=False) | |
utils.check_same_shape(mean, rstd, allow_cpu_scalar_tensors=False) | |
torch._check( | |
input.numel() == N * C * HxW, | |
lambda: f"Expect input to have { N * C * HxW} elements", | |
) | |
torch._check( | |
mean.shape == (N, group), | |
lambda: f"Expect mean to have shape ({N}, {group}, but got {mean.shape}", | |
) | |
torch._check( | |
gamma is None or gamma.numel() == C, | |
lambda: f"Expect gamma to have {C} elements but got {gamma.numel() if gamma is not None else -1}", | |
) | |
cpg, _rem = divmod(C, group) | |
torch._check( | |
_rem == 0, | |
lambda: f"Expect number of channels {C} to be evenly-divisible by number of groups {group}", | |
) | |
# Compute Internal gradients | |
ds = torch.mul(grad_output, input).view(N, C, HxW).sum(dim=[2]) | |
db = grad_output.view(N, C, HxW).sum(dim=[2]) | |
d_input: Optional[Tensor] = None | |
d_gamma: Optional[Tensor] = None | |
d_bias: Optional[Tensor] = None | |
if output_mask[0]: | |
s = 1.0 / (HxW * cpg) | |
if gamma is not None: | |
ds_val = torch.mul(ds, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2) | |
db_val = torch.mul(db, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2) | |
c1 = torch.mul( | |
rstd.unsqueeze(-1), | |
gamma.reshape(1, group, cpg), | |
) | |
else: | |
ds_val = ds.reshape(N, group, cpg).sum(2) | |
db_val = db.reshape(N, group, cpg).sum(2) | |
c1 = torch.mul( | |
rstd.unsqueeze(-1), | |
torch.ones((1, group, cpg), device=rstd.device), | |
) | |
c2 = (db_val * mean - ds_val) * rstd * rstd * rstd * s | |
c3 = -c2 * mean - db_val * rstd * s | |
c1 = c1.unsqueeze(-1) | |
c2 = _unsqueeze_to_dim(c2, 4) | |
c3 = _unsqueeze_to_dim(c3, 4) | |
d_input = ( | |
torch.mul(grad_output.reshape(N, group, cpg, HxW), c1) | |
+ torch.mul(input.reshape(N, group, cpg, HxW), c2) | |
+ c3 | |
) | |
d_input = d_input.reshape(input.shape).to(input.dtype) | |
if output_mask[1]: | |
d_gamma = ( | |
( | |
(ds.view(N, group, cpg) - db.view(N, group, cpg) * mean.unsqueeze(-1)) | |
* rstd.unsqueeze(-1) | |
) | |
.sum(dim=[0]) | |
.reshape(C) | |
) | |
if output_mask[2]: | |
d_bias = db.sum(dim=[0]) | |
return (d_input, d_gamma, d_bias) | |
# out_wrapper currently does not allow optional outputs | |
def native_group_norm_backward_out( | |
grad_output: Tensor, | |
input: Tensor, | |
mean: Tensor, | |
rstd: Tensor, | |
gamma: Optional[Tensor], | |
N: int, | |
C: int, | |
HxW: int, | |
group: int, | |
output_mask: List[bool], | |
*, | |
out0: torch.Tensor, | |
out1: torch.Tensor, | |
out2: torch.Tensor, | |
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: | |
result = native_group_norm_backward( | |
grad_output, input, mean, rstd, gamma, N, C, HxW, group, output_mask | |
) | |
grad_input = (out0, out1, out2) | |
for i, r in enumerate(result): | |
if r is not None: | |
_maybe_resize_out(grad_input[i], r.shape) | |
_safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) | |
return grad_input | |
def _maybe_cast(x: Optional[Tensor], dtype) -> Optional[Tensor]: | |
if x is not None: | |
return x.to(dtype) | |
return x | |
# TODO: Take a closer look at the type promotion semantics | |
def native_layer_norm_backward( | |
grad_out: Tensor, | |
input: Tensor, | |
normalized_shape: List[int], | |
mean: Tensor, | |
rstd: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
output_mask: List[bool], | |
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: | |
input_shape = input.shape | |
input_ndim = input.dim() | |
computation_dtype = utils.get_computation_dtype(input.dtype) | |
grad_out_cast, input_cast, weight_cast, bias_cast = ( | |
x.to(computation_dtype).contiguous() if x is not None else x | |
for x in (grad_out, input, weight, bias) | |
) | |
assert grad_out_cast is not None | |
axis = input_ndim - len(normalized_shape) | |
inner_dims = input_shape[axis:] | |
outer_dims = input_shape[:axis] | |
inner_dim_indices: List[int] = [] | |
outer_dim_indices: List[int] = [] | |
for i in range(input_ndim): | |
if i >= axis: | |
inner_dim_indices.append(i) | |
else: | |
outer_dim_indices.append(i) | |
N = prod(inner_dims) # type: ignore[arg-type] | |
M = prod(outer_dims) # type: ignore[arg-type] | |
if M <= 0 or N <= 0: | |
return ( | |
input.new_zeros(input_shape) if output_mask[0] else None, | |
input.new_zeros(input_shape[axis:]) if output_mask[1] else None, | |
input.new_zeros(input_shape[axis:]) if output_mask[2] else None, | |
) | |
mean = _unsqueeze_to_dim(mean, input_cast.dim()) # type: ignore[union-attr] | |
rstd = _unsqueeze_to_dim(rstd, input_cast.dim()) # type: ignore[union-attr] | |
x_hat = (input_cast - mean) * rstd | |
if weight_cast is not None: | |
grad_x_hat = grad_out_cast * weight_cast | |
else: | |
grad_x_hat = grad_out_cast | |
a = grad_x_hat * N | |
b = torch.sum(grad_x_hat, inner_dim_indices, True) | |
c1 = torch.mul(grad_x_hat, x_hat) | |
c2 = torch.sum(c1, inner_dim_indices, True) | |
c3 = torch.mul(x_hat, c2) | |
inner = a - b - c3 | |
d_input: Optional[Tensor] = None | |
d_weight: Optional[Tensor] = None | |
d_bias: Optional[Tensor] = None | |
if output_mask[0]: | |
d_input = (rstd / N) * inner | |
if output_mask[1] and weight_cast is not None: | |
if len(outer_dim_indices) > 0: | |
d_weight = torch.sum(grad_out_cast * x_hat, outer_dim_indices, False) | |
else: | |
d_weight = grad_out_cast * x_hat | |
if output_mask[2] and bias_cast is not None: | |
if len(outer_dim_indices) > 0: | |
d_bias = torch.sum(grad_out_cast, outer_dim_indices, False) | |
else: | |
d_bias = grad_out_cast.clone() | |
return ( | |
_maybe_cast(d_input, input.dtype), | |
_maybe_cast(d_weight, input.dtype), | |
_maybe_cast(d_bias, input.dtype), | |
) | |
# out_wrapper currently does not allow optional outputs | |
def native_layer_norm_backward_out( | |
grad_out: Tensor, | |
input: Tensor, | |
normalized_shape: List[int], | |
mean: Tensor, | |
rstd: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
output_mask: List[bool], | |
*, | |
out0: torch.Tensor, | |
out1: torch.Tensor, | |
out2: torch.Tensor, | |
) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]: | |
result = native_layer_norm_backward( | |
grad_out, input, normalized_shape, mean, rstd, weight, bias, output_mask | |
) | |
grad_input = (out0, out1, out2) | |
for i, r in enumerate(result): | |
if r is not None: | |
_maybe_resize_out(grad_input[i], r.shape) | |
_safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) | |
return grad_input | |
def native_batch_norm_helper( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
training: bool, | |
momentum: float, | |
eps: float, | |
functional: bool, | |
) -> Tuple[Tensor, Tensor, Tensor, Optional[Tensor], Optional[Tensor]]: | |
reduction_dims = [0] + list(range(2, input.dim())) | |
computation_dtype = utils.get_computation_dtype(input.dtype) | |
new_running_mean = running_mean | |
new_running_var = running_var | |
if training: | |
computation_dtype = utils.get_computation_dtype(input.dtype) | |
input_acc = input.to(dtype=computation_dtype) | |
biased_var, mean = torch.var_mean( | |
input_acc, dim=reduction_dims, correction=0, keepdim=True | |
) | |
rstd = torch.rsqrt(biased_var + eps) | |
output = (input - mean) * rstd | |
save_mean = torch.squeeze(mean, reduction_dims) | |
save_rstd = torch.squeeze(rstd, reduction_dims) | |
if running_mean is not None: | |
new_running_mean = momentum * save_mean + (1 - momentum) * running_mean | |
if not functional: | |
running_mean.copy_(new_running_mean) | |
if running_var is not None: | |
n = input.numel() / input.shape[1] | |
# This doesn't strictly match eager's numerics, which accumulates var sum and then directly applies the correction | |
# But... that would require re-implementing var here, for negligible numerics gain on a tensor whose | |
# numerics probably don't matter. | |
squeezed_var = torch.squeeze(biased_var, reduction_dims) | |
unbiased_var = squeezed_var * (n / (n - 1)) | |
new_running_var = momentum * unbiased_var + (1 - momentum) * running_var | |
if not functional: | |
running_var.copy_(new_running_var) | |
else: | |
assert running_mean is not None and running_var is not None | |
running_mean = running_mean.to(dtype=computation_dtype, copy=True) | |
new_running_mean = running_mean | |
running_var = running_var.to(dtype=computation_dtype, copy=True) | |
new_running_var = running_var | |
mean = running_mean | |
invstd = 1 / (torch.sqrt(running_var + eps)) | |
# Very annoying inconsistency where CPU and CUDA give different shapes | |
if input.device.type != "cpu": | |
save_mean = running_mean | |
save_rstd = invstd | |
else: | |
save_mean = input.new_zeros((0,)) | |
save_rstd = input.new_zeros((0,)) | |
mean = _unsqueeze_to_dim(mean, input.dim() - 1) | |
invstd = _unsqueeze_to_dim(invstd, input.dim() - 1) | |
output = (input - mean) * invstd | |
if weight is not None: | |
weight = weight.flatten() | |
weight = _unsqueeze_to_dim(weight, input.dim() - 1) | |
output = output * weight | |
if bias is not None: | |
bias = bias.flatten() | |
bias = _unsqueeze_to_dim(bias, input.dim() - 1) | |
output = output + bias | |
if input.device.type == "cpu": | |
save_mean = save_mean.to(dtype=input.dtype) | |
save_rstd = save_rstd.to(dtype=input.dtype) | |
return ( | |
output.to(dtype=input.dtype), | |
save_mean, | |
save_rstd, | |
new_running_mean, | |
new_running_var, | |
) | |
def native_batch_norm( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
training: bool, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
output, save_mean, save_rstd, _, _ = native_batch_norm_helper( | |
input, weight, bias, running_mean, running_var, training, momentum, eps, False | |
) | |
return output, save_mean, save_rstd | |
# TODO: this decomposition is NOT here to stay. We would much prefer replacing native_batch_norm | |
# with our new correctly schema'd _native_batch_norm_legit and its variants, but | |
# we cannot do that immediately in the C++ because it would be forwards incompatible | |
# with some mobile use cases. | |
# | |
# Since this change is most impactful for aot autograd/functionalization, we simply | |
# register this decomposition on the Autograd key for the python dispatcher (which is | |
# currently only used by aot autograd/functionalization and no one else, really). | |
# In two weeks or so, we should remove this decomposition and phase out the current native_batch_norm | |
# to be _native_batch_norm_legit and have the right schema (stating that there are input mutations). | |
def native_batch_norm_decomposition( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
training: bool, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
if running_mean is None and running_var is None: | |
return aten._native_batch_norm_legit( | |
input, weight, bias, training, momentum, eps | |
) | |
if running_mean is None: | |
raise RuntimeError( | |
"running_mean is None, but running_var is provided. " | |
"They should both be None or both be provided." | |
) | |
if running_var is None: | |
raise RuntimeError( | |
"running_var is None, but running_mean is provided. " | |
"They should both be None or both be provided." | |
) | |
if training: | |
# HACK: batch norm consolidation should clean this up so this op doesn't take in a training arg. | |
return aten._native_batch_norm_legit( | |
input, weight, bias, running_mean, running_var, training, momentum, eps | |
) | |
else: | |
return aten._native_batch_norm_legit_no_training( | |
input, weight, bias, running_mean, running_var, momentum, eps | |
) | |
def unsafe_chunk_py_impl(tensor, chunks, dim=0) -> List[Tensor]: | |
dim_size = tensor.size(dim) | |
split_size = (dim_size + chunks - 1) // chunks | |
if split_size == 0 and dim_size == 0: | |
split_sizes = [split_size for _ in chunks] | |
split_sizes[chunks - 1] = split_size - (split_size * chunks - dim_size) | |
return torch.ops.aten.unsafe_split_with_sizes.default(tensor, split_sizes, dim) | |
return torch.ops.aten.unsafe_split.Tensor(tensor, split_size, dim) | |
def _native_batch_norm_legit_no_training( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Tensor, | |
running_var: Tensor, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
return aten._native_batch_norm_legit.default( | |
input, | |
weight, | |
bias, | |
running_mean, | |
running_var, | |
False, # training | |
momentum, | |
eps, | |
) | |
def _native_batch_norm_legit( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Tensor, | |
running_var: Tensor, | |
training: bool, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
output, save_mean, save_rstd, _, _ = native_batch_norm_helper( | |
input, weight, bias, running_mean, running_var, training, momentum, eps, False | |
) | |
return output, save_mean, save_rstd | |
def _native_batch_norm_legit_no_stats( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
training: bool, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor]: | |
output, save_mean, save_rstd, _, _ = native_batch_norm_helper( | |
input, weight, bias, None, None, training, momentum, eps, False | |
) | |
return output, save_mean, save_rstd | |
def _native_batch_norm_legit_functional( | |
input: Tensor, | |
weight: Optional[Tensor], | |
bias: Optional[Tensor], | |
running_mean: Tensor, | |
running_var: Tensor, | |
training: bool, | |
momentum: float, | |
eps: float, | |
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: | |
( | |
output, | |
save_mean, | |
save_rstd, | |
new_running_mean, | |
new_running_var, | |
) = native_batch_norm_helper( | |
input, weight, bias, running_mean, running_var, training, momentum, eps, True | |
) | |
assert new_running_mean is not None, "new_running_mean should not be None" | |
assert new_running_var is not None, "new_running_var should not be None" | |
return output, save_mean, save_rstd, new_running_mean, new_running_var | |
def _fused_dropout_decomposition(input, p, generator=None): | |
assert generator is None | |
mask = (torch.rand_like(input) < p).to(dtype=torch.uint8) | |
res = mask.type_as(input) * input * (1.0 / p) | |
return (res, mask) | |
def device_hint(tensor): | |
if isinstance(tensor, torch._subclasses.FakeTensor): | |
return tensor.fake_device | |
else: | |
return None | |
def _to_copy( | |
x: Tensor, | |
*, | |
dtype: Optional[torch.dtype] = None, | |
layout=None, | |
device: Optional[torch.device] = None, | |
pin_memory: bool = False, | |
non_blocking: bool = False, | |
memory_format: Optional[torch.memory_format] = None, | |
): | |
assert not layout or layout == torch.strided, "TODO" | |
assert not pin_memory, "TODO" | |
if device is None and dtype is None and memory_format is None: | |
return x.clone() | |
dtype_converted = False | |
common_device = device_hint(x) | |
if device is not None and device != x.device: | |
# avoid conversions on cpu | |
if dtype is not None and device.type == "cpu": | |
x = torch._prims.convert_element_type(x, dtype) | |
dtype_converted = True | |
x = torch._prims.device_put(x, device) | |
if dtype is not None and not dtype_converted: | |
x = torch._prims.convert_element_type(x, dtype) | |
dtype_converted = True | |
if memory_format is not None: # no ref/prim for memory format | |
return torch.clone(x, memory_format=memory_format) | |
return x | |
# Questionable decompositions | |
# This is only valid if we're running the graph without autograd, such as if the backward pass has been traced. | |
# Note that this decomposition causes issues with in-place ops | |
def nop_decomposition(x): | |
return aten.alias(x) | |
# Also register to the Autograd dispatch key, so this decomp can run above autograd. | |
# native_batch_norm needs to decompose into other ops before autograd. | |
def cudnn_batch_norm( | |
input: Tensor, | |
weight: Tensor, | |
bias: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
training: bool, | |
exponential_average_factor: float, | |
epsilon: float, | |
): | |
a, b, c = aten.native_batch_norm( | |
input, | |
weight, | |
bias, | |
running_mean, | |
running_var, | |
training, | |
exponential_average_factor, | |
epsilon, | |
) | |
# Cudnn return running mean and variance when training is True | |
if training: | |
return (a, b, c, input.new_zeros((0,), dtype=torch.uint8)) | |
return ( | |
a, | |
weight.new_zeros((0,)), | |
weight.new_zeros((0,)), | |
input.new_zeros((0,), dtype=torch.uint8), | |
) | |
def _broadcast_batch_norm_backward(x, broadcast_mask): | |
for axis, mask in enumerate(broadcast_mask): | |
if mask == 1 and not (axis < x.ndim and x.shape[axis] == broadcast_mask[axis]): | |
x = x.unsqueeze(axis) | |
return x | |
def native_batch_norm_backward( | |
grad_out: Tensor, | |
input: Tensor, | |
weight: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
save_mean: Optional[Tensor], | |
save_invstd: Optional[Tensor], | |
train: bool, | |
eps: float, | |
output_mask: List[bool], | |
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: | |
input_dtype = input.dtype | |
if weight is not None: | |
weight_dtype = weight.dtype | |
else: | |
weight_dtype = input_dtype | |
computation_dtype = utils.get_computation_dtype(input.dtype) | |
( | |
grad_out_cast, | |
input_cast, | |
weight_cast, | |
running_mean_cast, | |
running_var_cast, | |
save_mean_cast, | |
save_invstd_cast, | |
) = ( | |
x.to(computation_dtype) if x is not None else x | |
for x in ( | |
grad_out, | |
input, | |
weight, | |
running_mean, | |
running_var, | |
save_mean, | |
save_invstd, | |
) | |
) | |
input_shape = input.shape | |
input_rank = input.dim() | |
assert input_rank >= 2, "rank of the input must be at least 2" | |
axis = 1 | |
num_features = prod(list(input_shape)) / input_shape[axis] | |
mean = save_mean_cast | |
invstd = save_invstd_cast | |
if train: | |
assert save_mean_cast is not None and save_invstd_cast is not None | |
else: | |
assert running_mean_cast is not None and running_var_cast is not None | |
mean = running_mean_cast | |
invstd = torch.rsqrt(running_var_cast + eps) | |
broadcast_mask: List[int] = [1] * input_rank | |
broadcast_mask[axis] = input_shape[axis] | |
reduction_axes: List[int] = [] | |
for i in range(input_rank): | |
if i != axis: | |
reduction_axes.append(i) | |
mean = _broadcast_batch_norm_backward(mean, broadcast_mask) # type: ignore[arg-type] | |
norm = 1.0 / num_features | |
grad_output_sum = torch.sum(grad_out_cast, reduction_axes) # type: ignore[arg-type] | |
dot_p = torch.sum(grad_out_cast * (input_cast - mean), reduction_axes) # type: ignore[operator] | |
grad_mean = _broadcast_batch_norm_backward(grad_output_sum * norm, broadcast_mask) | |
proj_scale = _broadcast_batch_norm_backward(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask) # type: ignore[operator] | |
if weight_cast is None: | |
grad_scale = _broadcast_batch_norm_backward(invstd, broadcast_mask) * 1.0 # type: ignore[arg-type] | |
else: | |
grad_scale = _broadcast_batch_norm_backward( | |
invstd * weight_cast, broadcast_mask | |
) | |
if train: | |
proj = (input_cast - mean) * proj_scale # type: ignore[operator] | |
grad_input = ((grad_out_cast - proj) - grad_mean) * grad_scale | |
else: | |
grad_input = grad_out_cast * grad_scale | |
if output_mask[1]: | |
grad_weight = dot_p * invstd | |
else: | |
grad_weight = None # "None" doesn't work with vjp, should use zeros for vjp | |
if output_mask[2]: | |
grad_bias = grad_output_sum | |
else: | |
grad_bias = None # "None" doesn't work with vjp, should use zeros for vjp | |
return ( | |
grad_input.to(input_dtype), | |
_maybe_cast(grad_weight, weight_dtype), | |
_maybe_cast(grad_bias, weight_dtype), | |
) | |
# out_wrapper currently does not allow optional outputs | |
def native_batch_norm_backward_out( | |
grad_out: Tensor, | |
input: Tensor, | |
weight: Optional[Tensor], | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
save_mean: Optional[Tensor], | |
save_invstd: Optional[Tensor], | |
train: bool, | |
eps: float, | |
output_mask: List[bool], | |
*, | |
out0: torch.Tensor, | |
out1: torch.Tensor, | |
out2: torch.Tensor, | |
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: | |
result = native_batch_norm_backward( | |
grad_out, | |
input, | |
weight, | |
running_mean, | |
running_var, | |
save_mean, | |
save_invstd, | |
train, | |
eps, | |
output_mask, | |
) | |
grad_input = (out0, out1, out2) | |
for i, r in enumerate(result): | |
if r is not None: | |
_maybe_resize_out(grad_input[i], r.shape) | |
_safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True) | |
return grad_input | |
def cudnn_batch_norm_backward( | |
input: Tensor, | |
grad_output: Tensor, | |
weight: Tensor, | |
running_mean: Optional[Tensor], | |
running_var: Optional[Tensor], | |
save_mean: Optional[Tensor], | |
save_var: Optional[Tensor], | |
epsilon: float, | |
reserveSpace: Tensor, | |
): | |
return aten.native_batch_norm_backward( | |
grad_output, | |
input, | |
weight, | |
running_mean, | |
running_var, | |
save_mean, | |
save_var, | |
True, | |
epsilon, | |
[True, True, True], | |
) | |
def adaptive_avg_pool2d(input: Tensor, output_size: Tuple[int, int]): | |
# Preconditions | |
device = input.device | |
shape = input.shape | |
ndim = len(shape) | |
torch._check( | |
ndim in (3, 4), | |
lambda: f"adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got {ndim}", | |
) | |
for d in input.shape[-2:]: | |
torch._check( | |
d != 0, | |
lambda: "adaptive_avg_pool2d(): Expected input to have non-zero size for " | |
f"non-batch dimensions, but input has shape {tuple(shape)}.", | |
) | |
# Optimisation (we should also do this in the kernel implementation) | |
if shape[-2] % output_size[-2] == 0 and shape[-1] % output_size[-1] == 0: | |
stride = tuple(i // o for i, o in zip(shape[-2:], output_size)) | |
kernel = tuple( | |
i - (o - 1) * s for i, o, s in zip(shape[-2:], output_size, stride) | |
) | |
return torch.nn.functional.avg_pool2d(input, kernel, stride) | |
def start_index(a, b, c): | |
return torch.div(a * c, b, rounding_mode="trunc") | |
def end_index(a, b, c): | |
return torch.div((a + 1) * c + b - 1, b, rounding_mode="trunc") | |
def compute_idx(in_size, out_size): | |
orange = torch.arange(out_size, device=device, dtype=torch.int64) | |
i0 = start_index(orange, out_size, in_size) | |
# Let length = end_index - start_index, i.e. the length of the pooling kernels | |
# length.max() can be computed analytically as follows: | |
maxlength = in_size // out_size + 1 | |
in_size_mod = in_size % out_size | |
# adaptive = True iff there are kernels with different lengths | |
adaptive = not (in_size_mod == 0 or out_size % in_size_mod == 0) | |
if adaptive: | |
maxlength += 1 | |
elif in_size_mod == 0: | |
maxlength -= 1 | |
range_max = torch.arange(maxlength, device=device, dtype=torch.int64) | |
idx = i0.unsqueeze(-1) + range_max | |
if adaptive: | |
# Need to clamp to avoid accessing out-of-bounds memory | |
# TODO make minimum accept scalars | |
maxval = torch.scalar_tensor( | |
in_size - 1, dtype=idx.dtype, device=idx.device | |
) | |
idx = torch.minimum(idx, maxval) | |
# Compute the length | |
i1 = end_index(orange, out_size, in_size) | |
length = i1 - i0 | |
else: | |
length = maxlength | |
return idx, length, range_max, adaptive | |
# length is not None if it's constant, otherwise we'll need to compute it | |
idxh, length_h, range_max_h, adaptive_h = compute_idx(shape[-2], output_size[-2]) | |
idxw, length_w, range_max_w, adaptive_w = compute_idx(shape[-1], output_size[-1]) | |
vals = input[..., _unsqueeze_to_dim(idxh, 4), idxw] | |
# Shortcut for the simpler case | |
if not adaptive_h and not adaptive_w: | |
return torch.mean(vals, dim=(-3, -1)) | |
def maybe_mask(vals, length, range_max, adaptive, dim): | |
if isinstance(length, IntLike): | |
return vals, length | |
else: | |
# zero-out the things we didn't really want to select | |
assert dim < 0 | |
# hack | |
mask = range_max >= length.unsqueeze(-1) | |
if dim == -2: | |
mask = _unsqueeze_to_dim(mask, 4) | |
vals = torch.masked_fill(vals, mask, 0.0) | |
# Compute the length of each window | |
length = _unsqueeze_to_dim(length, -dim) | |
return vals, length | |
vals, length_h = maybe_mask( | |
vals, length_h, range_max_h, adaptive=adaptive_h, dim=-2 | |
) | |
vals, length_w = maybe_mask( | |
vals, length_w, range_max_w, adaptive=adaptive_w, dim=-1 | |
) | |
# We unroll the sum as we assume that the kernels are going to be small | |
ret = None | |
for i, j in product(range(vals.shape[-3]), range(vals.shape[-1])): | |
if ret is None: | |
ret = vals[..., i, :, j] | |
else: | |
ret = ret + vals[..., i, :, j] | |
return ret / (length_h * length_w) | |
def index_add_( | |
x: TensorLike, | |
dim: int, | |
index: TensorLike, | |
tensor: TensorLike, | |
*, | |
alpha: NumberType = 1, | |
): | |
return _index_add(x, dim, index, tensor, inplace=True, alpha=alpha) | |
def index_add( | |
x: TensorLike, | |
dim: int, | |
index: TensorLike, | |
tensor: TensorLike, | |
*, | |
alpha: NumberType = 1, | |
): | |
return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha) | |
def _index_add( | |
x: TensorLike, | |
dim: int, | |
index: TensorLike, | |
tensor: TensorLike, | |
*, | |
inplace: bool, | |
alpha: NumberType = 1, | |
): | |
dim = utils.canonicalize_dims(x.ndim, dim) | |
torch._check( | |
index.ndim <= 1, | |
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", | |
) | |
index_size = index.size(0) if index.ndim == 1 else 1 | |
tensor_size = tensor.size(dim) if tensor.ndim > 0 else 1 | |
torch._check( | |
tensor_size == index_size, | |
lambda: f"Number of indices ({index_size}) should be equal to tensor.size(dim) ({tensor_size}), for {dim=}", | |
) | |
if alpha != 1: | |
python_type = utils.dtype_to_type(x.dtype) | |
torch._check( | |
python_type == bool | |
or utils.is_weakly_lesser_type(type(alpha), python_type), | |
lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!", | |
) | |
tensor = tensor * alpha | |
# Treat scalars as elements of \R^1 | |
zero_dim = x.ndim == 0 | |
x1 = x.unsqueeze(0) if zero_dim else x | |
idx = (None,) * dim + (index,) | |
index_put = aten.index_put_ if inplace else aten.index_put | |
out = index_put(x1, idx, tensor, accumulate=True) | |
if inplace: | |
return x | |
else: | |
return out.squeeze(0) if zero_dim else out.contiguous() | |
def pad_sequence(sequences, batch_first=False, padding_value=0.0): | |
torch._check(len(sequences) > 0, lambda: "received an empty list of sequences") | |
sequences_size = len(sequences) | |
max_size = sequences[0].size() | |
trailing_dims = max_size[1:] | |
max_len = max(x.size(0) for x in sequences) | |
if batch_first: | |
out_dims = (sequences_size, max_len) | |
else: | |
out_dims = (max_len, sequences_size) | |
out_dims = out_dims + trailing_dims | |
out = sequences[0].new_full(out_dims, padding_value) | |
dim_paddings = (0, 0) * len(trailing_dims) | |
for i in range(sequences_size): | |
currseq = sequences[i] | |
row = aten.constant_pad_nd( | |
currseq, dim_paddings + (0, max_len - currseq.size(0)), padding_value | |
) | |
if batch_first: | |
out = aten.select_scatter(out, row, dim=0, index=i) | |
else: | |
out = aten.select_scatter(out, row, dim=1, index=i) | |
return out | |
def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): | |
return _index_copy(x, dim, index, tensor, inplace=True) | |
def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike): | |
return _index_copy(x, dim, index, tensor, inplace=False) | |
def _index_copy( | |
x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike, *, inplace: bool | |
): | |
dim = utils.canonicalize_dims(x.ndim, dim) | |
torch._check( | |
index.ndim <= 1, | |
lambda: f"Index should have dimension 1 or 0 (got {index.ndim})", | |
) | |
# Treat scalars as elements of \R^1 | |
zero_dim = x.ndim == 0 | |
x1 = x.unsqueeze(0) if zero_dim else x | |
index = index.unsqueeze(0) if index.ndim == 0 else index | |
idx = (None,) * dim + (index,) | |
index_put = aten.index_put_ if inplace else aten.index_put | |
out = index_put(x1, idx, tensor) | |
if inplace: | |
return x | |
else: | |
return out.squeeze(0) if zero_dim else out.contiguous() | |
# nb: Should use acc_t, not op_math | |
def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]: | |
min = torch.minimum(self.new_zeros(()), self) | |
z = torch.exp(-torch.abs(self)) | |
if self.is_cuda: | |
buffer = self.new_zeros((0,)) | |
else: | |
buffer = z | |
return min - torch.log1p(z), buffer | |
def uniform( | |
x: Tensor, | |
low: Union[bool, int, float] = 0.0, | |
high: Union[bool, int, float] = 1.0, | |
generator: Optional[torch.Generator] = None, | |
): | |
return prims._uniform_helper( | |
x.shape, | |
low=sym_float(low), | |
high=sym_float(high), | |
dtype=x.dtype, | |
device=x.device, | |
generator=generator, | |
) | |
def uniform_(self, low=0, high=1, generator=None): | |
return self.copy_(uniform(self, low, high, generator)) | |
# aten/src/ATen/native/UpSample.cpp compute_output_size | |
def upsample_compute_output_size(input_size, output_size, scale_factors): | |
spatial_dimensions = len(input_size) - 2 | |
if output_size is not None: | |
torch._check( | |
scale_factors is None, | |
lambda: "Must specify exactly one of output_size and scale_factors", | |
) | |
torch._check(len(output_size) == spatial_dimensions, lambda: "") | |
return output_size | |
if scale_factors is not None: | |
# NB: this isn't necessary lol | |
torch._check( | |
output_size is None, | |
lambda: "Must specify exactly one of output_size and scale_factors", | |
) | |
torch._check(len(scale_factors) == spatial_dimensions, lambda: "") | |
output_size = [] | |
for i, s in enumerate(scale_factors): | |
if int(s) == s: | |
output_size.append(input_size[i + 2] * int(s)) | |
else: | |
output_size.append(sym_int(input_size[i + 2] * s)) | |
return output_size | |
torch._check( | |
False, lambda: "Must specify exactly one of output_size and scale_factors" | |
) | |
def get_scale_value(scales, idx): | |
if scales is None: | |
return None | |
return scales[idx] | |
def upsample_nearest1d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale = get_scale_value(scale_factors, 0) | |
return aten.upsample_nearest1d.default(input, osize, scale) | |
def _upsample_nearest_exact1d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale = get_scale_value(scale_factors, 0) | |
return aten._upsample_nearest_exact1d.default(input, osize, scale) | |
def upsample_nearest2d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_h = get_scale_value(scale_factors, 0) | |
scale_w = get_scale_value(scale_factors, 1) | |
return aten.upsample_nearest2d.default(input, osize, scale_h, scale_w) | |
def _upsample_nearest_exact2d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_h = get_scale_value(scale_factors, 0) | |
scale_w = get_scale_value(scale_factors, 1) | |
return aten._upsample_nearest_exact2d.default(input, osize, scale_h, scale_w) | |
def upsample_nearest3d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_d = get_scale_value(scale_factors, 0) | |
scale_h = get_scale_value(scale_factors, 1) | |
scale_w = get_scale_value(scale_factors, 2) | |
return aten.upsample_nearest3d.default(input, osize, scale_d, scale_h, scale_w) | |
def _upsample_nearest_exact3d_vec(input, output_size, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_d = get_scale_value(scale_factors, 0) | |
scale_h = get_scale_value(scale_factors, 1) | |
scale_w = get_scale_value(scale_factors, 2) | |
return aten._upsample_nearest_exact3d.default( | |
input, osize, scale_d, scale_h, scale_w | |
) | |
def _compute_upsample_nearest_indices(input, output_size, scales, exact=False): | |
# For each dim in output_size, compute the set of input indices used | |
# to produce the upsampled output. | |
indices = [] | |
num_spatial_dims = len(output_size) | |
offset = 0.5 if exact else 0.0 | |
for d in range(num_spatial_dims): | |
# Math matches aten/src/ATen/native/cpu/UpSampleKernel.cpp | |
# | |
# Indices are computed as following: | |
# scale = isize / osize | |
# Case: exact=False | |
# input_index = floor(output_index * scale) | |
# Same as OpenCV INTER_NEAREST | |
# | |
# Case: exact=False | |
# index_f32 = (output_index + 0.5) * scale - 0.5 | |
# input_index = round(index_f32) | |
# Same as Pillow and Scikit-Image/Scipy ndi.zoom | |
osize = output_size[d] | |
isize = input.shape[-num_spatial_dims + d] | |
scale = isize / (isize * scales[d]) if scales[d] is not None else isize / osize | |
output_indices = torch.arange(osize, dtype=torch.float32, device=input.device) | |
input_indices = ((output_indices + offset) * scale).to(torch.int64) | |
for _ in range(num_spatial_dims - 1 - d): | |
input_indices = input_indices.unsqueeze(-1) | |
indices.append(input_indices) | |
return tuple(indices) | |
def upsample_nearest1d( | |
input: Tensor, | |
output_size: List[int], | |
scales: Optional[float] = None, | |
) -> Tensor: | |
(l_indices,) = _compute_upsample_nearest_indices(input, output_size, (scales,)) | |
return aten._unsafe_index(input, (None, None, l_indices)) | |
def _upsample_nearest_exact1d( | |
input: Tensor, | |
output_size: List[int], | |
scales: Optional[float] = None, | |
) -> Tensor: | |
(l_indices,) = _compute_upsample_nearest_indices( | |
input, output_size, (scales,), exact=True | |
) | |
return aten._unsafe_index(input, (None, None, l_indices)) | |
def _upsample_nearest2d_common(input, h_indices, w_indices): | |
result = aten._unsafe_index(input, (None, None, h_indices, w_indices)) | |
# convert output to correct memory format, if necessary | |
memory_format = utils.suggest_memory_format(input) | |
# following "heuristic: only use channels_last path when it's faster than the contiguous path" | |
_, n_channels, _, _ = input.shape | |
if input.device.type == "cuda" and n_channels < 4: | |
memory_format = torch.contiguous_format | |
result = result.contiguous(memory_format=memory_format) | |
return result | |
def upsample_nearest2d( | |
input: Tensor, | |
output_size: List[int], | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
h_indices, w_indices = _compute_upsample_nearest_indices( | |
input, output_size, (scales_h, scales_w) | |
) | |
return _upsample_nearest2d_common(input, h_indices, w_indices) | |
def _upsample_nearest_exact2d( | |
input: Tensor, | |
output_size: List[int], | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
h_indices, w_indices = _compute_upsample_nearest_indices( | |
input, output_size, (scales_h, scales_w), exact=True | |
) | |
return _upsample_nearest2d_common(input, h_indices, w_indices) | |
def upsample_nearest3d( | |
input: Tensor, | |
output_size: List[int], | |
scales_d: Optional[float] = None, | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
d_indices, h_indices, w_indices = _compute_upsample_nearest_indices( | |
input, output_size, (scales_d, scales_h, scales_w) | |
) | |
result = aten._unsafe_index(input, (None, None, d_indices, h_indices, w_indices)) | |
return result | |
def _upsample_nearest_exact3d( | |
input: Tensor, | |
output_size: List[int], | |
scales_d: Optional[float] = None, | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
d_indices, h_indices, w_indices = _compute_upsample_nearest_indices( | |
input, output_size, (scales_d, scales_h, scales_w), exact=True | |
) | |
result = aten._unsafe_index(input, (None, None, d_indices, h_indices, w_indices)) | |
return result | |
def gather_params(params, has_biases, has_projections): | |
if has_biases and has_projections: | |
group_size = 5 | |
elif has_biases: | |
group_size = 4 | |
elif has_projections: | |
group_size = 3 | |
else: | |
group_size = 2 | |
assert len(params) % group_size == 0, len(params) | |
return [ | |
tuple(params[i : i + group_size]) for i in range(0, len(params), group_size) | |
] | |
def params_hiddens(params, hiddens, i, bidirectional): | |
if bidirectional: | |
cur_params, cur_hidden = params[2 * i], hiddens[2 * i] | |
bidir_params, bidir_hidden = params[2 * i + 1], hiddens[2 * i + 1] | |
else: | |
cur_params, cur_hidden = params[i], hiddens[i] | |
bidir_params, bidir_hidden = None, None | |
return cur_params, cur_hidden, bidir_params, bidir_hidden | |
def update_hidden_for_packed(cur_hidden, last_batch_size, batch_size, hiddens): | |
assert last_batch_size > batch_size | |
hiddens.append(cur_hidden.narrow(0, batch_size, last_batch_size - batch_size)) | |
return cur_hidden.narrow(0, 0, batch_size) | |
def update_hidden_for_packed_reverse( | |
cur_hidden, last_batch_size, batch_size, inp_hidden | |
): | |
if last_batch_size == batch_size: | |
return cur_hidden | |
assert last_batch_size < batch_size | |
return torch.concat( | |
( | |
cur_hidden, | |
inp_hidden.narrow(0, last_batch_size, batch_size - last_batch_size), | |
) | |
) | |
def one_layer_rnn_data( | |
inp, hidden, params, has_biases, hidden_fn, batch_sizes, reverse=False | |
): | |
ih_weight = params[0] | |
hh_weight = params[1] | |
ih_bias = params[2] if has_biases else None | |
hh_bias = params[3] if has_biases else None | |
step_output = [] | |
hiddens: List[torch.Tensor] = [] | |
last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0] | |
cur_hidden = hidden.narrow(0, 0, last_batch_size) | |
split_inp = torch.split(inp, list(batch_sizes)) | |
if reverse: | |
split_inp = split_inp[::-1] | |
for inp in split_inp: | |
i = inp.shape[0] | |
if last_batch_size == i: | |
pass # don't update cur_hidden | |
# this will only happen when reverse=False, since batch sizes are sorted largest -> smallest | |
elif reverse: | |
cur_hidden = update_hidden_for_packed_reverse( | |
cur_hidden, last_batch_size, i, hidden | |
) | |
else: | |
cur_hidden = update_hidden_for_packed( | |
cur_hidden, last_batch_size, i, hiddens | |
) | |
cur_hidden = hidden_fn(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias) | |
last_batch_size = i | |
step_output.append(cur_hidden) | |
if reverse: | |
step_output.reverse() | |
else: | |
hiddens.append(cur_hidden) | |
hiddens.reverse() | |
out = torch.cat(step_output, 0) | |
hidden_out = torch.cat(hiddens, 0) if not reverse else cur_hidden | |
return out, hidden_out | |
def rnn_cell(nonlinearity): | |
def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): | |
return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i) | |
return inner | |
def rnn_cell_data(nonlinearity): | |
def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): | |
i = F.linear(i, ih_weight, ih_bias) | |
return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i) | |
return inner | |
def one_layer_rnn(inp, hidden, params, has_biases, hidden_fn, reverse=False): | |
ih_weight = params[0] | |
hh_weight = params[1] | |
ih_bias = params[2] if has_biases else None | |
hh_bias = params[3] if has_biases else None | |
precomputed_input = F.linear(inp, ih_weight, ih_bias) | |
precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input | |
cur_hidden = hidden.unsqueeze(0) | |
step_output = [] | |
for i in precomputed_input: | |
cur_hidden = hidden_fn(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias) | |
step_output.append(cur_hidden) | |
if reverse: | |
step_output.reverse() | |
out = torch.cat(step_output, 0) | |
return out, cur_hidden.squeeze(0) | |
def mkldnn_one_layer_lstm(inp, hidden, params, has_biases, reverse=False): | |
w0 = params[0] | |
w1 = params[1] | |
if has_biases: | |
w2 = params[2] | |
w3 = params[3] | |
else: | |
w2 = torch.zeros(w0.size()) | |
w3 = torch.zeros(w1.size()) | |
hx = hidden[0].unsqueeze(0) | |
cx = hidden[1].unsqueeze(0) | |
batch_sizes: List[int] = [] | |
mode = 2 # third_party/ideep/include/ideep/abstract_types.hpp: ideep::rnn_kind::LSTM = 2 | |
hidden_size = hx.size(2) | |
num_layers = 1 | |
# _rnn_helper already handles bidirectional and batch_first so we hard-code them to False here | |
bidirectional = False | |
batch_first = False | |
train = False | |
# If batch_first, inp has been permuted in _rnn_helper. Convert to contiguous here. | |
# Same as aten/src/ATen/native/mkldnn/RNN.cpp: mkldnn_rnn: input = input.contiguous(); | |
inp = inp.contiguous() | |
hx = hx.contiguous() | |
cx = cx.contiguous() | |
outputs = torch.ops.aten.mkldnn_rnn_layer.default( | |
inp, | |
w0, | |
w1, | |
w2, | |
w3, | |
hx, | |
cx, | |
reverse, | |
batch_sizes, | |
mode, | |
hidden_size, | |
num_layers, | |
has_biases, | |
bidirectional, | |
batch_first, | |
train, | |
) | |
y, hy, cy = outputs[0], outputs[1], outputs[2] | |
return y, (hy.squeeze(0), cy.squeeze(0)) | |
def _rnn_helper( | |
input, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
layer_fn, | |
): | |
input = input.transpose(0, 1) if batch_first else input | |
final_hiddens = [] | |
for i in range(num_layers): | |
cur_params, cur_hidden, bidir_params, bidir_hidden = params_hiddens( | |
params, hidden, i, bidirectional | |
) | |
dropout = dropout if (train and num_layers < i - 1) else 0.0 | |
fwd_inp, fwd_hidden = layer_fn(input, cur_hidden, cur_params, has_biases) | |
final_hiddens.append(fwd_hidden) | |
if bidirectional: | |
bwd_inp, bwd_hidden = layer_fn( | |
input, bidir_hidden, bidir_params, has_biases, reverse=True | |
) | |
final_hiddens.append(bwd_hidden) | |
if bidirectional: | |
input = torch.cat([fwd_inp, bwd_inp], fwd_inp.dim() - 1) # type: ignore[possibly-undefined] | |
else: | |
input = fwd_inp | |
if dropout != 0 and train and i < num_layers - 1: | |
input = torch.dropout(input, dropout, train=True) | |
input = input.transpose(0, 1) if batch_first else input | |
return input, final_hiddens | |
def rnn_tanh_input( | |
input, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
): | |
hidden = hx.unbind(0) | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
input, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
partial(one_layer_rnn, hidden_fn=rnn_cell(torch.tanh)), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def rnn_relu_input( | |
input, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
): | |
hidden = hx.unbind(0) | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
input, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
partial(one_layer_rnn, hidden_fn=rnn_cell(torch.relu)), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def rnn_relu_data( | |
data, | |
batch_sizes, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
): | |
hidden = hx.unbind(0) | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
data, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
False, | |
partial( | |
one_layer_rnn_data, | |
batch_sizes=batch_sizes, | |
hidden_fn=rnn_cell_data(torch.relu), | |
), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def rnn_tanh_data( | |
data, | |
batch_sizes, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
): | |
hidden = hx.unbind(0) | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
data, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
False, | |
partial( | |
one_layer_rnn_data, | |
batch_sizes=batch_sizes, | |
hidden_fn=rnn_cell_data(torch.tanh), | |
), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim): | |
gates = F.linear(hx, hh_weight, hh_bias) + inp | |
chunked_gates = gates.chunk(4, chunk_dim) | |
in_gate = chunked_gates[0].sigmoid() | |
forget_gate = chunked_gates[1].sigmoid() | |
cell_gate = chunked_gates[2].tanh() | |
out_gate = chunked_gates[3].sigmoid() | |
cy = forget_gate * cx + (in_gate * cell_gate) | |
hy = out_gate * cy.tanh() | |
hy = hy if hr_weight is None else F.linear(hy, hr_weight, None) | |
return hy, cy | |
def one_layer_lstm(inp, hidden, params, has_biases, reverse=False): | |
ih_weight = params[0] | |
hh_weight = params[1] | |
ih_bias = params[2] if has_biases else None | |
hh_bias = params[3] if has_biases else None | |
hr_weight = ( | |
params[4] if len(params) == 5 else params[2] if len(params) == 3 else None | |
) | |
hx = hidden[0].unsqueeze(0) | |
cx = hidden[1].unsqueeze(0) | |
precomputed_input = F.linear(inp, ih_weight, ih_bias) | |
precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input | |
step_output = [] | |
for inp in precomputed_input: | |
hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=2) | |
step_output.append(hx) | |
if reverse: | |
step_output.reverse() | |
out = torch.cat(step_output, 0) | |
return out, (hx.squeeze(1), cx.squeeze(1)) | |
def one_layer_lstm_data(inp, hidden, params, has_biases, batch_sizes, reverse=False): | |
ih_weight = params[0] | |
hh_weight = params[1] | |
ih_bias = params[2] if has_biases else None | |
hh_bias = params[3] if has_biases else None | |
hr_weight = ( | |
params[4] if len(params) == 5 else params[2] if len(params) == 3 else None | |
) | |
step_output = [] | |
hiddens = [] | |
last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0] | |
split_inp = torch.split(inp, list(batch_sizes)) | |
if reverse: | |
split_inp = split_inp[::-1] | |
orig_hx = hidden[0] | |
orig_cx = hidden[1] | |
hx, cx = orig_hx.narrow(0, 0, last_batch_size), orig_cx.narrow( | |
0, 0, last_batch_size | |
) | |
for inp in split_inp: | |
i = inp.shape[0] | |
inp = F.linear(inp, ih_weight, ih_bias) | |
# this will only happen when reverse=False, since batch sizes are sorted largest -> smallest | |
if i < last_batch_size: | |
hiddens.append( | |
( | |
hx.narrow(0, i, last_batch_size - i), | |
cx.narrow(0, i, last_batch_size - i), | |
) | |
) | |
hx, cx = hx.narrow(0, 0, i), cx.narrow(0, 0, i) | |
# this will only happen when reverse=True | |
if i > last_batch_size: | |
hx = torch.concat( | |
(hx, orig_hx.narrow(0, last_batch_size, i - last_batch_size)), 0 | |
) | |
cx = torch.concat( | |
(cx, orig_cx.narrow(0, last_batch_size, i - last_batch_size)), 0 | |
) | |
hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=1) | |
last_batch_size = i | |
step_output.append(hx) | |
if reverse: | |
step_output.reverse() | |
hidden_out = (hx, cx) | |
else: | |
hiddens.append((hx, cx)) | |
hiddens.reverse() | |
hidden0, hidden1 = zip(*hiddens) | |
hidden_out = torch.cat(hidden0, 0), torch.cat(hidden1, 0) | |
out = torch.cat(step_output, 0) | |
return out, hidden_out | |
def select_one_layer_lstm_function(input, hx, params): | |
r"""Check whether we could use decompose lstm with mkldnn_rnn_layer. | |
All the below conditions need to be met: | |
* ``torch._C._get_mkldnn_enabled()`` returns ``True``. | |
* All the input args are on CPU. | |
* The dtypes of args are either torch.float or torch.bfloat16. | |
* Inference. | |
* ``has_projections`` returns ``False``. | |
Args: | |
* input: the input sequence to LSTM | |
* hx: a tuple of the input hidden state and cell state ``(h_0, c_0)`` to LSTM | |
* params: the weight and bias tensors of LSTM | |
""" | |
def use_mkldnn(input, hx, params): | |
if not torch._C._get_mkldnn_enabled(): | |
return False | |
tensors = [input] + list(hx) + list(chain.from_iterable(params)) | |
devices = {t.device for t in tensors} | |
if len(devices) != 1: | |
return False | |
device = devices.pop() | |
if device != torch.device("cpu"): | |
return False | |
# With autocast, possible to have mixed dtype here | |
dtypes = {t.dtype for t in tensors} | |
for dtype in dtypes: | |
if dtype not in [torch.float, torch.bfloat16]: | |
return False | |
if input.requires_grad: | |
return False | |
has_projections = hx[0].size(2) != hx[1].size(2) | |
if has_projections: | |
return False | |
return True | |
# mkldnn_one_layer_lstm does not depend on seq_len while one_layer_lstm | |
# will expand over the seq_len dim | |
if use_mkldnn(input, hx, params): | |
return mkldnn_one_layer_lstm | |
else: | |
return one_layer_lstm | |
def lstm_impl( | |
input, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
): | |
assert len(hx) == 2, "lstm expects two hidden states" | |
params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2)) | |
hidden = list(zip(hx[0], hx[1])) | |
layer_fn = select_one_layer_lstm_function(input, hx, params) | |
out, final_hiddens = _rnn_helper( | |
input, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
layer_fn, | |
) | |
final_hiddens = list(zip(*final_hiddens)) | |
return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0) | |
def lstm_data_impl( | |
data, | |
batch_sizes, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
): | |
assert len(hx) == 2, "lstm expects two hidden states" | |
params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2)) | |
hidden = list(zip(hx[0], hx[1])) | |
out, final_hiddens = _rnn_helper( | |
data, | |
hidden, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
False, | |
partial(one_layer_lstm_data, batch_sizes=batch_sizes), | |
) | |
final_hiddens = list(zip(*final_hiddens)) | |
return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0) | |
def gru_cell(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): | |
chunked_igates = inp.chunk(3, 1) | |
chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 2) | |
reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid() | |
input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid() | |
new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh() | |
return (cur_hidden - new_gate) * input_gate + new_gate | |
def gru_cell_data(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias): | |
chunked_igates = F.linear(inp, ih_weight, ih_bias).chunk(3, 1) | |
chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 1) | |
reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid() | |
input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid() | |
new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh() | |
return (cur_hidden - new_gate) * input_gate + new_gate | |
def gru_impl_data( | |
data, | |
batch_sizes, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
): | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
data, | |
hx.unbind(0), | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
False, | |
partial(one_layer_rnn_data, batch_sizes=batch_sizes, hidden_fn=gru_cell_data), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def gru_impl( | |
input, | |
hx, | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
): | |
params = gather_params(params, has_biases, False) | |
out, final_hiddens = _rnn_helper( | |
input, | |
hx.unbind(0), | |
params, | |
has_biases, | |
num_layers, | |
dropout, | |
train, | |
bidirectional, | |
batch_first, | |
partial(one_layer_rnn, hidden_fn=gru_cell), | |
) | |
return out, torch.stack(final_hiddens, 0) | |
def upsample_bilinear2d_aa_vec(input, output_size, align_corners, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_h = get_scale_value(scale_factors, 0) | |
scale_w = get_scale_value(scale_factors, 1) | |
return torch.ops.aten._upsample_bilinear2d_aa( | |
input, osize, align_corners, scale_h, scale_w | |
) | |
def upsample_bicubic2d_aa_vec(input, output_size, align_corners, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scale_h = get_scale_value(scale_factors, 0) | |
scale_w = get_scale_value(scale_factors, 1) | |
return torch.ops.aten._upsample_bicubic2d_aa( | |
input, osize, align_corners, scale_h, scale_w | |
) | |
def _upsample_linear_vec(input, output_size, align_corners, scale_factors): | |
osize = upsample_compute_output_size(input.size(), output_size, scale_factors) | |
scales = scale_factors if scale_factors else [None] * len(osize) | |
return _upsample_linear(input, osize, align_corners, scales) | |
def upsample_linear1d( | |
input: Tensor, | |
output_size: List[int], | |
align_corners: bool, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
return _upsample_linear(input, output_size, align_corners, [scales_w]) | |
def upsample_bilinear2d( | |
input: Tensor, | |
output_size: List[int], | |
align_corners: bool, | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
return _upsample_linear(input, output_size, align_corners, [scales_h, scales_w]) | |
def upsample_trilinear3d( | |
input: Tensor, | |
output_size: List[int], | |
align_corners: bool, | |
scales_d: Optional[float] = None, | |
scales_h: Optional[float] = None, | |
scales_w: Optional[float] = None, | |
) -> Tensor: | |
return _upsample_linear( | |
input, output_size, align_corners, [scales_d, scales_h, scales_w] | |
) | |
def _compute_scale(in_size, out_size, align_corners, scale=None): | |
if align_corners: | |
return (in_size - 1.0) / (out_size - 1.0) if out_size > 1 else 0 | |
else: | |
return 1.0 / scale if scale is not None and scale > 0 else in_size / out_size | |
def _compute_source_index(scale, dst_index, align_corners): | |
if align_corners: | |
return scale * dst_index | |
else: | |
return scale * (dst_index + 0.5) - 0.5 | |
def _upsample_linear( | |
input: Tensor, | |
output_size: List[int], | |
align_corners: bool, | |
scales: List[Optional[float]], | |
) -> Tensor: | |
# get dimensions of original image | |
n_batch, n_channels = input.shape[:2] | |
inp_sizes = input.shape[2:] | |
n_dims = len(inp_sizes) | |
_, dtype = utils.elementwise_dtypes( | |
input, | |
type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT, | |
) | |
def get_values(inp_size, out_size, scales, nsqueeze): | |
# First Calculate scaling factor | |
scale_factor = _compute_scale(inp_size, out_size, align_corners, scales) | |
# We have to create arange with int64 dtype and use .to in order to avoid | |
# additional kernels creation in inductor and get a perf slowdown | |
i = torch.arange(out_size, device=input.device).to(dtype=dtype) | |
x_f32 = _compute_source_index(scale_factor, i, align_corners).clamp(min=0.0) | |
x_f32 = x_f32.reshape(x_f32.shape[0], *[1] * (nsqueeze)) | |
x = x_f32.to(torch.int64) | |
xp1 = (x + 1).clamp(max=inp_size - 1) | |
return x_f32, x, xp1 | |
values = [ | |
get_values(inp_size, out_size, scales, n_dims - 1 - i) | |
for i, (inp_size, out_size, scales) in enumerate( | |
zip(inp_sizes, output_size, scales) | |
) | |
] | |
xs_f32, xs, xp1s = list(zip(*values)) | |
vs = [] | |
for a in product(*[[0, 1]] * n_dims): | |
idx = [None, None] + [xs[k] if a[k] == 0 else xp1s[k] for k in range(n_dims)] | |
v = aten._unsafe_index(input, idx) | |
v = _maybe_convert_to_dtype(v, dtype) | |
vs.append(v) | |
for i in reversed(range(n_dims)): | |
xscale = (xs_f32[i] - xs[i]).clamp(0.0, 1.0).to(dtype) | |
vs = [ | |
# x1 * (1 - alpha) + x2 * alpha == x1 + (x2 - x1) * alpha | |
v1 + torch.mul(v2 - v1, xscale) | |
for v1, v2 in zip(vs[::2], vs[1::2]) | |
] | |
assert len(vs) == 1 | |
result = vs[0] | |
# convert output to correct memory format, if necessary | |
memory_format = utils.suggest_memory_format(input) | |
# following "heuristic: only use channels_last path when it's faster than the contiguous path" | |
if input.device.type == "cuda" and n_channels < 16: | |
memory_format = torch.contiguous_format | |
assert isinstance(result, torch.Tensor) | |
result = result.contiguous(memory_format=memory_format) | |
if not input.is_floating_point(): | |
result = result.round() | |
return result | |
# We should be applying decompositions after all transformations | |
def is_same_size(a: Tensor, b: Tensor) -> bool: | |
return a.shape == b.shape | |
def _reshape_alias(x, shape, *args): | |
return aten.view(x, shape) | |
def _index(x, indices): | |
return aten.index(x, indices) | |
def _nll_loss_forward( | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
) -> Tuple[Tensor, Tensor]: | |
# self can be [N, C] or [C] | |
# target can be [N] or [] | |
n_dims = self.dim() | |
channel_dim = 1 | |
if n_dims < 2: | |
channel_dim = 0 | |
if weight is not None: | |
if n_dims > 1: | |
shape = [ | |
1, | |
] * n_dims | |
shape[channel_dim] = weight.shape[0] | |
w = weight.view(shape) | |
else: | |
w = weight | |
self = self * w | |
safe_target = torch.where(target != ignore_index, target, 0) | |
safe_target_ = safe_target.unsqueeze(channel_dim) | |
# target can be [N, 1] or [1] | |
result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim) | |
result = torch.where(target != ignore_index, result, 0) | |
if reduction == Reduction.NONE.value and n_dims > 1: | |
total_weight = self.new_full((), 0.0) | |
return result, total_weight | |
if weight is not None: | |
w = w.expand(self.shape) | |
wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim) | |
wsum = torch.where(target != ignore_index, wsum, 0) | |
total_weight = wsum.sum() | |
else: | |
total_weight = (target != ignore_index).sum().to(self) | |
if reduction == Reduction.SUM.value: | |
result = result.sum() | |
elif reduction == Reduction.MEAN.value: | |
result = result.sum() / total_weight | |
return result, total_weight | |
def nll_loss_forward( | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
) -> Tuple[Tensor, Tensor]: | |
assert self.dim() > 0 and self.dim() <= 2, "input tensor should be 1D or 2D" | |
assert ( | |
target.dim() <= 1 | |
), "0D or 1D target tensor expected, multi-target not supported" | |
no_batch_dim = self.dim() == 1 and target.dim() == 0 | |
assert no_batch_dim or ( | |
self.shape[0] == target.shape[0] | |
), f"size mismatch (got input: {self.shape}, target: {target.shape})" | |
n_classes = self.shape[-1] | |
assert weight is None or ( | |
weight.dim() == 1 and weight.numel() == n_classes | |
), f"weight tensor should be defined either for all {n_classes} classes or no classes but got weight tensor of shape: {weight.shape}" # noqa: B950 | |
return _nll_loss_forward(self, target, weight, reduction, ignore_index) | |
def nll_loss2d_forward( | |
self: Tensor, | |
target: Tensor, | |
weight: Optional[Tensor], | |
reduction: int, | |
ignore_index: int, | |
) -> Tuple[Tensor, Tensor]: | |
return _nll_loss_forward(self, target, weight, reduction, ignore_index) | |
# These are adapted from aten/src/ATen/native/UpSample.h, wich is based on | |
# https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm | |
def _upsample_cubic_convolution1(x: Tensor, A: float) -> Tensor: | |
return ((A + 2) * x - (A + 3)) * x * x + 1 | |
def _upsample_cubic_convolution2(x: Tensor, A: float) -> Tensor: | |
return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A | |
def _upsample_get_cubic_coefficients(t: Tensor) -> TensorSequenceType: | |
A = -0.75 | |
return ( | |
_upsample_cubic_convolution2(t + 1.0, A), | |
_upsample_cubic_convolution1(t, A), | |
_upsample_cubic_convolution1(1.0 - t, A), | |
_upsample_cubic_convolution2(2.0 - t, A), | |
) | |
def _upsample_cubic_interp1d(coeffs: TensorSequenceType, ts: Tensor) -> Tensor: | |
coeffs2 = _upsample_get_cubic_coefficients(ts) | |
return _sum_tensors(c1 * c2 for (c1, c2) in zip(coeffs, coeffs2)) | |
# Need this instead of just sum() to keep mypy happy | |
def _sum_tensors(ts: Iterable[Tensor]) -> Tensor: | |
return reduce(torch.add, ts) | |
def _linspace_from_neg_one( | |
num_steps: int, align_corners: bool, dtype: torch.dtype, device: torch.device | |
): | |
if num_steps <= 1: | |
return torch.tensor(0, device=device, dtype=dtype) | |
a = ((num_steps - 1) / num_steps) if not align_corners else 1 | |
return torch.linspace(-a, a, steps=num_steps, device=device, dtype=dtype) | |
def _make_base_grid_4d(theta: Tensor, h: int, w: int, align_corners: bool): | |
dtype = theta.dtype | |
device = theta.device | |
# Using padding and summation generates a single kernel vs using torch.stack where 3 kernels generated | |
# corresponding to each individual tensor: grid_x, grid_y, grid_one | |
grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, w, 1) | |
grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(h, 1, 1) | |
grid_one = torch.ones((1, 1, 1), dtype=dtype, device=device) | |
# this is just a temporary hack and we should use torch.stack here once #104480 is merged | |
grid_x = torch.nn.functional.pad(grid_x, pad=(0, 2), mode="constant", value=0) | |
grid_y = torch.nn.functional.pad(grid_y, pad=(1, 1), mode="constant", value=0) | |
grid_one = torch.nn.functional.pad(grid_one, pad=(2, 0), mode="constant", value=0) | |
return grid_x + grid_y + grid_one | |
def _make_base_grid_5d(theta: Tensor, d: int, h: int, w: int, align_corners: bool): | |
dtype = theta.dtype | |
device = theta.device | |
grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, 1, w, 1) | |
grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(1, h, 1, 1) | |
grid_z = _linspace_from_neg_one(d, align_corners, dtype, device).view(d, 1, 1, 1) | |
grid_one = torch.ones((1, 1, 1, 1), dtype=dtype, device=device) | |
# this is just a temporary hack and we should use torch.stack here once #104480 is merged | |
grid_x = torch.nn.functional.pad(grid_x, pad=(0, 3), mode="constant", value=0) | |
grid_y = torch.nn.functional.pad(grid_y, pad=(1, 2), mode="constant", value=0) | |
grid_z = torch.nn.functional.pad(grid_z, pad=(2, 1), mode="constant", value=0) | |
grid_one = torch.nn.functional.pad(grid_one, pad=(3, 0), mode="constant", value=0) | |
return grid_x + grid_y + grid_z + grid_one | |
def _affine_grid_generator_4d(theta: Tensor, size: List[int], align_corners: bool): | |
n, _, h, w = size | |
base_grid = _make_base_grid_4d(theta, h, w, align_corners=align_corners) | |
# base_grid shape is (h, w, 3) and theta shape is (n, 2, 3) | |
# We do manually a matrix multiplication which is faster than mm() | |
# (h * w, 3, 1) * (n, 1, 3, 2) -> (n, h * w, 2) | |
grid = (base_grid.view(-1, 3, 1) * theta.mT.unsqueeze(1)).sum(-2) | |
return grid.view(n, h, w, 2) | |
def _affine_grid_generator_5d(theta: Tensor, size: List[int], align_corners: bool): | |
n, _, d, h, w = size | |
base_grid = _make_base_grid_5d(theta, d, h, w, align_corners=align_corners) | |
# base_grid shape is (d, h, w, 4) and theta shape is (n, 3, 4) | |
# We do manually a matrix multiplication which is faster than mm() | |
# (d * h * w, 4, 1) * (n, 1, 4, 3) -> (n, h * w, 3) | |
grid = (base_grid.view(-1, 4, 1) * theta.mT.unsqueeze(1)).sum(-2) | |
return grid.view(n, d, h, w, 3) | |
def affine_grid_generator(theta: Tensor, size: List[int], align_corners: bool): | |
torch._check( | |
len(size) in (4, 5), | |
lambda: "affine_grid_generator needs 4d (spatial) or 5d (volumetric) inputs.", | |
) | |
if len(size) == 4: | |
return _affine_grid_generator_4d(theta, size, align_corners=align_corners) | |
else: | |
return _affine_grid_generator_5d(theta, size, align_corners=align_corners) | |
def _grid_sampler_2d( | |
a: Tensor, | |
grid: Tensor, | |
interpolation_mode: int = 0, | |
padding_mode: int = 0, | |
align_corners: bool = False, | |
_expand_grid: bool = True, | |
) -> Tensor: | |
# This method is a copy of grid_sampler_2d implementation and introduced with additional arg _expand_grid to | |
# optionally expand the input grid for performance reasons. | |
# Experimenting locally it was found that compiled CUDA code is accelerated by ~5x | |
# and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2) | |
# However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first. | |
# Thus we apply this hack to not expand the grid for this case. | |
torch._check( | |
interpolation_mode in (0, 1, 2), | |
lambda: f"Invalid interpolation mode {interpolation_mode}", | |
) | |
torch._check( | |
padding_mode in (0, 1, 2), lambda: f"Invalid padding mode {padding_mode}" | |
) | |
def unnormalize(coords: Tensor, size: int) -> Tensor: | |
# Rescale coordinates from [-1, 1] to: | |
# [0, size - 1] if align_corners is True | |
# [-.5, size -.5] if align_corners is False | |
mul = (size * 0.5 - 0.5) if align_corners else (size * 0.5) | |
ofs = size * 0.5 - 0.5 | |
return coords * mul + ofs | |
# Reflects coordinates until they fall between low and high (inclusive). | |
# The bounds are passed as twice their value so that half-integer values | |
# can be represented as ints. | |
def reflect_coordinates(coords: Tensor, twice_low: int, twice_high: int) -> Tensor: | |
if twice_low == twice_high: | |
return torch.zeros_like(coords) | |
coords_min = twice_low / 2 | |
coords_span = (twice_high - twice_low) / 2 | |
coords2 = (coords - coords_min).abs() | |
extra = torch.fmod(coords2, coords_span) | |
flips = (coords2 / coords_span).floor().to(dtype=torch.int8) | |
return torch.where( | |
flips & 1 == 0, extra + coords_min, coords_span + coords_min - extra | |
) | |
def compute_coordinates(coords: Tensor, size: int) -> Tensor: | |
if padding_mode == 0: # Zero | |
return coords | |
elif padding_mode == 1: # Borders | |
return torch.clamp(coords, 0, size - 1) | |
else: # padding_mode == 2, Reflection | |
if align_corners: | |
coords_reflected = reflect_coordinates(coords, 0, 2 * (size - 1)) | |
else: | |
coords_reflected = reflect_coordinates(coords, -1, 2 * size - 1) | |
return torch.clamp(coords_reflected, 0, size - 1) | |
def compute_source_index(coords: Tensor, size: int) -> Tensor: | |
coords_un = unnormalize(coords, size) | |
return compute_coordinates(coords_un, size) | |
N, C, iH, iW = a.shape | |
_, oH, oW, two = grid.shape | |
assert two == 2 | |
if _expand_grid: | |
# Let's expand grid to [N, C, oH, oW, 2] | |
# This allows to generate a single triton cuda kernel instead of two kernels. | |
# Two kernels are due source indices, weights have shape (N, 1, oH, oW), xnumel=N*oH*oW | |
# and output has shape (N, C, oH, oW), xnumel=N*C*oH*oW | |
# Expanding grid to (N, C, oH, oW, two) unifies xnumel to N*C*oH*oW | |
grid = grid.view(N, 1, oH, oW, two).expand(N, C, oH, oW, 2) | |
def in_bounds_cond(xs: Tensor, ys: Tensor) -> Tensor: | |
return torch.logical_and( | |
0 <= xs, torch.logical_and(xs < iW, torch.logical_and(0 <= ys, ys < iH)) | |
) | |
N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1) | |
C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1) | |
def clip(xs: Tensor, ys: Tensor, ws: Tensor) -> TensorSequenceType: | |
cond = in_bounds_cond(xs, ys) | |
# To clip to inside valid coordinates, we map the coordinates | |
# to (x, y) = (0, 0) and also set the weight to 0 | |
# We also change the shape of the tensor to the appropriate one for | |
# broadcasting with N_idx, C_idx for the purposes of advanced indexing | |
c = C if _expand_grid else 1 | |
return tuple( | |
torch.where(cond, t, 0).view(N, c, oH, oW) | |
for t in (xs.to(dtype=torch.int64), ys.to(dtype=torch.int64), ws) | |
) | |
def get_summand(ix: Tensor, iy: Tensor, w) -> Tensor: | |
# Perform clipping, index into input tensor and multiply by weight | |
idx_x, idx_y, w_ = clip(ix, iy, w) | |
return a[N_idx, C_idx, idx_y, idx_x] * w_ | |
x = grid[..., 0] | |
y = grid[..., 1] | |
if interpolation_mode == 0: # Bilinear | |
ix = compute_source_index(x, iW) | |
iy = compute_source_index(y, iH) | |
ix_nw, iy_nw = ix.floor(), iy.floor() | |
ix_ne, iy_ne = ix_nw + 1, iy_nw | |
ix_sw, iy_sw = ix_nw, iy_nw + 1 | |
ix_se, iy_se = ix_ne, iy_sw | |
w_nw = (ix_se - ix) * (iy_se - iy) | |
w_ne = (ix - ix_sw) * (iy_sw - iy) | |
w_sw = (ix_ne - ix) * (iy - iy_ne) | |
w_se = (ix - ix_nw) * (iy - iy_nw) | |
return _sum_tensors( | |
get_summand(ix, iy, w) | |
for (ix, iy, w) in ( | |
(ix_nw, iy_nw, w_nw), | |
(ix_ne, iy_ne, w_ne), | |
(ix_sw, iy_sw, w_sw), | |
(ix_se, iy_se, w_se), | |
) | |
) | |
elif interpolation_mode == 1: # Nearest | |
ix = compute_source_index(x, iW) | |
iy = compute_source_index(y, iH) | |
ix_nearest = ix.round() | |
iy_nearest = iy.round() | |
return get_summand(ix_nearest, iy_nearest, 1) | |
else: # interpolation_mode == 2, Bicubic | |
ix = unnormalize(x, iW) | |
iy = unnormalize(y, iH) | |
ix_nw = ix.floor() | |
iy_nw = iy.floor() | |
tx = ix - ix_nw | |
ty = iy - iy_nw | |
if not _expand_grid: | |
tx = tx.unsqueeze(1) | |
ty = ty.unsqueeze(1) | |
def get_value_bounded(ix: Tensor, iy: Tensor) -> Tensor: | |
x = compute_coordinates(ix, iW) | |
y = compute_coordinates(iy, iH) | |
return get_summand(x, y, 1) | |
def get_coeff(ofs: int) -> Tensor: | |
iy_ofs = iy_nw + (ofs - 1) | |
cs = ( | |
get_value_bounded(ix_nw - 1, iy_ofs), | |
get_value_bounded(ix_nw, iy_ofs), | |
get_value_bounded(ix_nw + 1, iy_ofs), | |
get_value_bounded(ix_nw + 2, iy_ofs), | |
) | |
return _upsample_cubic_interp1d(cs, tx) | |
coeffs = tuple(get_coeff(ofs) for ofs in range(4)) | |
return _upsample_cubic_interp1d(coeffs, ty) | |
def grid_sampler_2d( | |
a: Tensor, | |
grid: Tensor, | |
interpolation_mode: int = 0, | |
padding_mode: int = 0, | |
align_corners: bool = False, | |
) -> Tensor: | |
return _grid_sampler_2d( | |
a, | |
grid=grid, | |
interpolation_mode=interpolation_mode, | |
padding_mode=padding_mode, | |
align_corners=align_corners, | |
) | |
def mv(self, vec): | |
torch._check( | |
self.dim() == 2 and vec.dim() == 1, | |
lambda: f"matrix @ vector expected, got {self.dim()}, {vec.dim()}", | |
) | |
torch._check( | |
self.size(1) == vec.size(0), | |
lambda: f"size mismatch, got input ({self.size(0)}x{self.size(1)}), vec ({vec.size(0)})", | |
) | |
return (self * vec).sum(dim=1) | |
def binary_cross_entropy_with_logits( | |
self, target, weight=None, pos_weight=None, reduction=Reduction.MEAN.value | |
): | |
if pos_weight is not None: | |
log_weight = (pos_weight - 1) * target + 1 | |
loss = (1 - target) * self - (log_weight * F.logsigmoid(self)) | |
else: | |
loss = (1 - target) * self - F.logsigmoid(self) | |
if weight is not None: | |
loss = loss * weight | |
return apply_loss_reduction(loss, reduction) | |
def should_fold(tensor1: torch.Tensor, tensor2: torch.Tensor, is_out: bool) -> bool: | |
# For comments of the logic of this function see eager in /native/LinearAlgebra.cpp | |
t1, t2 = (tensor1, tensor2) if tensor1.ndim >= tensor2.ndim else (tensor2, tensor1) | |
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious | |
if not (t1.ndim >= 3 and t2.ndim <= 2): | |
return False | |
if t2.requires_grad and not is_out: | |
return True | |
if tensor1.ndim == 2: | |
return False | |
if guard_size_oblivious(t1.numel() == 0): | |
return True | |
t1_shape = t1.shape | |
t1_stride = t1.stride() | |
return all( | |
st1 == st2 * s2 | |
for (st1, st2, s2) in zip(t1_stride[:-2], t1_stride[1:-1], t1_shape[1:-1]) | |
) | |
def matmul(tensor1, tensor2, *, is_out=False): | |
dim_tensor1 = tensor1.dim() | |
dim_tensor2 = tensor2.dim() | |
assert dim_tensor1 != 0 and dim_tensor2 != 0 | |
if dim_tensor1 == 1 and dim_tensor2 == 1: | |
return torch.dot(tensor1, tensor2) | |
elif dim_tensor1 == 2 and dim_tensor2 == 1: | |
return torch.mv(tensor1, tensor2) | |
elif dim_tensor1 == 1 and dim_tensor2 == 2: | |
return torch.squeeze(torch.mm(torch.unsqueeze(tensor1, 0), tensor2), 0) | |
elif dim_tensor1 == 2 and dim_tensor2 == 2: | |
return torch.mm(tensor1, tensor2) | |
elif should_fold(tensor1, tensor2, is_out): | |
# dim_tensor1 >=3 && (dim_tensor2 == 1 || dim_tensor2 == 2) || | |
# dim_tensor2 >=3 && (dim_tensor1 == 1 || dim_tensor1 == 2) | |
# and some condition on the strides is fulfilled | |
# optimization: use mm instead of bmm by folding the batch of the larger tensor | |
# into its leading matrix dimension | |
transpose = dim_tensor2 > dim_tensor1 | |
t1 = tensor2.mT if transpose else tensor1 | |
t2 = ( | |
tensor2 if not transpose else (tensor1.t() if dim_tensor1 == 2 else tensor1) | |
) | |
# Invariant: t1.dim() >= 3 && (t2.dim() == 1 || t2.dim() == 2) | |
# and t1 and t2 are matmul-compatible | |
# Why not t1.view(-1, sizes_1[-1])? | |
# If the last dim is 0, then view(-1, 0) won't work because the -1 becomes ambiguous. | |
# This can happen in e.g. [3, 5, 0] @ [0, 0]. | |
sizes_1 = t1.shape | |
output_shape = list(sizes_1[:-1]) | |
folded_dim1 = reduce(operator.mul, output_shape) | |
# Readjust output_shape if we are multiplying by a matrix | |
t2_is_matrix = t2.dim() == 2 | |
if t2_is_matrix: | |
output_shape.append(t2.shape[1]) | |
# This will almost always be a view. | |
# It may not be a view if t2->requires_grad(). See should_fold in aten/ for an explanation | |
t1_folded = t1.reshape(folded_dim1, sizes_1[-1]) | |
if t2_is_matrix: | |
# This copies if we perform a 2D @ 3D and the first tensor requires_grad | |
# See should_fold native/LinearAlgebra.cpp for why. | |
output = t1_folded.mm(t2).view(output_shape) | |
return output.mT.contiguous() if transpose else output | |
else: | |
return t1_folded.mv(t2).view(output_shape) | |
elif dim_tensor1 >= 1 and dim_tensor2 >= 1: | |
# We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list); | |
# we track m1 vs m2 separately even though they must match for nicer error messages | |
n = tensor1.size(-2) if dim_tensor1 > 1 else 1 | |
m1 = tensor1.size(-1) | |
batch_tensor1 = tensor1.shape[:-2] | |
m2 = tensor2.size(-2) if dim_tensor2 > 1 else tensor2.size(-1) | |
p = tensor2.size(-1) if dim_tensor2 > 1 else 1 | |
batch_tensor2: List[int] = [] | |
# TODO: handling of slice | |
for i in range(dim_tensor2 - 2): | |
batch_tensor2.append(tensor2.size(i)) | |
# Same optimization for the gradients as that in should_fold | |
# If we're going to broadcast, we force it to go through the should_fold branch | |
if ( | |
dim_tensor1 == 3 | |
and dim_tensor2 == 3 | |
and batch_tensor1[0] != batch_tensor2[0] | |
): | |
if batch_tensor1[0] == 1 and tensor1.requires_grad: | |
return matmul(tensor1.squeeze(0), tensor2) | |
if batch_tensor2[0] == 1 and tensor2.requires_grad: | |
return matmul(tensor1, tensor2.squeeze(0)) | |
# expand the batch portion (i.e. cut off matrix dimensions and expand rest) | |
expand_batch_portion = list( | |
torch.broadcast_shapes(batch_tensor1, batch_tensor2) | |
) | |
tensor1_expand_size = expand_batch_portion + [n, m1] | |
expand_batch_product = prod(expand_batch_portion) | |
# HACK: We need reshape with symint support | |
tensor1_expanded = tensor1.expand(tensor1_expand_size).reshape( | |
expand_batch_product, n, m1 | |
) | |
vector_rhs = dim_tensor2 == 1 | |
if vector_rhs: | |
tensor2_expand_size = expand_batch_portion + [m2] | |
tensor2_expanded = ( | |
tensor2.expand(tensor2_expand_size) | |
.reshape(expand_batch_product, m2) | |
.unsqueeze(2) | |
) | |
else: | |
tensor2_expand_size = expand_batch_portion + [m2, p] | |
tensor2_expanded = tensor2.expand(tensor2_expand_size).reshape( | |
expand_batch_product, m2, p | |
) | |
output_shape = expand_batch_portion | |
if dim_tensor1 > 1: | |
output_shape.append(n) | |
if dim_tensor2 > 1: | |
output_shape.append(p) | |
if vector_rhs: | |
return tensor1_expanded.bmm(tensor2_expanded).squeeze(-1).view(output_shape) | |
else: | |
return tensor1_expanded.bmm(tensor2_expanded).view(output_shape) | |
else: | |
torch._check(False, lambda: "both arguments to matmul need to be at least 1D") | |
def upsample_bicubic2d_default( | |
a: Tensor, | |
output_size: Tuple[int, int], | |
align_corners: bool, | |
scale_h: Optional[float] = None, | |
scale_w: Optional[float] = None, | |
) -> Tensor: | |
N, C, iH, iW = a.shape | |
oH, oW = output_size | |
def compute_scale(in_size, out_size, align_corners, scale=None): | |
if align_corners: | |
return (in_size - 1) / (out_size - 1) if out_size > 1 else 0 | |
else: | |
return 1 / scale if scale is not None and scale > 0 else in_size / out_size | |
def compute_source_index(scale, dst_index, align_corners): | |
if align_corners: | |
return scale * dst_index | |
else: | |
return scale * (dst_index + 0.5) - 0.5 | |
height_scale = compute_scale(iH, oH, align_corners, scale_h) | |
width_scale = compute_scale(iW, oW, align_corners, scale_w) | |
N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1) | |
C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1) | |
out_y = torch.arange(oH, device=a.device).view((1, 1, oH, 1)) | |
out_x = torch.arange(oW, device=a.device).view((1, 1, 1, oW)) | |
real_x = compute_source_index(width_scale, out_x, align_corners) | |
in_x = real_x.floor() | |
t_x = real_x - in_x | |
ix = in_x.to(dtype=torch.int64) | |
real_y = compute_source_index(height_scale, out_y, align_corners) | |
in_y = real_y.floor() | |
t_y = real_y - in_y | |
iy = in_y.to(dtype=torch.int64) | |
iys_ofs = (iy - 1, iy, iy + 1, iy + 2) | |
ixs_ofs = (ix - 1, ix, ix + 1, ix + 2) | |
def load_bounded(ys, xs): | |
y_idx = torch.clamp(ys, 0, iH - 1) | |
x_idx = torch.clamp(xs, 0, iW - 1) | |
return aten._unsafe_index(a, [N_idx, C_idx, y_idx, x_idx]) | |
def get_x_interp(y): | |
coeffs_x = tuple(load_bounded(y, x_ofs) for x_ofs in ixs_ofs) | |
return _upsample_cubic_interp1d(coeffs_x, t_x) | |
coeffs_y = tuple(get_x_interp(y_ofs) for y_ofs in iys_ofs) | |
result = _upsample_cubic_interp1d(coeffs_y, t_y) | |
# convert output to correct memory format, if necessary | |
memory_format = utils.suggest_memory_format(a) | |
result = result.contiguous(memory_format=memory_format) | |
return result | |
def upsample_bicubic2d_vec( | |
a: Tensor, | |
output_size: Optional[Tuple[int, int]], | |
align_corners: bool, | |
scale_factors: Optional[Tuple[float, float]] = None, | |
) -> Tensor: | |
torch._check( | |
bool(output_size) + bool(scale_factors) == 1, | |
lambda: "Must specify exactly one of output_size and scale_factors.", | |
) | |
if output_size is None: | |
assert scale_factors is not None | |
output_size = cast( | |
Tuple[int, int], | |
tuple( | |
sym_int(sym_float(w) * scale) | |
for w, scale in zip(a.shape[2:], scale_factors) | |
), | |
) | |
scale_h, scale_w = scale_factors if scale_factors else (None, None) | |
return upsample_bicubic2d_default(a, output_size, align_corners, scale_h, scale_w) | |
def _reflection_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor: | |
def idx(left, middle, right): | |
dim_idx = torch.arange(-left, middle + right, device=a.device) | |
return middle - 1 - (middle - 1 - dim_idx.abs()).abs() | |
return _reflection_or_replication_pad( | |
a, | |
padding, | |
idx, | |
) | |
def _replication_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor: | |
def idx(left, middle, right): | |
dim_idx = torch.arange(-left, middle + right, device=a.device) | |
return torch.clamp(dim_idx, 0, middle - 1) | |
return _reflection_or_replication_pad( | |
a, | |
padding, | |
idx, | |
) | |
def _reflection_or_replication_pad( | |
a: Tensor, | |
padding: Tuple[int, ...], | |
idx_fn: Callable[[int, int, int], Tensor], | |
) -> Tensor: | |
dim = len(padding) // 2 | |
torch._check( | |
a.dim() in (dim + 1, dim + 2), | |
lambda: f"reflection_pad{dim}d requires {dim + 1}D or {dim + 2}D input", | |
) | |
inp_shape = a.shape[-dim:] | |
nc_dim = a.dim() - dim | |
padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)] | |
padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)] | |
result = a | |
for i in range(dim): | |
idx: List[Any] = [None] * result.dim() | |
idx[i + nc_dim] = idx_fn(padding_left[i], inp_shape[i], padding_right[i]) | |
result = aten._unsafe_index(result, idx) | |
# convert output to correct memory format, if necessary | |
memory_format = utils.suggest_memory_format(result) | |
result = result.contiguous(memory_format=memory_format) | |
return result | |
def aminmax(self, *, dim=None, keepdim=False): | |
amin = torch.amin(self, dim=dim, keepdim=keepdim) | |
amax = torch.amax(self, dim=dim, keepdim=keepdim) | |
return amin, amax | |
def nansum(self, dim=None, keepdim=False, *, dtype=None): | |
return aten.sum(torch.where(torch.isnan(self), 0, self), dim, keepdim, dtype=dtype) | |
def arange_default( | |
end: NumberType, | |
*, | |
dtype: Optional[torch.dtype] = None, | |
layout: torch.layout = torch.strided, | |
device: Optional[torch.device] = None, | |
pin_memory: bool = False, | |
): | |
return aten.arange.start_step( | |
0, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory | |
) | |
def arange_start( | |
start: NumberType, | |
end: NumberType, | |
*, | |
dtype: Optional[torch.dtype] = None, | |
layout: torch.layout = torch.strided, | |
device: Optional[torch.device] = None, | |
pin_memory: bool = False, | |
): | |
return aten.arange.start_step( | |
start, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory | |
) | |
def out_dtype_decomp(*args, **kwargs): | |
from torch._higher_order_ops.out_dtype import out_dtype_dense | |
return out_dtype_dense(*args, **kwargs) | |
def multi_margin_loss( | |
input: Tensor, | |
target: Tensor, | |
p: NumberType = 1, | |
margin: NumberType = 1, | |
weight: Optional[Tensor] = None, | |
reduction: int = Reduction.MEAN.value, | |
) -> Tensor: | |
input = torch.atleast_2d(input) | |
target = torch.atleast_1d(target) | |
nframe = input.shape[0] | |
dim = input.shape[1] | |
torch._check(p == 1 or p == 2, lambda: "only p == 1 and p == 2 supported") | |
torch._check( | |
input.ndim == 2 and dim != 0, | |
lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {input.shape}", | |
) | |
torch._check( | |
target.ndim == 1 and target.numel() == nframe, | |
lambda: f"inconsistent target size, expected {nframe} but got {target.shape}", | |
) | |
if weight is not None: | |
weight = torch.atleast_1d(weight) | |
torch._check( | |
weight.ndim == 1 and weight.numel() == dim, # type: ignore[union-attr] | |
lambda: f"inconsistent weight size, expected {dim} but got {weight.shape}", # type: ignore[union-attr] | |
) | |
target = target.unsqueeze(1) | |
u = torch.gather(input, dim=1, index=target) | |
z = margin - u + input | |
z = z.clamp_min(0) | |
z = z if p == 1 else z * z | |
if weight is not None: | |
z = z * weight[target] | |
idx = torch.arange(dim, device=input.device) | |
z = torch.where(idx != target, z, 0) | |
if reduction == Reduction.MEAN.value: | |
return z.mean() | |
elif reduction == Reduction.SUM.value: | |
return z.sum() / z.shape[1] | |
else: | |
return z.mean(dim=1) | |
def multilabel_margin_loss_forward( | |
input: Tensor, | |
target: Tensor, | |
reduction: int, | |
) -> Tuple[Tensor, Tensor]: | |
orig_input_shape = input.shape | |
orig_target_shape = target.shape | |
input = torch.atleast_2d(input) | |
target = torch.atleast_2d(target) | |
dim = input.shape[1] | |
torch._check( | |
len(orig_input_shape) <= 2 and dim != 0, | |
lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {orig_input_shape}", | |
) | |
torch._check( | |
len(orig_target_shape) <= 2 and orig_target_shape == orig_input_shape, | |
lambda: f"inconsistent target size: {orig_target_shape} for input of size: {orig_input_shape}", | |
) | |
# ignores labels after the first -1, detects when -1 is not present | |
idx = torch.arange(dim, device=target.device) | |
is_end = target == -1 | |
end_idx = torch.amin(torch.where(is_end, idx, dim), dim=-1, keepdim=True) | |
# target indices | |
target_mask = idx < end_idx | |
# masks target to be able to use gather, which doesn't allow -1 | |
tidx0 = torch.where(target_mask, target, 0) | |
u = torch.gather(input, dim=-1, index=tidx0) | |
# is_target | |
tidx1 = torch.where(target_mask, target, -1) | |
is_target = torch.any(idx == tidx1.unsqueeze(dim=-1), dim=1) | |
# loss | |
z = 1.0 - u.T.unsqueeze(dim=-1) + input | |
z = z.clamp_min(0) | |
z = z / dim | |
# masks loss | |
z = torch.where(is_target, 0, z) | |
# reduction | |
if reduction == Reduction.MEAN.value: | |
z = z.sum(dim=(0, -1)).mean() | |
elif reduction == Reduction.SUM.value: | |
z = z.sum() | |
else: | |
z = z.sum(dim=(0, -1)) | |
# result | |
is_target = is_target.to(input.dtype).reshape(orig_target_shape) | |
return z, is_target | |
# scaled_dot_product_attention used to be decomposed in pre-autograd, given that | |
# it calls _scaled_dot_product_attention_math and | |
# _scaled_dot_product_attention_math only has a CompositeImplicitAutograd | |
# kernel. As a result it's decomposed into ops with finer granularity. | |
# However recent PRs (#103826 #105131 #115913) added new logic in | |
# scaled_dot_product_attention and now it calls | |
# _scaled_dot_product_flash_attention_for_cpu in export path. This results | |
# in _scaled_dot_product_flash_attention_for_cpu showing up in export result. | |
# This decomposition ensures scaled_dot_product_attention is still decomposed | |
# the same way as before, i.e., going through | |
# _scaled_dot_product_attention_math. Notice that this decomp rule should be | |
# excluded by inductor. | |
def scaled_dot_product_flash_attention_for_cpu( | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
dropout_p: float = 0.0, | |
is_causal: bool = False, | |
*, | |
attn_mask: Optional[Tensor] = None, | |
scale: Optional[float] = None, | |
) -> Tuple[Tensor, Tensor]: | |
dtype = query.dtype | |
torch._check( | |
torch.is_floating_point(query), | |
lambda: f"query must be FP32, FP64, BF16, FP16 but got {query.dtype}", | |
) | |
torch._check( | |
query.dim() == 4 and key.dim() == 4 and value.dim() == 4, | |
lambda: f"q, k, v must be a 4 dimensional tensor, got {query.dim()}, {key.dim()}, {value.dim()}", | |
) | |
torch._check( | |
dropout_p == 0.0, lambda: f"dropout probability must be zero, got {dropout_p}" | |
) | |
torch._check( | |
query.shape[3] == value.shape[3] and key.shape[3] == value.shape[3], | |
lambda: "q, k, v should have the same head size", | |
) | |
output, attn = aten._scaled_dot_product_attention_math.default( | |
query, | |
key, | |
value, | |
attn_mask=attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
dropout_mask=None, | |
scale=scale, | |
) | |
# Why this change? | |
# In pre-dispatch export scaled_dot_product_attention is executed via | |
# * flash_attention. | |
# flash_attention allocates output tensor as (N, L, H, E) | |
# it then transposes that to get (N, H, L, E) which is supposed to be the return | |
# tensor dim for scaled_dot_product_attention | |
# assume x: [N, H, L, E] is the output sdpa | |
# In MHA code, this output is then permuted via (2, 0, 1, 3) to get | |
# (L, N, H, E) dim tensor | |
# x = x.permute(2, 0, 1, 3).contiguous() and the viewed via | |
# x = x.view(L * N, H * E) | |
# During pre autograd dispatch call to contiguous is not traced because | |
# flash_attention output after the x.permute is already contiguous | |
# on which the view is valid | |
# However, during 2nd stage export, post-dispatch, we run _match variant | |
# instead of flash* to get the decomposition. _match variant returns | |
# x: [N, H, L, E] applying x.permute(2, 0, 1, 3) returns | |
# x: [L, N, H, E] and without converting this to contiguous tensor | |
# subsequent view is not valid and the export fails | |
# solution is to maintain the return tensor view from the decomp to be | |
# exactly same as *flash* variant. | |
# flash variants output is contiguous as [N, L, H, E] | |
# _match variant out is contiguous as [N, H, L, E] | |
# out = out.transpose(1, 2).contiguous gets output as contiguous | |
# in [N, L, H, E]. | |
# Subsrequent transpose(1, 2) then returns a view on which | |
# aforementioned code snippet, as showm below, is valid | |
# x = x.permute(2, 0, 1, 3).contiguous() and the viewed via | |
# x = x.view(L * N, H * E) | |
# Really the invariant you want to maintain is: | |
# pre-dispatch op-output and its decomposed representation must | |
# return tensor with same view and dims | |
output = output.transpose(1, 2).contiguous(memory_format=torch.contiguous_format) | |
return (output.transpose(1, 2), attn) | |
def register_inplace(aten_op, outplace_op): | |
def inplace_op(*args, **kwargs): | |
out = outplace_op(*args, **kwargs) | |
return args[0].copy_(out) | |
return inplace_op | |
def baddbmm(self, batch1, batch2, beta=1, alpha=1): | |
if not self.is_floating_point() and not self.is_complex(): | |
beta = int(beta) | |
alpha = int(alpha) | |
result = torch.bmm(batch1, batch2) | |
if not isinstance(alpha, numbers.Number) or alpha != 1: | |
result = result * alpha | |
if beta == 0: | |
return result | |
if not isinstance(beta, numbers.Number) or beta != 1: | |
self = self * beta | |
return self + result | |
def floor_divide(self, other): | |
return torch.div(self, other, rounding_mode="floor") | |
def sym_numel(t): | |
return functools.reduce(operator.mul, t.shape, 1) | |
def sum_default( | |
self: Tensor, | |
*, | |
dtype: Optional[torch.dtype] = None, | |
out: Optional[Tensor] = None, | |
) -> Tensor: | |
if out is None: | |
return aten.sum.dim_IntList(self, [], dtype=dtype) | |
else: | |
return aten.sum.IntList_out(self, [], dtype=dtype, out=out) | |
def squeeze_default(self: Tensor, dim: Optional[int] = None): | |
if dim is None: | |
return aten.squeeze.dims(self, list(range(self.dim()))) | |
else: | |
return aten.squeeze.dims(self, [dim]) | |
def _weight_norm_interface(x, y, dim=0): | |
# https://github.com/pytorch/pytorch/blob/852f8526c52190125446adc9a6ecbcc28fb66182/aten/src/ATen/native/WeightNorm.cpp#L58 | |
keep_dim = tuple(i for i in range(len(x.shape)) if i != dim) | |
norm = x.norm(2, keep_dim, keepdim=True) | |
return x * (y / norm), norm | |
def isin(elements, test_elements, *, assume_unique=False, invert=False): | |
# handle when either elements or test_elements are Scalars (they can't both be) | |
if not isinstance(elements, torch.Tensor): | |
elements = torch.tensor(elements, device=test_elements.device) | |
if not isinstance(test_elements, torch.Tensor): | |
test_elements = torch.tensor(test_elements, device=elements.device) | |
if test_elements.numel() < 10.0 * pow(elements.numel(), 0.145): | |
return isin_default(elements, test_elements, invert=invert) | |
else: | |
return isin_sorting( | |
elements, test_elements, assume_unique=assume_unique, invert=invert | |
) | |
def isin_default(elements, test_elements, *, invert=False): | |
if elements.numel() == 0: | |
return torch.empty_like(elements, dtype=torch.bool) | |
x = elements.view(*elements.shape, *((1,) * test_elements.ndim)) | |
if not invert: | |
cmp = x == test_elements | |
else: | |
cmp = x != test_elements | |
dim = tuple(range(-1, -test_elements.ndim - 1, -1)) | |
return cmp.any(dim=dim) | |
def isin_sorting(elements, test_elements, *, assume_unique=False, invert=False): | |
elements_flat = elements.flatten() | |
test_elements_flat = test_elements.flatten() | |
if assume_unique: | |
# This is the same as the aten implementation. For | |
# assume_unique=False, we cannot use unique() here, so we use a | |
# version with searchsorted instead. | |
all_elements = torch.cat([elements_flat, test_elements_flat]) | |
sorted_elements, sorted_order = torch.sort(all_elements, stable=True) | |
duplicate_mask = sorted_elements[1:] == sorted_elements[:-1] | |
duplicate_mask = torch.constant_pad_nd(duplicate_mask, [0, 1], False) | |
if invert: | |
duplicate_mask = duplicate_mask.logical_not() | |
mask = torch.empty_like(duplicate_mask) | |
mask = mask.index_copy(0, sorted_order, duplicate_mask) | |
return mask[0 : elements.numel()] | |
else: | |
sorted_test_elements, _ = torch.sort(test_elements_flat) | |
idx = torch.searchsorted(sorted_test_elements, elements_flat) | |
test_idx = torch.where(idx < sorted_test_elements.numel(), idx, 0) | |
cmp = sorted_test_elements[test_idx] == elements_flat | |
cmp = cmp.logical_not() if invert else cmp | |
return cmp.reshape(elements.shape) | |
def take(self, index): | |
flattened = self.reshape(-1) | |
return flattened[index] | |
register_inplace(aten.addbmm_, aten.addbmm) | |
register_inplace(aten.addmm_, aten.addmm) | |
register_inplace(aten.addmv_, aten.addmv) | |
register_inplace(aten.baddbmm_, aten.baddbmm) | |
register_inplace(aten.fill_, aten.fill) | |
register_inplace(aten.gelu_, aten.gelu) | |
register_inplace(aten.hardswish_, aten.hardswish) | |
register_inplace(aten.hardtanh_, aten.hardtanh) | |
register_inplace(aten.hardsigmoid_, aten.hardsigmoid) | |
register_inplace(aten.__iand__, aten.__and__) | |
register_inplace(aten.__ilshift__, aten.__lshift__) | |
register_inplace(aten.index_put_, aten.index_put) | |
register_inplace(aten.index_reduce_, aten.index_reduce) | |
register_inplace(aten.__ior__, aten.__or__) | |
register_inplace(aten.__irshift__, aten.__rshift__) | |
register_inplace(aten.__ixor__, aten.__xor__) | |
register_inplace(aten.leaky_relu_, aten.leaky_relu) | |
register_inplace(aten.logit_, aten.logit) | |
register_inplace(aten.relu_, aten.relu) | |
register_inplace(aten.renorm_, aten.renorm) | |
register_inplace(aten.round_, aten.round) | |
register_inplace(aten.scatter_, aten.scatter) | |
register_inplace(aten.scatter_add_, aten.scatter_add) | |
register_inplace(aten.scatter_reduce_, aten.scatter_reduce) | |
register_inplace(aten.silu_, aten.silu) | |