File size: 162,218 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
import functools
import numbers
import operator
import sys
from enum import Enum
from functools import partial, reduce
from itertools import chain, product
from typing import Any, Callable, cast, Iterable, List, Optional, Tuple, Union

import torch
import torch._prims as prims
import torch._prims_common as utils
import torch.nn.functional as F
from torch import sym_float, sym_int, Tensor
from torch._decomp import register_decomposition
from torch._higher_order_ops.out_dtype import out_dtype
from torch._prims_common import IntLike, NumberType, TensorLike, TensorSequenceType
from torch._prims_common.wrappers import (
    _maybe_convert_to_dtype,
    _maybe_resize_out,
    _safe_copy_out,
    out_wrapper,
)
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map

DispatchKey = torch._C.DispatchKey  # type: ignore[attr-defined]

# None of these functions are publicly accessible; get at them
# from torch._decomps
__all__: List[str] = []

aten = torch._ops.ops.aten


class Reduction(Enum):
    NONE = 0
    MEAN = 1
    SUM = 2


# This wraps a decomposition and performs various type promotion logic within it, depending on the strategy provided
# We're currently re-using ELEMENTWISE_TYPE_PROMOTION_KIND, although some of the usages are on non-elementwise ops
# Will need to validate the non-elementwise uses
def type_casts(

    f: Callable,

    type_promotion: utils.ELEMENTWISE_TYPE_PROMOTION_KIND,

    compute_dtype_only: bool = False,

):
    @functools.wraps(f)
    def inner(*args, **kwargs):
        flat_args = [
            x for x in pytree.arg_tree_leaves(*args, **kwargs) if isinstance(x, Tensor)
        ]
        computation_dtype, result_dtype = utils.elementwise_dtypes(
            *flat_args, type_promotion_kind=type_promotion
        )

        # TODO: pretty sure this is not quite right
        def increase_prec(x):
            if isinstance(x, Tensor):
                return x.to(computation_dtype)
            else:
                return x

        def decrease_prec(x):
            if isinstance(x, Tensor):
                return x.to(result_dtype)
            else:
                return x

        r = f(*tree_map(increase_prec, args), **tree_map(increase_prec, kwargs))
        if compute_dtype_only:
            return r
        else:
            return tree_map(decrease_prec, r)

    return inner


compute_only_pw_cast_for_opmath = partial(
    type_casts,
    type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT,
    compute_dtype_only=True,
)
pw_cast_for_opmath = partial(
    type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
pw_cast_for_int_to_real = partial(
    type_casts, type_promotion=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
)


# This expands x until x.dim() == dim. Might be useful as an operator
def _unsqueeze_to_dim(x: Tensor, dim: int) -> Tensor:
    for _ in range(dim - x.dim()):
        x = x.unsqueeze(-1)
    return x


@register_decomposition(aten.tanh_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def tanh_backward(out_grad: Tensor, y: Tensor):
    return out_grad * (1 - y * y).conj_physical()


@register_decomposition(aten.sigmoid_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def sigmoid_backward(out_grad: Tensor, y: Tensor):
    return out_grad * (y * (1 - y)).conj_physical()


@register_decomposition(aten.softplus_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def softplus_backward(out_grad: Tensor, x: Tensor, beta: float, threshold: float):
    z = (x * beta).exp()
    return torch.where((x * beta) > threshold, out_grad, out_grad * z / (z + 1.0))


@register_decomposition(aten.elu_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def elu_backward(

    grad_output: Tensor,

    alpha: float,

    scale: float,

    input_scale: float,

    is_result: bool,

    self_or_result: Tensor,

):
    negcoef = alpha * scale
    poscoef = scale
    negiptcoef = input_scale
    if is_result:
        return torch.where(
            self_or_result <= 0,
            grad_output * negiptcoef * (self_or_result + negcoef),
            grad_output * poscoef,
        )
    else:
        return torch.where(
            self_or_result <= 0,
            grad_output * negiptcoef * negcoef * torch.exp(self_or_result * negiptcoef),
            grad_output * poscoef,
        )


@register_decomposition([aten.fill.Scalar])
def fill_scalar(self, value):
    return torch.full_like(self, value)


@register_decomposition([aten.fill.Tensor])
def fill_tensor(self, value: Tensor):
    torch._check(
        value.dim() == 0,
        lambda: f"fill only supports 0-dimension value tensor but got tensor with {value.dim()} dimensions",
    )
    return aten.copy(self, value)


@register_decomposition(aten.hardsigmoid)
@out_wrapper()
@pw_cast_for_opmath
def hardsigmoid(self: Tensor) -> Tensor:
    return torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6


@register_decomposition(aten.hardsigmoid_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def hardsigmoid_backward(grad_output: Tensor, self: Tensor):
    return torch.where(
        (self > -3.0) & (self < 3.0),
        grad_output * (1.0 / 6.0),
        0.0,
    )


@register_decomposition(aten.hardtanh_backward)
@out_wrapper("grad_input")
def hardtanh_backward(

    grad_output: Tensor, self: Tensor, min_val: float, max_val: float

):
    return torch.where((self <= min_val) | (self >= max_val), 0.0, grad_output)


@register_decomposition(aten.hardswish)
@out_wrapper()
@pw_cast_for_opmath
def hardswish(self: Tensor) -> Tensor:
    return self * torch.clamp(torch.clamp(self + 3, min=0), max=6) / 6


@register_decomposition(aten.hardswish_backward)
@out_wrapper()
@pw_cast_for_opmath
def hardswish_backward(grad_output: Tensor, self: Tensor) -> Tensor:
    return torch.where(
        self < -3,
        0.0,
        torch.where(self <= 3, grad_output * ((self / 3) + 0.5), grad_output),
    )


@register_decomposition(aten.threshold_backward)
@out_wrapper("grad_input")
def threshold_backward(grad_output: Tensor, self: Tensor, threshold: float):
    return torch.where(self <= threshold, 0, grad_output)


@register_decomposition(aten.leaky_relu_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def leaky_relu_backward(

    grad_output: Tensor, self: Tensor, negative_slope: float, self_is_result: bool

):
    return torch.where(self > 0, grad_output, grad_output * negative_slope)


@register_decomposition(aten.gelu_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def gelu_backward(grad: Tensor, self: Tensor, approximate: str = "none"):
    M_SQRT2 = 1.41421356237309504880
    M_SQRT1_2 = 0.70710678118654752440
    M_2_SQRTPI = 1.12837916709551257390
    if approximate == "tanh":
        kBeta = M_SQRT2 * M_2_SQRTPI * 0.5
        kKappa = 0.044715
        x_sq = self * self
        x_cube = x_sq * self
        inner = kBeta * (self + kKappa * x_cube)
        tanh_inner = torch.tanh(inner)

        left = 0.5 * self
        right = 1 + tanh_inner

        left_derivative = 0.5 * right

        tanh_derivative = 1 - tanh_inner * tanh_inner
        inner_derivative = kBeta * (1 + 3 * kKappa * x_sq)
        right_derivative = left * tanh_derivative * inner_derivative

        return grad * (left_derivative + right_derivative)
    else:
        kAlpha = M_SQRT1_2
        kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5
        cdf = 0.5 * (1 + torch.erf(self * kAlpha))
        pdf = kBeta * torch.exp(self * self * -0.5)
        return grad * (cdf + self * pdf)


@register_decomposition(aten.mish_backward)
@pw_cast_for_opmath
def mish_backward(grad_output: Tensor, input: Tensor):
    input_tanh_softplus = torch.tanh(F.softplus(input))
    input_sigmoid = torch.sigmoid(input)
    out = input * input_sigmoid * (1 - input_tanh_softplus * input_tanh_softplus)
    return grad_output * (input_tanh_softplus + out)


@register_decomposition(aten.silu)
@out_wrapper()
@pw_cast_for_opmath
def silu(self: Tensor) -> Tensor:
    return self * torch.sigmoid(self)


@register_decomposition(aten.silu_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def silu_backward(grad_output: Tensor, self: Tensor) -> Tensor:
    sigmoid = 1 / (1 + torch.exp(-self))
    return grad_output * sigmoid * (1 + self * (1 - sigmoid))


@register_decomposition(aten._prelu_kernel)
def _prelu_kernel(self: Tensor, weight: Tensor) -> Tensor:
    return torch.where(self > 0, self, weight * self)


@register_decomposition(aten._prelu_kernel_backward)
def _prelu_kernel_backward(

    grad_output: Tensor,

    self: Tensor,

    weight: Tensor,

) -> Tuple[Tensor, Tensor]:
    input_grad = torch.where(self > 0, grad_output, weight * grad_output)
    weight_grad = torch.where(self > 0, 0.0, self * grad_output)
    return (input_grad, weight_grad)


@register_decomposition(aten.rrelu_with_noise)
@aten.rrelu_with_noise.default.py_impl(DispatchKey.AutogradCUDA)
@out_wrapper()
@pw_cast_for_opmath
def rrelu_with_noise(

    self: Tensor,

    noise: Tensor,

    lower: float = 0.125,

    upper: float = 0.3333333333333333,

    training: bool = False,

    generator: Optional[torch.Generator] = None,

) -> Tensor:
    assert generator is None
    if training:
        not_positive = self <= 0
        r = aten.uniform(self, lower, upper)
        output = torch.where(not_positive, self * r, self)
        noise.copy_(torch.where(not_positive, r, 1))
        return output
    else:
        negative_slope = (lower + upper) / 2
        return aten.leaky_relu(self, negative_slope)


@register_decomposition(aten.rrelu_with_noise_)
@aten.rrelu_with_noise_.default.py_impl(DispatchKey.AutogradCUDA)
@pw_cast_for_opmath
def rrelu_with_noise_(

    self: Tensor,

    noise: Tensor,

    lower: float,

    upper: float,

    training: bool = False,

    generator: Optional[torch.Generator] = None,

) -> Tensor:
    return self.copy_(rrelu_with_noise(self, noise, lower, upper, training, generator))


@register_decomposition(aten.rrelu_with_noise_backward)
@out_wrapper()
@pw_cast_for_opmath
def rrelu_with_noise_backward(

    grad_output: Tensor,

    self: Tensor,

    noise: Tensor,

    lower: float,

    upper: float,

    training: bool,

    self_is_result: bool,

) -> Tensor:
    if training and upper - lower > 1e-6:
        return grad_output.mul(noise)
    else:
        negative_slope = (lower + upper) / 2
        return aten.leaky_relu_backward(
            grad_output, self, negative_slope, self_is_result
        )


@register_decomposition(aten.log_sigmoid_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def log_sigmoid_backward(grad_output: Tensor, self: Tensor, buffer: Tensor) -> Tensor:
    in_negative = self < 0
    max_deriv = torch.where(in_negative, 1, 0)
    sign = torch.where(in_negative, 1, -1)
    z = torch.exp(-torch.abs(self))
    return grad_output * (max_deriv - sign * (z / (1 + z)))
    # CPU has a special formula that uses buffer, but disabled for convenience sake
    # return (max_deriv - sign * (buffer / (1 + buffer))) * grad_output


def apply_loss_reduction(loss: Tensor, reduction: int):
    if reduction == Reduction.MEAN.value:
        return torch.mean(loss)
    elif reduction == Reduction.SUM.value:
        return torch.sum(loss)
    else:
        return loss


def to_real_dtype(dtype: torch.dtype):
    if dtype == torch.complex32:
        return torch.float16
    elif dtype == torch.complex64:
        return torch.float32
    elif dtype == torch.complex128:
        return torch.float64


# TODO: None of these loss castings are quite correct, see
# https://github.com/pytorch/pytorch/issues/76870. Also, the ATen kernels
# perform the pointwise portion in opmath, but don't maintain it between the
# pointwise portion and the reduction


@register_decomposition(aten.mse_loss)
@out_wrapper()
@pw_cast_for_opmath
def mse_loss(

    self: Tensor, target: Tensor, reduction: int = Reduction.MEAN.value

) -> Tensor:
    loss = (self - target) ** 2
    return apply_loss_reduction(loss, reduction)


@register_decomposition(aten.mse_loss_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def mse_loss_backward(

    grad_output: Tensor, input: Tensor, target: Tensor, reduction: int

):
    norm = 2.0 / input.numel() if reduction == Reduction.MEAN.value else 2.0
    return norm * (input - target) * grad_output


@register_decomposition(aten.smooth_l1_loss)
@out_wrapper()
@pw_cast_for_opmath
def smooth_l1_loss(

    self: Tensor,

    target: Tensor,

    reduction: int = Reduction.MEAN.value,

    beta: float = 1.0,

):
    loss = (self - target).abs()
    loss = torch.where(loss < beta, 0.5 * loss**2 / beta, loss - 0.5 * beta)
    return apply_loss_reduction(loss, reduction)


@register_decomposition(aten.smooth_l1_loss_backward.default)
@pw_cast_for_opmath
def smooth_l1_loss_backward(

    grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, beta: float

):
    norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0
    x = self - target
    abs_x = torch.abs(x)
    norm_grad = norm * grad_output
    return torch.where(
        abs_x < beta,
        norm_grad * x / beta,
        norm_grad * torch.sign(x),
    )


@register_decomposition(aten.smooth_l1_loss_backward.grad_input)
@pw_cast_for_opmath
def smooth_l1_loss_backward_out(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    reduction: int,

    beta: float,

    grad_input: Tensor,

):
    result = smooth_l1_loss_backward(grad_output, self, target, reduction, beta)
    _maybe_resize_out(grad_input, result.shape)
    return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True)


@register_decomposition(aten.huber_loss_backward.default)
@pw_cast_for_opmath
def huber_loss_backward(

    grad_output: Tensor, self: Tensor, target: Tensor, reduction: int, delta: float

):
    norm = 1.0 / self.numel() if reduction == Reduction.MEAN.value else 1.0
    x = self - target
    return torch.where(
        x < -delta,
        -norm * grad_output * delta,
        torch.where(x > delta, norm * grad_output * delta, norm * x * grad_output),
    )


# We cannot use @out_wrapper() here, because the output tensor is not named 'out', it's 'grad_input'
@register_decomposition(aten.huber_loss_backward.out)
@pw_cast_for_opmath
def huber_loss_backward_out(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    reduction: int,

    delta: float,

    grad_input: Tensor,

):
    result = huber_loss_backward(grad_output, self, target, reduction, delta)
    _maybe_resize_out(grad_input, result.shape)
    return _safe_copy_out(copy_from=result, copy_to=grad_input, exact_dtype=True)


def _nll_loss_backward(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

    total_weight: Tensor,

) -> Tensor:
    channel_dim = 0 if self.dim() < 2 else 1
    if reduction == Reduction.MEAN.value:
        grad_output = grad_output / total_weight

    target = target.unsqueeze(channel_dim)
    safe_target = torch.where(target != ignore_index, target, 0)
    grad_input = torch.zeros_like(self)
    grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0)

    if grad_input.dim() > grad_output.dim() > 0:
        grad_output = grad_output.unsqueeze(channel_dim)

    if weight is not None:
        new_shape = [1 for _ in range(self.dim())]
        new_shape[channel_dim] = weight.shape[0]
        weight = weight.reshape(new_shape)
        grad_output = grad_output * weight

    grad_output = torch.where(target != ignore_index, grad_output, 0)

    return grad_input * grad_output


@register_decomposition(aten.glu_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def glu_backward(grad_output: Tensor, self: Tensor, dim: int) -> Tensor:
    assert self.dim() > 0, "glu does not support 0-dimensional tensors"
    wrap_dim = utils.canonicalize_dim(self.dim(), dim)
    nIn = self.size(wrap_dim)
    assert (
        nIn % 2 == 0
    ), f"Halving dimension must be even, but dimension {wrap_dim} is size {nIn}"
    inputSize = nIn // 2
    firstHalf = self.narrow(wrap_dim, 0, inputSize)
    secondHalf = self.narrow(wrap_dim, inputSize, inputSize)
    gradInputFirstHalf = torch.sigmoid(secondHalf)
    gradInputSecondHalf = (
        (1.0 - gradInputFirstHalf) * gradInputFirstHalf * firstHalf * grad_output
    )
    gradInputFirstHalf = gradInputFirstHalf * grad_output
    return torch.cat([gradInputFirstHalf, gradInputSecondHalf], dim=wrap_dim)


@register_decomposition(aten.nll_loss_backward)
@out_wrapper("grad_input")
def nll_loss_backward(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

    total_weight: Tensor,

) -> Tensor:
    assert 0 <= self.dim() <= 2, "input tensor should be 1D or 2D"
    assert (
        target.dim() <= 1
    ), "0D or 1D target tensor expected, multi-target not supported"

    no_batch_dim = self.dim() == 1 and target.dim() == 0
    assert no_batch_dim or (
        self.shape[0] == target.shape[0]
    ), f"size mismatch (got input: {self.shape}, target: {target.shape})"
    assert total_weight.numel() == 1, (
        "expected total_weight to be a single element tensor, got: ",
        f"{total_weight.shape} ({total_weight.numel()} elements)",
    )

    assert (
        weight is None or weight.numel() == self.shape[-1]
    ), "weight tensor should be defined either for all or no classes"

    if reduction == Reduction.NONE.value and self.dim() == 2:
        assert grad_output.dim() == 1 and grad_output.shape[0] == self.shape[0], (
            f"Expected a tensor of dimension 1 and tensor.size[0] == {self.shape[0]} but "
            f"got: dimension {grad_output.dim()} and tensor.size[0] == {grad_output.shape[0]}"
        )
    else:
        assert (
            grad_output.dim() <= 1 and grad_output.numel() == 1
        ), f"Expected a single element grad_output tensor, but got: {grad_output.shape}"

    return _nll_loss_backward(
        grad_output, self, target, weight, reduction, ignore_index, total_weight
    )


@register_decomposition(aten.nll_loss2d_backward)
@out_wrapper("grad_input")
def nll_loss2d_backward(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

    total_weight: Tensor,

) -> Tensor:
    assert (
        self.dim() == 4
    ), f"only batches of spatial inputs supported (4D tensors), but got input of dimension: {self.dim()}"

    assert (
        target.dim() == 3
    ), f"only batches of spatial targets supported (3D tensors) but got targets of dimension: {target.dim()}"

    assert (
        self.shape[0] == target.shape[0]
        and self.shape[2] == target.shape[1]
        and self.shape[3] == target.shape[2]
    ), f"size mismatch (got input: {self.shape}, target: {target.shape}"

    assert total_weight.numel() == 1, (
        "expected total_weight to be a single element tensor, "
        f"got: {total_weight.shape} ( {total_weight.numel()}, elements)"
    )

    return _nll_loss_backward(
        grad_output, self, target, weight, reduction, ignore_index, total_weight
    )


@register_decomposition(aten.binary_cross_entropy)
@out_wrapper()
@pw_cast_for_opmath
def binary_cross_entropy(

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    reduction: int = Reduction.MEAN.value,

) -> Tensor:
    # We cannot currently model this without introducing data-dependent control flow
    # TORCH_CHECK(
    #     (input_val >= 0) && (input_val <= 1),
    #     "all elements of input should be between 0 and 1"
    # )
    loss = (target - 1) * torch.maximum(
        torch.log1p(-self), self.new_full((), -100)
    ) - target * torch.maximum(torch.log(self), self.new_full((), -100))
    if weight is not None:
        loss = loss * weight
    return apply_loss_reduction(loss, reduction)


@register_decomposition(aten.binary_cross_entropy_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def binary_cross_entropy_backward(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor] = None,

    reduction: int = Reduction.MEAN.value,

) -> Tensor:
    EPSILON = 1e-12
    result = grad_output * (self - target) / torch.clamp(self * (1 - self), min=EPSILON)
    if weight is not None:
        result = result * weight
    if reduction == Reduction.MEAN.value:
        result = result / self.numel()
    return result


@register_decomposition(aten.soft_margin_loss)
@out_wrapper()
@pw_cast_for_opmath
def soft_margin_loss(

    input: Tensor,

    target: Tensor,

    reduction: int = Reduction.MEAN.value,

) -> Tensor:
    loss = torch.log1p(torch.exp(-input * target))
    return apply_loss_reduction(loss, reduction)


@register_decomposition(aten.soft_margin_loss_backward)
@out_wrapper("grad_input")
@pw_cast_for_opmath
def soft_margin_loss_backward(

    grad_output: Tensor,

    self: Tensor,

    target: Tensor,

    reduction: int = Reduction.MEAN.value,

) -> Tensor:
    grad_input = target * grad_output * (torch.sigmoid(target * self) - 1)
    if reduction == Reduction.MEAN.value:
        grad_input = grad_input / self.numel()
    return grad_input


@register_decomposition(aten.dist)
@out_wrapper()
def dist(input: Tensor, other: Tensor, p: float = 2):
    return aten.norm(input - other, p=p)


@register_decomposition(aten._euclidean_dist)
@out_wrapper()
def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor:
    x1_norm = x1.pow(2).sum(-1, True)
    x1_pad = torch.ones_like(x1_norm, memory_format=torch.contiguous_format)
    x2_norm = x2.pow(2).sum(-1, True)
    x2_pad = torch.ones_like(x2_norm, memory_format=torch.contiguous_format)
    x1_ = torch.cat([x1.mul(-2), x1_norm, x1_pad], -1)
    x2_ = torch.cat([x2, x2_pad, x2_norm], -1)
    result = x1_.matmul(x2_.mT)
    return result.clamp_min(0).sqrt()


@register_decomposition(aten.slice_backward)
@out_wrapper()
def slice_backward(

    grad_output: Tensor,

    input_sizes: List[int],

    dim: int,

    start: int,

    end: int,

    step: int,

):
    grad_input = grad_output.new_zeros(input_sizes)
    return torch.slice_scatter(grad_input, grad_output, dim, start, end, step)


@register_decomposition(aten.slice.Tensor)
def slice_forward(

    # Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1

    self: Tensor,

    dim: int = 0,

    start: Optional[int] = None,

    end: Optional[int] = None,

    step: int = 1,

):
    ndim = self.dim()
    if ndim == 0:
        raise RuntimeError("slice() cannot be applied to a 0-dim tensor.")
    dim = utils.canonicalize_dim(self.dim(), dim)
    sizes = list(self.size())
    strides = list(self.stride())

    if step <= 0:
        raise RuntimeError("slice step must be positive")

    start_val = start if start is not None else 0
    end_val = end if end is not None else sys.maxsize  # 2^63 – 1

    if start_val < 0:
        start_val += sizes[dim]

    if end_val < 0:
        end_val += sizes[dim]

    if start_val < 0:
        start_val = 0
    elif start_val > sizes[dim]:
        start_val = sizes[dim]

    if end_val < start_val:
        end_val = start_val
    elif end_val > sizes[dim]:
        end_val = sizes[dim]

    storage_offset = self.storage_offset() + start_val * strides[dim]
    len = end_val - start_val
    sizes[dim] = (len + step - 1) // step
    strides[dim] *= step

    if self.is_quantized:
        raise NotImplementedError(
            "Slice decomposition for quantized tensors aren't implemented"
        )
    else:
        return self.as_strided(sizes, strides, storage_offset)


@register_decomposition(aten.select_backward)
@out_wrapper()
def select_backward(grad_output: Tensor, input_sizes: List[int], dim: int, index: int):
    grad_input = grad_output.new_zeros(input_sizes)
    return torch.select_scatter(grad_input, grad_output, dim, index)


@register_decomposition(aten.diagonal_backward)
@out_wrapper()
def diagonal_backward(

    grad_output: Tensor, input_sizes: List[int], offset: int, dim1: int, dim2: int

):
    grad_input = grad_output.new_zeros(input_sizes)
    return torch.diagonal_scatter(grad_input, grad_output, offset, dim1, dim2)


def _cast_grad_to_input_dtype(

    grad_output: Tensor, grad_input: Tensor, input_dtype: torch.dtype

):
    if grad_output.dtype != input_dtype:
        grad_input = grad_input.to(input_dtype)
    return grad_input


@register_decomposition(aten._softmax_backward_data)
@out_wrapper("grad_input")
@compute_only_pw_cast_for_opmath
def _softmax_backward_data(

    grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype

):
    new_grad_output = grad_output * output
    grad_input = new_grad_output - output * torch.sum(
        new_grad_output, dim=dim, keepdim=True
    )

    # CPU kernel doesn't respect input_dtype, but following check doesn't work for meta tensor
    # if grad_output.device == torch.device("cpu"):
    #     return grad_input.contiguous()

    return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype).contiguous()


@register_decomposition(aten._log_softmax_backward_data)
@out_wrapper()
@compute_only_pw_cast_for_opmath
def _log_softmax_backward_data(

    grad_output: Tensor, output: Tensor, dim: int, input_dtype: torch.dtype

):
    grad_input = grad_output - torch.exp(output) * torch.sum(
        grad_output, dim=dim, keepdim=True
    )
    return _cast_grad_to_input_dtype(grad_output, grad_input, input_dtype)


def _im2col_col2im_indices_along_dim(

    input_d, kernel_d, dilation_d, padding_d, stride_d, device

):
    """Utility function to implement im2col and col2im"""
    blocks_d = input_d + padding_d * 2 - dilation_d * (kernel_d - 1)

    arange_kw = partial(torch.arange, dtype=torch.int64, device=device)

    # Stride kernel over input and find starting indices along dim d
    blocks_d_indices = arange_kw(0, blocks_d, stride_d).unsqueeze(0)

    # Apply dilation on kernel and find its indices along dim d
    kernel_grid = arange_kw(0, kernel_d * dilation_d, dilation_d).unsqueeze(-1)

    # Broadcast and add kernel starting positions (indices) with
    # kernel_grid along dim d, to get block indices along dim d
    return blocks_d_indices + kernel_grid


@register_decomposition(aten.im2col)
@out_wrapper()
def im2col(

    input: Tensor,

    kernel_size: List[int],

    dilation: List[int],

    padding: List[int],

    stride: List[int],

) -> Tensor:
    torch._check(len(kernel_size) == 2, lambda: "im2col(): only 2D kernel supported")
    torch._check(len(dilation) == 2, lambda: "im2col(): only 2D dilation supported")
    torch._check(len(padding) == 2, lambda: "im2col(): only 2D padding supported")
    torch._check(len(stride) == 2, lambda: "im2col(): only 2D stride supported")

    def check_positive(param, param_name, strict=True):
        cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param)
        torch._check(
            cond, lambda: "{param_name} should be greater {'than' zero, but got {param}"
        )

    check_positive(kernel_size, "kernel_size")
    check_positive(dilation, "dilation")
    check_positive(dilation, "padding", strict=False)
    check_positive(stride, "stride")

    shape = input.shape
    ndim = len(shape)
    torch._check(
        ndim in (3, 4) and all(d != 0 for d in shape[-3:]),
        lambda: "Expected 3D or 4D (batch mode) tensor for input with possible 0 batch size "
        f"and non-zero dimensions, but got: {tuple(shape)}",
    )
    output_size = tuple(
        1 + (out + 2 * pad - dil * (ker - 1) - 1) // st
        for out, pad, dil, ker, st in zip(
            shape[-2:], padding, dilation, kernel_size, stride
        )
    )
    torch._check(
        all(c > 0 for c in output_size),
        lambda: f"Given an input with spacial size {tuple(shape[-2:])}, "
        f"kernel_size={kernel_size}, dilation={dilation}, "
        f"padding={padding}, stride={stride}, "
        "the calculated shape of the array of sliding blocks "
        f"is {output_size}, but its components must be at least one.",
    )
    batched_input = ndim == 4
    if not batched_input:
        input = input.unsqueeze(0)

    batch_dim, channel_dim, input_h, input_w = input.shape

    stride_h, stride_w = stride
    padding_h, padding_w = padding
    dilation_h, dilation_w = dilation
    kernel_h, kernel_w = kernel_size

    blocks_row_indices = _im2col_col2im_indices_along_dim(
        input_h, kernel_h, dilation_h, padding_h, stride_h, input.device
    )
    blocks_col_indices = _im2col_col2im_indices_along_dim(
        input_w, kernel_w, dilation_w, padding_w, stride_w, input.device
    )

    # Note that F.pad takes (padding_left, padding_right, padding_top, padding_bottom)
    # ugh
    padded_input = F.pad(input, (padding_w, padding_w, padding_h, padding_h))

    blocks_row_indices = blocks_row_indices.unsqueeze(-1).unsqueeze(-1)
    output = padded_input[:, :, blocks_row_indices, blocks_col_indices]
    output = output.permute(0, 1, 2, 4, 3, 5)
    num_blocks_row = blocks_row_indices.size(1)
    num_blocks_col = blocks_col_indices.size(1)
    output = output.reshape(
        batch_dim, channel_dim * kernel_h * kernel_w, num_blocks_row * num_blocks_col
    )

    if not batched_input:
        output = output.squeeze(0)
    return output


@register_decomposition(aten.col2im)
@out_wrapper()
@pw_cast_for_opmath
def col2im(

    input: Tensor,

    output_size: List[int],

    kernel_size: List[int],

    dilation: List[int],

    padding: List[int],

    stride: List[int],

) -> Tensor:
    torch._check(len(output_size) == 2, lambda: "only 2D output_size supported")
    torch._check(len(kernel_size) == 2, lambda: "only 2D kernel supported")
    torch._check(len(dilation) == 2, lambda: "only 2D dilation supported")
    torch._check(len(padding) == 2, lambda: "only 2D padding supported")
    torch._check(len(stride) == 2, lambda: "only 2D stride supported")

    def check_positive(param, param_name, strict=True):
        cond = all(p > 0 for p in param) if strict else all(p >= 0 for p in param)
        torch._check(
            cond, lambda: "{param_name} should be greater than zero, but got {param}"
        )

    check_positive(kernel_size, "kernel_size")
    check_positive(dilation, "dilation")
    check_positive(padding, "padding", strict=False)
    check_positive(stride, "stride")
    check_positive(output_size, "output_size")

    shape = input.shape
    ndim = len(shape)
    torch._check(
        ndim in (2, 3) and all(d != 0 for d in shape[-2:]),
        lambda: "Expected 2D or 3D (batch mode) tensor for input with possible 0 batch size "
        f"and non-zero dimensions, but got: {tuple(shape)}",
    )
    prod_kernel_size = kernel_size[0] * kernel_size[1]
    torch._check(
        shape[-2] % prod_kernel_size == 0,
        lambda: "Expected size of input's first non-batch dimension to be divisible by the "
        f"product of kernel_size, but got input.shape[-2] = {shape[-2]} and "
        f"kernel_size={kernel_size}",
    )
    col = [
        1 + (out + 2 * pad - dil * (ker - 1) - 1) // st
        for out, pad, dil, ker, st in zip(
            output_size, padding, dilation, kernel_size, stride
        )
    ]
    L = col[0] * col[1]
    torch._check(
        shape[-1] == L,
        lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, "
        f"dilation={dilation}, padding={padding}, stride={stride}, "
        f"expected input.size(-1) to be {L} but got {shape[-1]}.",
    )
    torch._check(
        L > 0,
        lambda: f"Given output_size={output_size}, kernel_size={kernel_size}, "
        f"dilation={dilation}, padding={padding}, stride={stride}, "
        f"expected input.size(-1) to be {L} but got {shape[-1]}.",
    )
    batched_input = ndim == 3
    if not batched_input:
        input = input.unsqueeze(0)

    shape = input.shape

    out_h, out_w = output_size
    stride_h, stride_w = stride
    padding_h, padding_w = padding
    dilation_h, dilation_w = dilation
    kernel_h, kernel_w = kernel_size

    # col2im is defined as the backwards of im2col, so we differentiate its decomposition by hand
    input = input.reshape([shape[0], shape[1] // prod_kernel_size] + kernel_size + col)
    input = input.permute(0, 1, 2, 4, 3, 5)

    indices_row = _im2col_col2im_indices_along_dim(
        out_h, kernel_h, dilation_h, padding_h, stride_h, input.device
    )
    indices_row = _unsqueeze_to_dim(indices_row, 4)
    indices_col = _im2col_col2im_indices_along_dim(
        out_w, kernel_w, dilation_w, padding_w, stride_w, input.device
    )

    output_padded_size = [o + 2 * p for o, p in zip(output_size, padding)]
    output = input.new_zeros(
        [shape[0], shape[1] // prod(kernel_size)] + output_padded_size
    )
    idx = (None, None, indices_row, indices_col)
    output = aten._unsafe_index_put(output, idx, input, accumulate=True)
    output = F.pad(output, (-padding_w, -padding_w, -padding_h, -padding_h))

    if not batched_input:
        output = output.squeeze(0)
    return output


@register_decomposition(aten.native_dropout_backward)
@out_wrapper()
def native_dropout_backward(grad_output: Tensor, mask: Tensor, scale: float):
    # According to the CUDA kernel implementation we should have this test;
    # but it seems to fail tests!
    # torch._check(mask.dtype == torch.bool, lambda: f"Mask should be Bool Scalar Type {mask.dtype}")

    # Mimicking CUDA kernel's behavior for output stride: output follow input's memory format
    # This different from TensorIterator's behavior
    r = (grad_output * (mask.type_as(grad_output) * scale)).clone(
        memory_format=utils.suggest_memory_format(grad_output)
    )
    return r


@register_decomposition(aten.unfold_backward)
@out_wrapper()
def unfold_backward(

    grad: Tensor, input_size: List[int], dimension: int, size: int, step: int

) -> Tensor:
    if len(input_size) == 0:
        return torch.squeeze_copy(grad, 0)
    dim = utils.canonicalize_dim(len(input_size), dimension)
    idx = torch.arange(input_size[dim], device=grad.device, dtype=torch.int32)
    idx = idx.unfold(0, size, step).flatten()
    grad = grad.movedim(-1, dim + 1).flatten(dim, dim + 1)
    # nb. At the moment this generates two kernels in triton
    # It could potentially be fused into one call to scatter_reduce,
    # in the case step <= size provided scatter_reduce generates 1 kernel
    grad_input = grad.new_zeros(input_size)
    index = (None,) * dim + (idx,)
    return aten._unsafe_index_put(grad_input, index, grad, accumulate=True).contiguous()


@register_decomposition(aten.logit_backward.default)
@pw_cast_for_opmath
def logit_backward(

    grad_output: Tensor, self: Tensor, eps: Optional[float] = None

) -> Tensor:
    if eps is not None:
        lo = eps
        hi = 1.0 - lo
        return torch.where(
            torch.logical_and(self >= lo, self <= hi),
            grad_output / (self * (1.0 - self)),
            0.0,
        )
    else:
        return torch.where(
            torch.logical_and(self >= 0.0, self <= 1.0),
            grad_output / (self * (1.0 - self)),
            self.new_full((), float("nan")),
        )


@register_decomposition(aten.dropout)
@aten.dropout.default.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.dropout.default.py_impl(DispatchKey.Autograd)
def dropout(input: Tensor, p: float, train: Optional[bool]):
    if train and p != 0:
        return aten.native_dropout(input, p, train)[0]
    else:
        return input.clone()


@register_decomposition(aten.native_dropout)
@out_wrapper("out0", "out1")
def native_dropout(input: Tensor, p: float, train: Optional[bool]):
    if train and p != 0:
        if p == 1:
            return (torch.zeros_like(input), torch.zeros_like(input, dtype=torch.bool))
        if not input.dtype.is_floating_point:
            raise RuntimeError(
                "result type Float can't be cast to the desired output type Long"
            )
        bool_mask = torch.rand_like(input) > p
        res = bool_mask * input * float(1.0 / (1.0 - p))
        return (res, bool_mask)
    else:
        return (input, torch.ones_like(input, dtype=torch.bool))


@register_decomposition(aten._softmax)
@out_wrapper()
def _softmax(x: Tensor, dim: int, half_to_float: bool):
    # eager softmax returns a contiguous tensor. Ensure that decomp also returns
    # a contiguous tensor.
    x = x.contiguous()
    if half_to_float:
        assert x.dtype == torch.half
    computation_dtype, result_dtype = utils.elementwise_dtypes(
        x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
    )
    x = x.to(computation_dtype)
    if x.numel() == 0:
        unnormalized = torch.exp(x)
    else:
        x_max = torch.amax(x, dim, keepdim=True)
        unnormalized = torch.exp(x - x_max)
    result = unnormalized / torch.sum(unnormalized, dim, keepdim=True)
    if not half_to_float:
        result = result.to(result_dtype)
    return result


@register_decomposition(aten._log_softmax)
@out_wrapper()
def _log_softmax(x: Tensor, dim: int, half_to_float: bool):
    # eager log_softmax returns a contiguous tensor. Ensure that decomp also
    # returns a contiguous tensor.
    x = x.contiguous()
    if half_to_float:
        assert x.dtype == torch.half
    computation_dtype, result_dtype = utils.elementwise_dtypes(
        x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
    )
    x = x.to(computation_dtype)
    if x.numel() == 0:
        shifted = x
    else:
        x_max = torch.amax(x, dim, keepdim=True)
        shifted = x - x_max
    shifted_logsumexp = torch.log(torch.sum(torch.exp(shifted), dim, keepdim=True))
    result = shifted - shifted_logsumexp
    if not half_to_float:
        result = result.to(result_dtype)
    return result


@register_decomposition(aten.embedding)
@out_wrapper()
def embedding(

    weight: Tensor,

    indices: Tensor,

    padding_idx: int = -1,

    scale_grad_by_freq: bool = False,

    sparse: bool = False,

) -> Tensor:
    assert weight.dim() == 2, "'weight' must be 2-D"
    # Nb. scale_grad_by_freq is not used in the forward
    if indices.ndim <= 1:
        # We need this one as weight[indices] calls item() in these cases
        out = weight.index_select(0, indices)
        if indices.ndim == 0:
            out = out.squeeze(0)
        return out
    else:
        return weight[indices]


@register_decomposition(aten.embedding_dense_backward)
@out_wrapper()
def embedding_dense_backward(

    grad_output: Tensor,

    indices: Tensor,

    num_weights: int,

    padding_idx: int,

    scale_grad_by_freq: bool,

):
    computation_dtype, result_dtype = utils.elementwise_dtypes(
        grad_output, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
    )
    grad_output = grad_output.to(computation_dtype)
    indices = _maybe_convert_to_dtype(indices, torch.long)  # type: ignore[assignment]
    if scale_grad_by_freq:
        counts = indices.new_zeros((num_weights,))
        ones = torch.ones_like(indices)
        counts = aten._unsafe_index_put(counts, [indices], ones, accumulate=True)
        grad_weights_scale = counts[indices]
        grad_output = grad_output / grad_weights_scale.unsqueeze(-1)

    mask = _unsqueeze_to_dim(indices == padding_idx, grad_output.ndim)
    grad = grad_output.masked_fill(mask, 0)
    grad_weight = grad_output.new_zeros(
        (num_weights,) + grad_output.shape[indices.ndim :]
    )
    return aten._unsafe_index_put(grad_weight, [indices], grad, accumulate=True).to(
        result_dtype
    )


def prod(x: List[int]):
    r = 1
    for i in x:
        r *= i
    return r


def _pad_chunk(

    tensors: List[Tensor],

    dim: int,

    num_chunks: int,

) -> List[Tensor]:
    padded_tensors = []
    for tensor in tensors:
        tensor_size = tensor.size()
        pad_along_dim = (tensor_size[dim] + num_chunks - 1) // num_chunks * num_chunks
        if pad_along_dim != tensor_size[dim]:
            # Use aten.constant_pad_nd instead of copy_ for functionalization
            pad = [0] * 2 * (tensor.ndim - dim - 1) + [
                0,
                pad_along_dim - tensor_size[dim],
            ]
            tensor = aten.constant_pad_nd(tensor, pad, 0)
        view_size = tensor_size[:dim] + torch.Size([num_chunks, -1])
        padded_tensors.append(tensor.view(view_size))
    return padded_tensors


def have_same_ndims(tensors: List[Tensor]):
    ndim = tensors[0].ndim
    for tensor in tensors:
        if tensor.ndim != ndim:
            return False
    return True


def leading_dimension_matches(tensors: List[Tensor], dim: int):
    leading_dim_sizes = tensors[0].size()[:dim]
    for tensor in tensors:
        torch._check(
            tensor.size()[:dim] == leading_dim_sizes,
            lambda: "_chunk_cat expects same sizes of 0,...,dim-1 dimensions for all tensors",
        )


def _preprocess_chunk_cat_inputs(

    tensors: List[Tensor],

    dim: int,

    num_chunks: int,

):
    torch._check(num_chunks >= 1, lambda: "_chunk_cat expects positive num_chunks")
    torch._check(
        len(tensors) > 0, lambda: "_chunk_cat expects a non-empty input tensor list"
    )
    expected_dtype = tensors[0].dtype
    expected_device = tensors[0].device
    for tensor in tensors:
        torch._check(tensor.numel() > 0, lambda: "_chunk_cat expects non-empty tensor")
        torch._check(
            tensor.dtype == expected_dtype,
            lambda: "_chunk_cat expects all input tensors with the same dtype",
        )
        torch._check(
            tensor.device == expected_device,
            lambda: "_chunk_cat expects all inputs tensors on the same device",
        )
    if have_same_ndims(tensors):
        dim = utils.canonicalize_dim(tensors[0].dim(), dim)
    else:
        torch._check(
            dim >= 0,
            lambda: "_chunk_cat expects non-negative dim when input tensors have different ndims",
        )
        for tensor in tensors:
            torch._check(
                dim < tensor.ndim,
                lambda: "_chunk_cat expects dim < ndim for all input tensors",
            )
    leading_dimension_matches(tensors, dim)
    return dim


@register_decomposition([aten._chunk_cat.default, aten._chunk_cat.out])
def _chunk_cat(

    tensors: List[Tensor],

    dim: int,

    num_chunks: int,

    out: Optional[Tensor] = None,

) -> Tensor:
    dim = _preprocess_chunk_cat_inputs(tensors, dim, num_chunks)
    padded_tensors = _pad_chunk(tensors, dim, num_chunks)
    if out is None:
        return torch.cat(padded_tensors, dim + 1)
    else:
        torch.cat(padded_tensors, dim + 1, out=out)
        return out


@register_decomposition(aten.split_with_sizes)
def split_with_sizes(

    self: Tensor, split_sizes: List[int], dim: int = 0

) -> List[Tensor]:
    # NB: Perform the check_is_size tests first so that the
    # sum test does not try to do a replacement
    for i in range(len(split_sizes)):
        torch._check_is_size(
            split_sizes[i],
            lambda: "split_with_sizes expects split_sizes have only non-negative entries",
        )
    torch._check_with(
        ValueError,
        sum(split_sizes) == self.shape[dim],
        lambda: f"Split sizes add up to {sum(split_sizes)} but got the tensor's size of {self.shape[dim]}",
    )
    num_splits = len(split_sizes)
    splits = []
    start_idx = 0

    # Avoid importing sympy at a module level
    from torch.fx.experimental.symbolic_shapes import expect_true

    for i in range(num_splits):
        length = split_sizes[i]
        # We know this is true thanks to the sum, but this assertion helps
        # out our internal reasoning
        expect_true(start_idx + length <= self.shape[dim])
        splits.append(self.narrow(dim, start_idx, length))
        start_idx += length
    return splits


# out_wrapper currently does not allow optional outputs
@register_decomposition(

    [aten.split_with_sizes_copy.default, aten.split_with_sizes_copy.out]

)
def split_with_sizes_copy(

    self: Tensor,

    split_sizes: List[int],

    dim: int = 0,

    out: Optional[List[Tensor]] = None,

) -> Optional[List[Tensor]]:
    splits = split_with_sizes(self, split_sizes, dim=dim)
    if out is None:
        return [s.clone(memory_format=torch.contiguous_format) for s in splits]
    else:
        for output, split in zip(out, splits):
            _maybe_resize_out(output, split.shape)
            _safe_copy_out(copy_from=split, copy_to=output, exact_dtype=True)
        return None


@register_decomposition(aten.unsafe_split.Tensor)
def unsafe_split(input: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]:
    return aten.split.Tensor(input, split_size, dim)


@register_decomposition(aten.unsafe_split_with_sizes.default)
def unsafe_split_with_sizes(

    input: Tensor, split_sizes: List[int], dim: int = 0

) -> Tuple[Tensor, ...]:
    return aten.split_with_sizes.default(input, split_sizes, dim)


@register_decomposition(aten.split.Tensor)
def split(self: Tensor, split_size: int, dim: int = 0) -> Tuple[Tensor, ...]:
    input_sizes = self.shape
    dim_size = input_sizes[dim]
    if split_size == 0:
        assert dim_size == 0
        return (self,)
    chunks = (dim_size + split_size - 1) // split_size

    # Avoid importing sympy at a module level
    from torch.fx.experimental.symbolic_shapes import guard_int

    chunks = guard_int(chunks)
    split_sizes = [split_size for i in range(chunks)]
    split_sizes[-1] = split_size - (split_size * chunks - dim_size)
    return torch.split(self, split_sizes, dim)


@aten.tensor_split.tensor_indices_or_sections.py_impl(

    DispatchKey.CompositeImplicitAutograd

)
def tensor_split_tensor_indices_or_sections_py_impl(

    self: Tensor,

    tensor_indices_or_sections: Tensor,

    dim: int = 0,

) -> Tuple[Tensor, ...]:
    assert tensor_indices_or_sections.device.type == "cpu"
    assert tensor_indices_or_sections.dtype == torch.int64
    split_dim = tensor_indices_or_sections.dim()
    torch._check(
        split_dim == 1 or split_dim == 0,
        lambda: "tensor_split expected tensor_indices_or_sections to be a zero-dimensional "
        f"or one-dimensional tensor, but got a tensor with {split_dim} dims",
    )
    if split_dim == 0:
        sections = tensor_indices_or_sections.item()
        assert isinstance(sections, IntLike)
        return self.tensor_split(sections, dim)
    else:
        indices = [i.item() for i in tensor_indices_or_sections]
        return self.tensor_split(indices, dim)


# TODO: this doesn't appear to have enough precision in bfloat16
@register_decomposition(aten.addmm)
@out_wrapper()
@pw_cast_for_opmath
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, beta: int = 1, alpha: int = 1):
    if not self.is_floating_point() and not self.is_complex():
        beta = int(beta)
        alpha = int(alpha)
    out = alpha * torch.mm(mat1, mat2)
    if beta == 0:
        return out

    # The output of aten.addmm is contiguous, we need to match this behavior in the decomposition.
    # The original implementation 'beta * self + out' would return a strided tensor if `self` is strided.
    # We thus use `out`, the output of torch.mm, which is always contiguous, as the first argument for addition.
    # This is relying on TensorIterator's behavior that it takes higher precedence on the stride of first input.
    # Alternative, we can write `(beta * self + out).contiguous()`, but it introduces another copy in some cases.
    # This implementation is not ideal, and we should revisit this when we have a better solution.
    return out + beta * self


@register_decomposition(aten._addmm_activation)
@out_wrapper()
@pw_cast_for_opmath
def _addmm_activation(

    self: Tensor,

    mat1: Tensor,

    mat2: Tensor,

    beta: int = 1,

    alpha: int = 1,

    use_gelu: bool = False,

):
    out = addmm(self, mat1, mat2, beta, alpha)
    if use_gelu:
        if self.is_cuda:
            return aten.gelu(out, approximate="tanh")
        else:
            return aten.gelu(out)
    return aten.relu(out)


@register_decomposition(aten.addmv)
@out_wrapper()
@pw_cast_for_opmath
def addmv(self: Tensor, mat1: Tensor, vec: Tensor, beta: int = 1, alpha: int = 1):
    if not self.is_floating_point() and not self.is_complex():
        beta = int(beta)
        alpha = int(alpha)
    out = alpha * torch.mv(mat1, vec)
    if beta == 0:
        return out
    return out + beta * self


@register_decomposition(aten.native_group_norm_backward.default)
@pw_cast_for_opmath
def native_group_norm_backward(

    grad_output: Tensor,

    input: Tensor,

    mean: Tensor,

    rstd: Tensor,

    gamma: Optional[Tensor],

    N: int,

    C: int,

    HxW: int,

    group: int,

    output_mask: List[bool],

) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
    utils.check_same_device(
        grad_output, input, mean, rstd, allow_cpu_scalar_tensors=False
    )
    utils.check_same_shape(input, grad_output, allow_cpu_scalar_tensors=False)
    utils.check_same_shape(mean, rstd, allow_cpu_scalar_tensors=False)
    torch._check(
        input.numel() == N * C * HxW,
        lambda: f"Expect input to have { N * C * HxW} elements",
    )
    torch._check(
        mean.shape == (N, group),
        lambda: f"Expect mean to have shape ({N}, {group}, but got {mean.shape}",
    )
    torch._check(
        gamma is None or gamma.numel() == C,
        lambda: f"Expect gamma to have {C} elements but got {gamma.numel() if gamma is not None else -1}",
    )

    cpg, _rem = divmod(C, group)
    torch._check(
        _rem == 0,
        lambda: f"Expect number of channels {C} to be evenly-divisible by number of groups {group}",
    )

    # Compute Internal gradients
    ds = torch.mul(grad_output, input).view(N, C, HxW).sum(dim=[2])
    db = grad_output.view(N, C, HxW).sum(dim=[2])

    d_input: Optional[Tensor] = None
    d_gamma: Optional[Tensor] = None
    d_bias: Optional[Tensor] = None
    if output_mask[0]:
        s = 1.0 / (HxW * cpg)
        if gamma is not None:
            ds_val = torch.mul(ds, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2)
            db_val = torch.mul(db, gamma.unsqueeze(0)).reshape(N, group, cpg).sum(2)
            c1 = torch.mul(
                rstd.unsqueeze(-1),
                gamma.reshape(1, group, cpg),
            )
        else:
            ds_val = ds.reshape(N, group, cpg).sum(2)
            db_val = db.reshape(N, group, cpg).sum(2)
            c1 = torch.mul(
                rstd.unsqueeze(-1),
                torch.ones((1, group, cpg), device=rstd.device),
            )
        c2 = (db_val * mean - ds_val) * rstd * rstd * rstd * s
        c3 = -c2 * mean - db_val * rstd * s

        c1 = c1.unsqueeze(-1)
        c2 = _unsqueeze_to_dim(c2, 4)
        c3 = _unsqueeze_to_dim(c3, 4)
        d_input = (
            torch.mul(grad_output.reshape(N, group, cpg, HxW), c1)
            + torch.mul(input.reshape(N, group, cpg, HxW), c2)
            + c3
        )
        d_input = d_input.reshape(input.shape).to(input.dtype)
    if output_mask[1]:
        d_gamma = (
            (
                (ds.view(N, group, cpg) - db.view(N, group, cpg) * mean.unsqueeze(-1))
                * rstd.unsqueeze(-1)
            )
            .sum(dim=[0])
            .reshape(C)
        )
    if output_mask[2]:
        d_bias = db.sum(dim=[0])

    return (d_input, d_gamma, d_bias)


# out_wrapper currently does not allow optional outputs
@register_decomposition(aten.native_group_norm_backward.out)
def native_group_norm_backward_out(

    grad_output: Tensor,

    input: Tensor,

    mean: Tensor,

    rstd: Tensor,

    gamma: Optional[Tensor],

    N: int,

    C: int,

    HxW: int,

    group: int,

    output_mask: List[bool],

    *,

    out0: torch.Tensor,

    out1: torch.Tensor,

    out2: torch.Tensor,

) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
    result = native_group_norm_backward(
        grad_output, input, mean, rstd, gamma, N, C, HxW, group, output_mask
    )
    grad_input = (out0, out1, out2)
    for i, r in enumerate(result):
        if r is not None:
            _maybe_resize_out(grad_input[i], r.shape)
            _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)

    return grad_input


def _maybe_cast(x: Optional[Tensor], dtype) -> Optional[Tensor]:
    if x is not None:
        return x.to(dtype)
    return x


# TODO: Take a closer look at the type promotion semantics
@register_decomposition(aten.native_layer_norm_backward.default)
def native_layer_norm_backward(

    grad_out: Tensor,

    input: Tensor,

    normalized_shape: List[int],

    mean: Tensor,

    rstd: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    output_mask: List[bool],

) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
    input_shape = input.shape
    input_ndim = input.dim()
    computation_dtype = utils.get_computation_dtype(input.dtype)
    grad_out_cast, input_cast, weight_cast, bias_cast = (
        x.to(computation_dtype).contiguous() if x is not None else x
        for x in (grad_out, input, weight, bias)
    )
    assert grad_out_cast is not None

    axis = input_ndim - len(normalized_shape)
    inner_dims = input_shape[axis:]
    outer_dims = input_shape[:axis]
    inner_dim_indices: List[int] = []
    outer_dim_indices: List[int] = []
    for i in range(input_ndim):
        if i >= axis:
            inner_dim_indices.append(i)
        else:
            outer_dim_indices.append(i)

    N = prod(inner_dims)  # type: ignore[arg-type]
    M = prod(outer_dims)  # type: ignore[arg-type]
    if M <= 0 or N <= 0:
        return (
            input.new_zeros(input_shape) if output_mask[0] else None,
            input.new_zeros(input_shape[axis:]) if output_mask[1] else None,
            input.new_zeros(input_shape[axis:]) if output_mask[2] else None,
        )
    mean = _unsqueeze_to_dim(mean, input_cast.dim())  # type: ignore[union-attr]
    rstd = _unsqueeze_to_dim(rstd, input_cast.dim())  # type: ignore[union-attr]
    x_hat = (input_cast - mean) * rstd
    if weight_cast is not None:
        grad_x_hat = grad_out_cast * weight_cast
    else:
        grad_x_hat = grad_out_cast
    a = grad_x_hat * N
    b = torch.sum(grad_x_hat, inner_dim_indices, True)
    c1 = torch.mul(grad_x_hat, x_hat)
    c2 = torch.sum(c1, inner_dim_indices, True)
    c3 = torch.mul(x_hat, c2)

    inner = a - b - c3
    d_input: Optional[Tensor] = None
    d_weight: Optional[Tensor] = None
    d_bias: Optional[Tensor] = None
    if output_mask[0]:
        d_input = (rstd / N) * inner

    if output_mask[1] and weight_cast is not None:
        if len(outer_dim_indices) > 0:
            d_weight = torch.sum(grad_out_cast * x_hat, outer_dim_indices, False)
        else:
            d_weight = grad_out_cast * x_hat

    if output_mask[2] and bias_cast is not None:
        if len(outer_dim_indices) > 0:
            d_bias = torch.sum(grad_out_cast, outer_dim_indices, False)
        else:
            d_bias = grad_out_cast.clone()

    return (
        _maybe_cast(d_input, input.dtype),
        _maybe_cast(d_weight, input.dtype),
        _maybe_cast(d_bias, input.dtype),
    )


# out_wrapper currently does not allow optional outputs
@register_decomposition(aten.native_layer_norm_backward.out)
def native_layer_norm_backward_out(

    grad_out: Tensor,

    input: Tensor,

    normalized_shape: List[int],

    mean: Tensor,

    rstd: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    output_mask: List[bool],

    *,

    out0: torch.Tensor,

    out1: torch.Tensor,

    out2: torch.Tensor,

) -> Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]]:
    result = native_layer_norm_backward(
        grad_out, input, normalized_shape, mean, rstd, weight, bias, output_mask
    )
    grad_input = (out0, out1, out2)
    for i, r in enumerate(result):
        if r is not None:
            _maybe_resize_out(grad_input[i], r.shape)
            _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)

    return grad_input


def native_batch_norm_helper(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    training: bool,

    momentum: float,

    eps: float,

    functional: bool,

) -> Tuple[Tensor, Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
    reduction_dims = [0] + list(range(2, input.dim()))
    computation_dtype = utils.get_computation_dtype(input.dtype)
    new_running_mean = running_mean
    new_running_var = running_var
    if training:
        computation_dtype = utils.get_computation_dtype(input.dtype)
        input_acc = input.to(dtype=computation_dtype)
        biased_var, mean = torch.var_mean(
            input_acc, dim=reduction_dims, correction=0, keepdim=True
        )
        rstd = torch.rsqrt(biased_var + eps)

        output = (input - mean) * rstd

        save_mean = torch.squeeze(mean, reduction_dims)
        save_rstd = torch.squeeze(rstd, reduction_dims)
        if running_mean is not None:
            new_running_mean = momentum * save_mean + (1 - momentum) * running_mean
            if not functional:
                running_mean.copy_(new_running_mean)
        if running_var is not None:
            n = input.numel() / input.shape[1]
            # This doesn't strictly match eager's numerics, which accumulates var sum and then directly applies the correction
            # But... that would require re-implementing var here, for negligible numerics gain on a tensor whose
            # numerics probably don't matter.
            squeezed_var = torch.squeeze(biased_var, reduction_dims)
            unbiased_var = squeezed_var * (n / (n - 1))
            new_running_var = momentum * unbiased_var + (1 - momentum) * running_var
            if not functional:
                running_var.copy_(new_running_var)
    else:
        assert running_mean is not None and running_var is not None
        running_mean = running_mean.to(dtype=computation_dtype, copy=True)
        new_running_mean = running_mean
        running_var = running_var.to(dtype=computation_dtype, copy=True)
        new_running_var = running_var
        mean = running_mean
        invstd = 1 / (torch.sqrt(running_var + eps))
        # Very annoying inconsistency where CPU and CUDA give different shapes
        if input.device.type != "cpu":
            save_mean = running_mean
            save_rstd = invstd
        else:
            save_mean = input.new_zeros((0,))
            save_rstd = input.new_zeros((0,))
        mean = _unsqueeze_to_dim(mean, input.dim() - 1)
        invstd = _unsqueeze_to_dim(invstd, input.dim() - 1)
        output = (input - mean) * invstd

    if weight is not None:
        weight = weight.flatten()
        weight = _unsqueeze_to_dim(weight, input.dim() - 1)
        output = output * weight

    if bias is not None:
        bias = bias.flatten()
        bias = _unsqueeze_to_dim(bias, input.dim() - 1)
        output = output + bias

    if input.device.type == "cpu":
        save_mean = save_mean.to(dtype=input.dtype)
        save_rstd = save_rstd.to(dtype=input.dtype)
    return (
        output.to(dtype=input.dtype),
        save_mean,
        save_rstd,
        new_running_mean,
        new_running_var,
    )


@register_decomposition(aten.native_batch_norm)
@out_wrapper("out", "save_mean", "save_invstd")
def native_batch_norm(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    training: bool,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor]:
    output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
        input, weight, bias, running_mean, running_var, training, momentum, eps, False
    )
    return output, save_mean, save_rstd


# TODO: this decomposition is NOT here to stay. We would much prefer replacing native_batch_norm
# with our new correctly schema'd _native_batch_norm_legit and its variants, but
# we cannot do that immediately in the C++ because it would be forwards incompatible
# with some mobile use cases.
#
# Since this change is most impactful for aot autograd/functionalization, we simply
# register this decomposition on the Autograd key for the python dispatcher (which is
# currently only used by aot autograd/functionalization and no one else, really).
# In two weeks or so, we should remove this decomposition and phase out the current native_batch_norm
# to be _native_batch_norm_legit and have the right schema (stating that there are input mutations).
@aten.native_batch_norm.default.py_impl(DispatchKey.Autograd)
@aten.native_batch_norm.default.py_impl(DispatchKey.CompositeImplicitAutograd)
def native_batch_norm_decomposition(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    training: bool,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor]:
    if running_mean is None and running_var is None:
        return aten._native_batch_norm_legit(
            input, weight, bias, training, momentum, eps
        )
    if running_mean is None:
        raise RuntimeError(
            "running_mean is None, but running_var is provided. "
            "They should both be None or both be provided."
        )
    if running_var is None:
        raise RuntimeError(
            "running_var is None, but running_mean is provided. "
            "They should both be None or both be provided."
        )
    if training:
        # HACK: batch norm consolidation should clean this up so this op doesn't take in a training arg.
        return aten._native_batch_norm_legit(
            input, weight, bias, running_mean, running_var, training, momentum, eps
        )
    else:
        return aten._native_batch_norm_legit_no_training(
            input, weight, bias, running_mean, running_var, momentum, eps
        )


@aten.unsafe_chunk.default.py_impl(DispatchKey.CompositeImplicitAutograd)
def unsafe_chunk_py_impl(tensor, chunks, dim=0) -> List[Tensor]:
    dim_size = tensor.size(dim)
    split_size = (dim_size + chunks - 1) // chunks

    if split_size == 0 and dim_size == 0:
        split_sizes = [split_size for _ in chunks]
        split_sizes[chunks - 1] = split_size - (split_size * chunks - dim_size)
        return torch.ops.aten.unsafe_split_with_sizes.default(tensor, split_sizes, dim)
    return torch.ops.aten.unsafe_split.Tensor(tensor, split_size, dim)


@register_decomposition(aten._native_batch_norm_legit_no_training.default)
def _native_batch_norm_legit_no_training(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Tensor,

    running_var: Tensor,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor]:
    return aten._native_batch_norm_legit.default(
        input,
        weight,
        bias,
        running_mean,
        running_var,
        False,  # training
        momentum,
        eps,
    )


@register_decomposition(aten._native_batch_norm_legit.default)
def _native_batch_norm_legit(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Tensor,

    running_var: Tensor,

    training: bool,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor]:
    output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
        input, weight, bias, running_mean, running_var, training, momentum, eps, False
    )
    return output, save_mean, save_rstd


@register_decomposition(aten._native_batch_norm_legit.no_stats)
def _native_batch_norm_legit_no_stats(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    training: bool,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor]:
    output, save_mean, save_rstd, _, _ = native_batch_norm_helper(
        input, weight, bias, None, None, training, momentum, eps, False
    )
    return output, save_mean, save_rstd


@register_decomposition(aten._native_batch_norm_legit_functional.default)
def _native_batch_norm_legit_functional(

    input: Tensor,

    weight: Optional[Tensor],

    bias: Optional[Tensor],

    running_mean: Tensor,

    running_var: Tensor,

    training: bool,

    momentum: float,

    eps: float,

) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    (
        output,
        save_mean,
        save_rstd,
        new_running_mean,
        new_running_var,
    ) = native_batch_norm_helper(
        input, weight, bias, running_mean, running_var, training, momentum, eps, True
    )
    assert new_running_mean is not None, "new_running_mean should not be None"
    assert new_running_var is not None, "new_running_var should not be None"
    return output, save_mean, save_rstd, new_running_mean, new_running_var


@register_decomposition(aten._fused_dropout)
@out_wrapper("out0", "out1")
@pw_cast_for_opmath
def _fused_dropout_decomposition(input, p, generator=None):
    assert generator is None
    mask = (torch.rand_like(input) < p).to(dtype=torch.uint8)
    res = mask.type_as(input) * input * (1.0 / p)
    return (res, mask)


def device_hint(tensor):
    if isinstance(tensor, torch._subclasses.FakeTensor):
        return tensor.fake_device
    else:
        return None


@register_decomposition(aten._to_copy)
@out_wrapper()
def _to_copy(

    x: Tensor,

    *,

    dtype: Optional[torch.dtype] = None,

    layout=None,

    device: Optional[torch.device] = None,

    pin_memory: bool = False,

    non_blocking: bool = False,

    memory_format: Optional[torch.memory_format] = None,

):
    assert not layout or layout == torch.strided, "TODO"
    assert not pin_memory, "TODO"
    if device is None and dtype is None and memory_format is None:
        return x.clone()
    dtype_converted = False
    common_device = device_hint(x)

    if device is not None and device != x.device:
        # avoid conversions on cpu
        if dtype is not None and device.type == "cpu":
            x = torch._prims.convert_element_type(x, dtype)
            dtype_converted = True
        x = torch._prims.device_put(x, device)

    if dtype is not None and not dtype_converted:
        x = torch._prims.convert_element_type(x, dtype)
        dtype_converted = True

    if memory_format is not None:  # no ref/prim for memory format
        return torch.clone(x, memory_format=memory_format)
    return x


# Questionable decompositions
# This is only valid if we're running the graph without autograd, such as if the backward pass has been traced.
# Note that this decomposition causes issues with in-place ops
@register_decomposition([aten.detach, aten.lift, aten.lift_fresh])
@out_wrapper()
def nop_decomposition(x):
    return aten.alias(x)


# Also register to the Autograd dispatch key, so this decomp can run above autograd.
# native_batch_norm needs to decompose into other ops before autograd.
@aten.cudnn_batch_norm.default.py_impl(DispatchKey.Autograd)
@register_decomposition(aten.cudnn_batch_norm)
@out_wrapper("out0", "out1", "out2", "out3")
def cudnn_batch_norm(

    input: Tensor,

    weight: Tensor,

    bias: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    training: bool,

    exponential_average_factor: float,

    epsilon: float,

):
    a, b, c = aten.native_batch_norm(
        input,
        weight,
        bias,
        running_mean,
        running_var,
        training,
        exponential_average_factor,
        epsilon,
    )
    # Cudnn return running mean and variance when training is True
    if training:
        return (a, b, c, input.new_zeros((0,), dtype=torch.uint8))
    return (
        a,
        weight.new_zeros((0,)),
        weight.new_zeros((0,)),
        input.new_zeros((0,), dtype=torch.uint8),
    )


def _broadcast_batch_norm_backward(x, broadcast_mask):
    for axis, mask in enumerate(broadcast_mask):
        if mask == 1 and not (axis < x.ndim and x.shape[axis] == broadcast_mask[axis]):
            x = x.unsqueeze(axis)
    return x


@register_decomposition(aten.native_batch_norm_backward.default)
def native_batch_norm_backward(

    grad_out: Tensor,

    input: Tensor,

    weight: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    save_mean: Optional[Tensor],

    save_invstd: Optional[Tensor],

    train: bool,

    eps: float,

    output_mask: List[bool],

) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
    input_dtype = input.dtype
    if weight is not None:
        weight_dtype = weight.dtype
    else:
        weight_dtype = input_dtype
    computation_dtype = utils.get_computation_dtype(input.dtype)
    (
        grad_out_cast,
        input_cast,
        weight_cast,
        running_mean_cast,
        running_var_cast,
        save_mean_cast,
        save_invstd_cast,
    ) = (
        x.to(computation_dtype) if x is not None else x
        for x in (
            grad_out,
            input,
            weight,
            running_mean,
            running_var,
            save_mean,
            save_invstd,
        )
    )
    input_shape = input.shape
    input_rank = input.dim()
    assert input_rank >= 2, "rank of the input must be at least 2"

    axis = 1
    num_features = prod(list(input_shape)) / input_shape[axis]
    mean = save_mean_cast
    invstd = save_invstd_cast
    if train:
        assert save_mean_cast is not None and save_invstd_cast is not None
    else:
        assert running_mean_cast is not None and running_var_cast is not None
        mean = running_mean_cast
        invstd = torch.rsqrt(running_var_cast + eps)

    broadcast_mask: List[int] = [1] * input_rank
    broadcast_mask[axis] = input_shape[axis]

    reduction_axes: List[int] = []
    for i in range(input_rank):
        if i != axis:
            reduction_axes.append(i)

    mean = _broadcast_batch_norm_backward(mean, broadcast_mask)  # type: ignore[arg-type]
    norm = 1.0 / num_features
    grad_output_sum = torch.sum(grad_out_cast, reduction_axes)  # type: ignore[arg-type]
    dot_p = torch.sum(grad_out_cast * (input_cast - mean), reduction_axes)  # type: ignore[operator]

    grad_mean = _broadcast_batch_norm_backward(grad_output_sum * norm, broadcast_mask)
    proj_scale = _broadcast_batch_norm_backward(torch.mul(dot_p * norm, invstd * invstd), broadcast_mask)  # type: ignore[operator]

    if weight_cast is None:
        grad_scale = _broadcast_batch_norm_backward(invstd, broadcast_mask) * 1.0  # type: ignore[arg-type]
    else:
        grad_scale = _broadcast_batch_norm_backward(
            invstd * weight_cast, broadcast_mask
        )

    if train:
        proj = (input_cast - mean) * proj_scale  # type: ignore[operator]
        grad_input = ((grad_out_cast - proj) - grad_mean) * grad_scale
    else:
        grad_input = grad_out_cast * grad_scale

    if output_mask[1]:
        grad_weight = dot_p * invstd
    else:
        grad_weight = None  # "None" doesn't work with vjp, should use zeros for vjp

    if output_mask[2]:
        grad_bias = grad_output_sum
    else:
        grad_bias = None  # "None" doesn't work with vjp, should use zeros for vjp

    return (
        grad_input.to(input_dtype),
        _maybe_cast(grad_weight, weight_dtype),
        _maybe_cast(grad_bias, weight_dtype),
    )


# out_wrapper currently does not allow optional outputs
@register_decomposition(aten.native_batch_norm_backward.out)
def native_batch_norm_backward_out(

    grad_out: Tensor,

    input: Tensor,

    weight: Optional[Tensor],

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    save_mean: Optional[Tensor],

    save_invstd: Optional[Tensor],

    train: bool,

    eps: float,

    output_mask: List[bool],

    *,

    out0: torch.Tensor,

    out1: torch.Tensor,

    out2: torch.Tensor,

) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
    result = native_batch_norm_backward(
        grad_out,
        input,
        weight,
        running_mean,
        running_var,
        save_mean,
        save_invstd,
        train,
        eps,
        output_mask,
    )
    grad_input = (out0, out1, out2)
    for i, r in enumerate(result):
        if r is not None:
            _maybe_resize_out(grad_input[i], r.shape)
            _safe_copy_out(copy_from=r, copy_to=grad_input[i], exact_dtype=True)

    return grad_input


@register_decomposition(aten.cudnn_batch_norm_backward)
@out_wrapper("out0", "out1", "out2")
def cudnn_batch_norm_backward(

    input: Tensor,

    grad_output: Tensor,

    weight: Tensor,

    running_mean: Optional[Tensor],

    running_var: Optional[Tensor],

    save_mean: Optional[Tensor],

    save_var: Optional[Tensor],

    epsilon: float,

    reserveSpace: Tensor,

):
    return aten.native_batch_norm_backward(
        grad_output,
        input,
        weight,
        running_mean,
        running_var,
        save_mean,
        save_var,
        True,
        epsilon,
        [True, True, True],
    )


@register_decomposition(aten._adaptive_avg_pool2d)
@out_wrapper()
@pw_cast_for_opmath
def adaptive_avg_pool2d(input: Tensor, output_size: Tuple[int, int]):
    # Preconditions
    device = input.device
    shape = input.shape
    ndim = len(shape)
    torch._check(
        ndim in (3, 4),
        lambda: f"adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got {ndim}",
    )
    for d in input.shape[-2:]:
        torch._check(
            d != 0,
            lambda: "adaptive_avg_pool2d(): Expected input to have non-zero size for "
            f"non-batch dimensions, but input has shape {tuple(shape)}.",
        )

    # Optimisation (we should also do this in the kernel implementation)
    if shape[-2] % output_size[-2] == 0 and shape[-1] % output_size[-1] == 0:
        stride = tuple(i // o for i, o in zip(shape[-2:], output_size))
        kernel = tuple(
            i - (o - 1) * s for i, o, s in zip(shape[-2:], output_size, stride)
        )
        return torch.nn.functional.avg_pool2d(input, kernel, stride)

    def start_index(a, b, c):
        return torch.div(a * c, b, rounding_mode="trunc")

    def end_index(a, b, c):
        return torch.div((a + 1) * c + b - 1, b, rounding_mode="trunc")

    def compute_idx(in_size, out_size):
        orange = torch.arange(out_size, device=device, dtype=torch.int64)
        i0 = start_index(orange, out_size, in_size)
        # Let length = end_index - start_index, i.e. the length of the pooling kernels
        # length.max() can be computed analytically as follows:
        maxlength = in_size // out_size + 1
        in_size_mod = in_size % out_size
        # adaptive = True iff there are kernels with different lengths
        adaptive = not (in_size_mod == 0 or out_size % in_size_mod == 0)
        if adaptive:
            maxlength += 1
        elif in_size_mod == 0:
            maxlength -= 1

        range_max = torch.arange(maxlength, device=device, dtype=torch.int64)
        idx = i0.unsqueeze(-1) + range_max
        if adaptive:
            # Need to clamp to avoid accessing out-of-bounds memory
            # TODO make minimum accept scalars
            maxval = torch.scalar_tensor(
                in_size - 1, dtype=idx.dtype, device=idx.device
            )
            idx = torch.minimum(idx, maxval)

            # Compute the length
            i1 = end_index(orange, out_size, in_size)
            length = i1 - i0
        else:
            length = maxlength
        return idx, length, range_max, adaptive

    # length is not None if it's constant, otherwise we'll need to compute it
    idxh, length_h, range_max_h, adaptive_h = compute_idx(shape[-2], output_size[-2])
    idxw, length_w, range_max_w, adaptive_w = compute_idx(shape[-1], output_size[-1])

    vals = input[..., _unsqueeze_to_dim(idxh, 4), idxw]
    # Shortcut for the simpler case
    if not adaptive_h and not adaptive_w:
        return torch.mean(vals, dim=(-3, -1))

    def maybe_mask(vals, length, range_max, adaptive, dim):
        if isinstance(length, IntLike):
            return vals, length
        else:
            # zero-out the things we didn't really want to select
            assert dim < 0
            # hack
            mask = range_max >= length.unsqueeze(-1)
            if dim == -2:
                mask = _unsqueeze_to_dim(mask, 4)
            vals = torch.masked_fill(vals, mask, 0.0)
            # Compute the length of each window
            length = _unsqueeze_to_dim(length, -dim)
            return vals, length

    vals, length_h = maybe_mask(
        vals, length_h, range_max_h, adaptive=adaptive_h, dim=-2
    )
    vals, length_w = maybe_mask(
        vals, length_w, range_max_w, adaptive=adaptive_w, dim=-1
    )

    # We unroll the sum as we assume that the kernels are going to be small
    ret = None
    for i, j in product(range(vals.shape[-3]), range(vals.shape[-1])):
        if ret is None:
            ret = vals[..., i, :, j]
        else:
            ret = ret + vals[..., i, :, j]
    return ret / (length_h * length_w)


@register_decomposition(aten.index_add_)
def index_add_(

    x: TensorLike,

    dim: int,

    index: TensorLike,

    tensor: TensorLike,

    *,

    alpha: NumberType = 1,

):
    return _index_add(x, dim, index, tensor, inplace=True, alpha=alpha)


@register_decomposition(aten.index_add)
@out_wrapper()
def index_add(

    x: TensorLike,

    dim: int,

    index: TensorLike,

    tensor: TensorLike,

    *,

    alpha: NumberType = 1,

):
    return _index_add(x, dim, index, tensor, inplace=False, alpha=alpha)


def _index_add(

    x: TensorLike,

    dim: int,

    index: TensorLike,

    tensor: TensorLike,

    *,

    inplace: bool,

    alpha: NumberType = 1,

):
    dim = utils.canonicalize_dims(x.ndim, dim)
    torch._check(
        index.ndim <= 1,
        lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
    )
    index_size = index.size(0) if index.ndim == 1 else 1
    tensor_size = tensor.size(dim) if tensor.ndim > 0 else 1
    torch._check(
        tensor_size == index_size,
        lambda: f"Number of indices ({index_size}) should be equal to tensor.size(dim) ({tensor_size}), for {dim=}",
    )
    if alpha != 1:
        python_type = utils.dtype_to_type(x.dtype)
        torch._check(
            python_type == bool
            or utils.is_weakly_lesser_type(type(alpha), python_type),
            lambda: f"alpha argument of type {type(alpha)} cannot be safely cast to type {python_type}!",
        )
        tensor = tensor * alpha
    # Treat scalars as elements of \R^1
    zero_dim = x.ndim == 0
    x1 = x.unsqueeze(0) if zero_dim else x
    idx = (None,) * dim + (index,)
    index_put = aten.index_put_ if inplace else aten.index_put
    out = index_put(x1, idx, tensor, accumulate=True)
    if inplace:
        return x
    else:
        return out.squeeze(0) if zero_dim else out.contiguous()


@register_decomposition(aten.pad_sequence.default)
@aten.pad_sequence.default.py_impl(DispatchKey.CompositeImplicitAutograd)
def pad_sequence(sequences, batch_first=False, padding_value=0.0):
    torch._check(len(sequences) > 0, lambda: "received an empty list of sequences")
    sequences_size = len(sequences)
    max_size = sequences[0].size()
    trailing_dims = max_size[1:]
    max_len = max(x.size(0) for x in sequences)
    if batch_first:
        out_dims = (sequences_size, max_len)
    else:
        out_dims = (max_len, sequences_size)
    out_dims = out_dims + trailing_dims
    out = sequences[0].new_full(out_dims, padding_value)
    dim_paddings = (0, 0) * len(trailing_dims)
    for i in range(sequences_size):
        currseq = sequences[i]
        row = aten.constant_pad_nd(
            currseq, dim_paddings + (0, max_len - currseq.size(0)), padding_value
        )
        if batch_first:
            out = aten.select_scatter(out, row, dim=0, index=i)
        else:
            out = aten.select_scatter(out, row, dim=1, index=i)
    return out


@register_decomposition(aten.index_copy_)
def index_copy_(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
    return _index_copy(x, dim, index, tensor, inplace=True)


@register_decomposition(aten.index_copy)
@out_wrapper()
def index_copy(x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike):
    return _index_copy(x, dim, index, tensor, inplace=False)


def _index_copy(

    x: TensorLike, dim: int, index: TensorLike, tensor: TensorLike, *, inplace: bool

):
    dim = utils.canonicalize_dims(x.ndim, dim)
    torch._check(
        index.ndim <= 1,
        lambda: f"Index should have dimension 1 or 0 (got {index.ndim})",
    )
    # Treat scalars as elements of \R^1
    zero_dim = x.ndim == 0
    x1 = x.unsqueeze(0) if zero_dim else x
    index = index.unsqueeze(0) if index.ndim == 0 else index
    idx = (None,) * dim + (index,)
    index_put = aten.index_put_ if inplace else aten.index_put
    out = index_put(x1, idx, tensor)
    if inplace:
        return x
    else:
        return out.squeeze(0) if zero_dim else out.contiguous()


# nb: Should use acc_t, not op_math
@register_decomposition(aten.log_sigmoid_forward)
@out_wrapper("output", "buffer")
@pw_cast_for_opmath
def log_sigmoid_forward(self: Tensor) -> Tuple[Tensor, Tensor]:
    min = torch.minimum(self.new_zeros(()), self)
    z = torch.exp(-torch.abs(self))
    if self.is_cuda:
        buffer = self.new_zeros((0,))
    else:
        buffer = z
    return min - torch.log1p(z), buffer


@register_decomposition(aten.uniform)
@out_wrapper()
def uniform(

    x: Tensor,

    low: Union[bool, int, float] = 0.0,

    high: Union[bool, int, float] = 1.0,

    generator: Optional[torch.Generator] = None,

):
    return prims._uniform_helper(
        x.shape,
        low=sym_float(low),
        high=sym_float(high),
        dtype=x.dtype,
        device=x.device,
        generator=generator,
    )


@register_decomposition(aten.uniform_)
def uniform_(self, low=0, high=1, generator=None):
    return self.copy_(uniform(self, low, high, generator))


# aten/src/ATen/native/UpSample.cpp compute_output_size
def upsample_compute_output_size(input_size, output_size, scale_factors):
    spatial_dimensions = len(input_size) - 2
    if output_size is not None:
        torch._check(
            scale_factors is None,
            lambda: "Must specify exactly one of output_size and scale_factors",
        )
        torch._check(len(output_size) == spatial_dimensions, lambda: "")
        return output_size
    if scale_factors is not None:
        # NB: this isn't necessary lol
        torch._check(
            output_size is None,
            lambda: "Must specify exactly one of output_size and scale_factors",
        )
        torch._check(len(scale_factors) == spatial_dimensions, lambda: "")
        output_size = []
        for i, s in enumerate(scale_factors):
            if int(s) == s:
                output_size.append(input_size[i + 2] * int(s))
            else:
                output_size.append(sym_int(input_size[i + 2] * s))
        return output_size
    torch._check(
        False, lambda: "Must specify exactly one of output_size and scale_factors"
    )


def get_scale_value(scales, idx):
    if scales is None:
        return None
    return scales[idx]


@register_decomposition(aten.upsample_nearest1d.vec)
@aten.upsample_nearest1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_nearest1d.vec.py_impl(DispatchKey.Autograd)
def upsample_nearest1d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale = get_scale_value(scale_factors, 0)

    return aten.upsample_nearest1d.default(input, osize, scale)


@register_decomposition(aten._upsample_nearest_exact1d.vec)
@aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten._upsample_nearest_exact1d.vec.py_impl(DispatchKey.Autograd)
def _upsample_nearest_exact1d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale = get_scale_value(scale_factors, 0)

    return aten._upsample_nearest_exact1d.default(input, osize, scale)


@register_decomposition(aten.upsample_nearest2d.vec)
@aten.upsample_nearest2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_nearest2d.vec.py_impl(DispatchKey.Autograd)
def upsample_nearest2d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_h = get_scale_value(scale_factors, 0)
    scale_w = get_scale_value(scale_factors, 1)

    return aten.upsample_nearest2d.default(input, osize, scale_h, scale_w)


@register_decomposition(aten._upsample_nearest_exact2d.vec)
@aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten._upsample_nearest_exact2d.vec.py_impl(DispatchKey.Autograd)
def _upsample_nearest_exact2d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_h = get_scale_value(scale_factors, 0)
    scale_w = get_scale_value(scale_factors, 1)

    return aten._upsample_nearest_exact2d.default(input, osize, scale_h, scale_w)


@register_decomposition(aten.upsample_nearest3d.vec)
@aten.upsample_nearest3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_nearest3d.vec.py_impl(DispatchKey.Autograd)
def upsample_nearest3d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_d = get_scale_value(scale_factors, 0)
    scale_h = get_scale_value(scale_factors, 1)
    scale_w = get_scale_value(scale_factors, 2)

    return aten.upsample_nearest3d.default(input, osize, scale_d, scale_h, scale_w)


@register_decomposition(aten._upsample_nearest_exact3d.vec)
@aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten._upsample_nearest_exact3d.vec.py_impl(DispatchKey.Autograd)
def _upsample_nearest_exact3d_vec(input, output_size, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_d = get_scale_value(scale_factors, 0)
    scale_h = get_scale_value(scale_factors, 1)
    scale_w = get_scale_value(scale_factors, 2)

    return aten._upsample_nearest_exact3d.default(
        input, osize, scale_d, scale_h, scale_w
    )


def _compute_upsample_nearest_indices(input, output_size, scales, exact=False):
    # For each dim in output_size, compute the set of input indices used
    # to produce the upsampled output.
    indices = []
    num_spatial_dims = len(output_size)
    offset = 0.5 if exact else 0.0

    for d in range(num_spatial_dims):
        # Math matches aten/src/ATen/native/cpu/UpSampleKernel.cpp
        #
        # Indices are computed as following:
        # scale = isize / osize
        # Case: exact=False
        # input_index = floor(output_index * scale)
        # Same as OpenCV INTER_NEAREST
        #
        # Case: exact=False
        # index_f32 = (output_index + 0.5) * scale - 0.5
        # input_index = round(index_f32)
        # Same as Pillow and Scikit-Image/Scipy ndi.zoom
        osize = output_size[d]
        isize = input.shape[-num_spatial_dims + d]
        scale = isize / (isize * scales[d]) if scales[d] is not None else isize / osize

        output_indices = torch.arange(osize, dtype=torch.float32, device=input.device)
        input_indices = ((output_indices + offset) * scale).to(torch.int64)
        for _ in range(num_spatial_dims - 1 - d):
            input_indices = input_indices.unsqueeze(-1)
        indices.append(input_indices)
    return tuple(indices)


@register_decomposition(aten.upsample_nearest1d.default)
@aten.upsample_nearest1d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def upsample_nearest1d(

    input: Tensor,

    output_size: List[int],

    scales: Optional[float] = None,

) -> Tensor:
    (l_indices,) = _compute_upsample_nearest_indices(input, output_size, (scales,))
    return aten._unsafe_index(input, (None, None, l_indices))


@register_decomposition(aten._upsample_nearest_exact1d.default)
@aten._upsample_nearest_exact1d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def _upsample_nearest_exact1d(

    input: Tensor,

    output_size: List[int],

    scales: Optional[float] = None,

) -> Tensor:
    (l_indices,) = _compute_upsample_nearest_indices(
        input, output_size, (scales,), exact=True
    )
    return aten._unsafe_index(input, (None, None, l_indices))


def _upsample_nearest2d_common(input, h_indices, w_indices):
    result = aten._unsafe_index(input, (None, None, h_indices, w_indices))

    # convert output to correct memory format, if necessary
    memory_format = utils.suggest_memory_format(input)

    # following "heuristic: only use channels_last path when it's faster than the contiguous path"
    _, n_channels, _, _ = input.shape
    if input.device.type == "cuda" and n_channels < 4:
        memory_format = torch.contiguous_format

    result = result.contiguous(memory_format=memory_format)
    return result


@register_decomposition(aten.upsample_nearest2d.default)
@aten.upsample_nearest2d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def upsample_nearest2d(

    input: Tensor,

    output_size: List[int],

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    h_indices, w_indices = _compute_upsample_nearest_indices(
        input, output_size, (scales_h, scales_w)
    )
    return _upsample_nearest2d_common(input, h_indices, w_indices)


@register_decomposition(aten._upsample_nearest_exact2d.default)
@aten._upsample_nearest_exact2d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def _upsample_nearest_exact2d(

    input: Tensor,

    output_size: List[int],

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    h_indices, w_indices = _compute_upsample_nearest_indices(
        input, output_size, (scales_h, scales_w), exact=True
    )
    return _upsample_nearest2d_common(input, h_indices, w_indices)


@register_decomposition(aten.upsample_nearest3d.default)
@aten.upsample_nearest3d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def upsample_nearest3d(

    input: Tensor,

    output_size: List[int],

    scales_d: Optional[float] = None,

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    d_indices, h_indices, w_indices = _compute_upsample_nearest_indices(
        input, output_size, (scales_d, scales_h, scales_w)
    )
    result = aten._unsafe_index(input, (None, None, d_indices, h_indices, w_indices))

    return result


@register_decomposition(aten._upsample_nearest_exact3d.default)
@aten._upsample_nearest_exact3d.default.py_impl(DispatchKey.Autograd)
@pw_cast_for_opmath
def _upsample_nearest_exact3d(

    input: Tensor,

    output_size: List[int],

    scales_d: Optional[float] = None,

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    d_indices, h_indices, w_indices = _compute_upsample_nearest_indices(
        input, output_size, (scales_d, scales_h, scales_w), exact=True
    )
    result = aten._unsafe_index(input, (None, None, d_indices, h_indices, w_indices))

    return result


def gather_params(params, has_biases, has_projections):
    if has_biases and has_projections:
        group_size = 5
    elif has_biases:
        group_size = 4
    elif has_projections:
        group_size = 3
    else:
        group_size = 2

    assert len(params) % group_size == 0, len(params)
    return [
        tuple(params[i : i + group_size]) for i in range(0, len(params), group_size)
    ]


def params_hiddens(params, hiddens, i, bidirectional):
    if bidirectional:
        cur_params, cur_hidden = params[2 * i], hiddens[2 * i]
        bidir_params, bidir_hidden = params[2 * i + 1], hiddens[2 * i + 1]
    else:
        cur_params, cur_hidden = params[i], hiddens[i]
        bidir_params, bidir_hidden = None, None

    return cur_params, cur_hidden, bidir_params, bidir_hidden


def update_hidden_for_packed(cur_hidden, last_batch_size, batch_size, hiddens):
    assert last_batch_size > batch_size
    hiddens.append(cur_hidden.narrow(0, batch_size, last_batch_size - batch_size))
    return cur_hidden.narrow(0, 0, batch_size)


def update_hidden_for_packed_reverse(

    cur_hidden, last_batch_size, batch_size, inp_hidden

):
    if last_batch_size == batch_size:
        return cur_hidden
    assert last_batch_size < batch_size
    return torch.concat(
        (
            cur_hidden,
            inp_hidden.narrow(0, last_batch_size, batch_size - last_batch_size),
        )
    )


def one_layer_rnn_data(

    inp, hidden, params, has_biases, hidden_fn, batch_sizes, reverse=False

):
    ih_weight = params[0]
    hh_weight = params[1]
    ih_bias = params[2] if has_biases else None
    hh_bias = params[3] if has_biases else None

    step_output = []
    hiddens: List[torch.Tensor] = []

    last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0]
    cur_hidden = hidden.narrow(0, 0, last_batch_size)
    split_inp = torch.split(inp, list(batch_sizes))
    if reverse:
        split_inp = split_inp[::-1]
    for inp in split_inp:
        i = inp.shape[0]

        if last_batch_size == i:
            pass  # don't update cur_hidden
        # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest
        elif reverse:
            cur_hidden = update_hidden_for_packed_reverse(
                cur_hidden, last_batch_size, i, hidden
            )
        else:
            cur_hidden = update_hidden_for_packed(
                cur_hidden, last_batch_size, i, hiddens
            )

        cur_hidden = hidden_fn(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias)
        last_batch_size = i
        step_output.append(cur_hidden)

    if reverse:
        step_output.reverse()
    else:
        hiddens.append(cur_hidden)
        hiddens.reverse()

    out = torch.cat(step_output, 0)
    hidden_out = torch.cat(hiddens, 0) if not reverse else cur_hidden
    return out, hidden_out


def rnn_cell(nonlinearity):
    def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
        return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i)

    return inner


def rnn_cell_data(nonlinearity):
    def inner(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
        i = F.linear(i, ih_weight, ih_bias)
        return nonlinearity(F.linear(cur_hidden, hh_weight, hh_bias) + i)

    return inner


def one_layer_rnn(inp, hidden, params, has_biases, hidden_fn, reverse=False):
    ih_weight = params[0]
    hh_weight = params[1]
    ih_bias = params[2] if has_biases else None
    hh_bias = params[3] if has_biases else None

    precomputed_input = F.linear(inp, ih_weight, ih_bias)
    precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input
    cur_hidden = hidden.unsqueeze(0)
    step_output = []
    for i in precomputed_input:
        cur_hidden = hidden_fn(i, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias)
        step_output.append(cur_hidden)

    if reverse:
        step_output.reverse()

    out = torch.cat(step_output, 0)

    return out, cur_hidden.squeeze(0)


def mkldnn_one_layer_lstm(inp, hidden, params, has_biases, reverse=False):
    w0 = params[0]
    w1 = params[1]
    if has_biases:
        w2 = params[2]
        w3 = params[3]
    else:
        w2 = torch.zeros(w0.size())
        w3 = torch.zeros(w1.size())

    hx = hidden[0].unsqueeze(0)
    cx = hidden[1].unsqueeze(0)

    batch_sizes: List[int] = []
    mode = 2  # third_party/ideep/include/ideep/abstract_types.hpp: ideep::rnn_kind::LSTM = 2
    hidden_size = hx.size(2)
    num_layers = 1

    # _rnn_helper already handles bidirectional and batch_first so we hard-code them to False here
    bidirectional = False
    batch_first = False

    train = False
    # If batch_first, inp has been permuted in _rnn_helper. Convert to contiguous here.
    # Same as aten/src/ATen/native/mkldnn/RNN.cpp: mkldnn_rnn: input = input.contiguous();
    inp = inp.contiguous()
    hx = hx.contiguous()
    cx = cx.contiguous()
    outputs = torch.ops.aten.mkldnn_rnn_layer.default(
        inp,
        w0,
        w1,
        w2,
        w3,
        hx,
        cx,
        reverse,
        batch_sizes,
        mode,
        hidden_size,
        num_layers,
        has_biases,
        bidirectional,
        batch_first,
        train,
    )
    y, hy, cy = outputs[0], outputs[1], outputs[2]
    return y, (hy.squeeze(0), cy.squeeze(0))


def _rnn_helper(

    input,

    hidden,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

    batch_first,

    layer_fn,

):
    input = input.transpose(0, 1) if batch_first else input
    final_hiddens = []

    for i in range(num_layers):
        cur_params, cur_hidden, bidir_params, bidir_hidden = params_hiddens(
            params, hidden, i, bidirectional
        )
        dropout = dropout if (train and num_layers < i - 1) else 0.0
        fwd_inp, fwd_hidden = layer_fn(input, cur_hidden, cur_params, has_biases)
        final_hiddens.append(fwd_hidden)

        if bidirectional:
            bwd_inp, bwd_hidden = layer_fn(
                input, bidir_hidden, bidir_params, has_biases, reverse=True
            )
            final_hiddens.append(bwd_hidden)

        if bidirectional:
            input = torch.cat([fwd_inp, bwd_inp], fwd_inp.dim() - 1)  # type: ignore[possibly-undefined]
        else:
            input = fwd_inp

        if dropout != 0 and train and i < num_layers - 1:
            input = torch.dropout(input, dropout, train=True)

    input = input.transpose(0, 1) if batch_first else input
    return input, final_hiddens


@register_decomposition(aten.rnn_tanh.input)
@aten.rnn_tanh.input.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.rnn_tanh.input.py_impl(DispatchKey.Autograd)
def rnn_tanh_input(

    input,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

    batch_first,

):
    hidden = hx.unbind(0)
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        input,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        batch_first,
        partial(one_layer_rnn, hidden_fn=rnn_cell(torch.tanh)),
    )
    return out, torch.stack(final_hiddens, 0)


@register_decomposition(aten.rnn_relu.input)
@aten.rnn_relu.input.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.rnn_relu.input.py_impl(DispatchKey.Autograd)
def rnn_relu_input(

    input,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

    batch_first,

):
    hidden = hx.unbind(0)
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        input,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        batch_first,
        partial(one_layer_rnn, hidden_fn=rnn_cell(torch.relu)),
    )
    return out, torch.stack(final_hiddens, 0)


@register_decomposition(aten.rnn_relu.data)
@aten.rnn_relu.data.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.rnn_relu.data.py_impl(DispatchKey.Autograd)
def rnn_relu_data(

    data,

    batch_sizes,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

):
    hidden = hx.unbind(0)
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        data,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        False,
        partial(
            one_layer_rnn_data,
            batch_sizes=batch_sizes,
            hidden_fn=rnn_cell_data(torch.relu),
        ),
    )
    return out, torch.stack(final_hiddens, 0)


@register_decomposition(aten.rnn_tanh.data)
@aten.rnn_tanh.data.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.rnn_tanh.data.py_impl(DispatchKey.Autograd)
def rnn_tanh_data(

    data,

    batch_sizes,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

):
    hidden = hx.unbind(0)
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        data,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        False,
        partial(
            one_layer_rnn_data,
            batch_sizes=batch_sizes,
            hidden_fn=rnn_cell_data(torch.tanh),
        ),
    )
    return out, torch.stack(final_hiddens, 0)


def lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim):
    gates = F.linear(hx, hh_weight, hh_bias) + inp
    chunked_gates = gates.chunk(4, chunk_dim)
    in_gate = chunked_gates[0].sigmoid()
    forget_gate = chunked_gates[1].sigmoid()
    cell_gate = chunked_gates[2].tanh()
    out_gate = chunked_gates[3].sigmoid()
    cy = forget_gate * cx + (in_gate * cell_gate)
    hy = out_gate * cy.tanh()
    hy = hy if hr_weight is None else F.linear(hy, hr_weight, None)

    return hy, cy


def one_layer_lstm(inp, hidden, params, has_biases, reverse=False):
    ih_weight = params[0]
    hh_weight = params[1]
    ih_bias = params[2] if has_biases else None
    hh_bias = params[3] if has_biases else None
    hr_weight = (
        params[4] if len(params) == 5 else params[2] if len(params) == 3 else None
    )

    hx = hidden[0].unsqueeze(0)
    cx = hidden[1].unsqueeze(0)

    precomputed_input = F.linear(inp, ih_weight, ih_bias)
    precomputed_input = precomputed_input.flip(0) if reverse else precomputed_input
    step_output = []
    for inp in precomputed_input:
        hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=2)
        step_output.append(hx)

    if reverse:
        step_output.reverse()

    out = torch.cat(step_output, 0)

    return out, (hx.squeeze(1), cx.squeeze(1))


def one_layer_lstm_data(inp, hidden, params, has_biases, batch_sizes, reverse=False):
    ih_weight = params[0]
    hh_weight = params[1]
    ih_bias = params[2] if has_biases else None
    hh_bias = params[3] if has_biases else None
    hr_weight = (
        params[4] if len(params) == 5 else params[2] if len(params) == 3 else None
    )

    step_output = []
    hiddens = []

    last_batch_size = batch_sizes[-1] if reverse else batch_sizes[0]
    split_inp = torch.split(inp, list(batch_sizes))
    if reverse:
        split_inp = split_inp[::-1]

    orig_hx = hidden[0]
    orig_cx = hidden[1]
    hx, cx = orig_hx.narrow(0, 0, last_batch_size), orig_cx.narrow(
        0, 0, last_batch_size
    )

    for inp in split_inp:
        i = inp.shape[0]
        inp = F.linear(inp, ih_weight, ih_bias)

        # this will only happen when reverse=False, since batch sizes are sorted largest -> smallest
        if i < last_batch_size:
            hiddens.append(
                (
                    hx.narrow(0, i, last_batch_size - i),
                    cx.narrow(0, i, last_batch_size - i),
                )
            )
            hx, cx = hx.narrow(0, 0, i), cx.narrow(0, 0, i)

        # this will only happen when reverse=True
        if i > last_batch_size:
            hx = torch.concat(
                (hx, orig_hx.narrow(0, last_batch_size, i - last_batch_size)), 0
            )
            cx = torch.concat(
                (cx, orig_cx.narrow(0, last_batch_size, i - last_batch_size)), 0
            )

        hx, cx = lstm_cell(inp, hx, cx, hh_weight, hh_bias, hr_weight, chunk_dim=1)
        last_batch_size = i
        step_output.append(hx)

    if reverse:
        step_output.reverse()
        hidden_out = (hx, cx)
    else:
        hiddens.append((hx, cx))
        hiddens.reverse()
        hidden0, hidden1 = zip(*hiddens)
        hidden_out = torch.cat(hidden0, 0), torch.cat(hidden1, 0)

    out = torch.cat(step_output, 0)
    return out, hidden_out


def select_one_layer_lstm_function(input, hx, params):
    r"""Check whether we could use decompose lstm with mkldnn_rnn_layer.

    All the below conditions need to be met:

        * ``torch._C._get_mkldnn_enabled()`` returns ``True``.

        * All the input args are on CPU.

        * The dtypes of args are either torch.float or torch.bfloat16.

        * Inference.

        * ``has_projections`` returns ``False``.



    Args:

        * input: the input sequence to LSTM

        * hx: a tuple of the input hidden state and cell state ``(h_0, c_0)`` to LSTM

        * params: the weight and bias tensors of LSTM

    """

    def use_mkldnn(input, hx, params):
        if not torch._C._get_mkldnn_enabled():
            return False

        tensors = [input] + list(hx) + list(chain.from_iterable(params))
        devices = {t.device for t in tensors}
        if len(devices) != 1:
            return False

        device = devices.pop()
        if device != torch.device("cpu"):
            return False
        # With autocast, possible to have mixed dtype here
        dtypes = {t.dtype for t in tensors}
        for dtype in dtypes:
            if dtype not in [torch.float, torch.bfloat16]:
                return False

        if input.requires_grad:
            return False

        has_projections = hx[0].size(2) != hx[1].size(2)
        if has_projections:
            return False

        return True

    # mkldnn_one_layer_lstm does not depend on seq_len while one_layer_lstm
    # will expand over the seq_len dim
    if use_mkldnn(input, hx, params):
        return mkldnn_one_layer_lstm
    else:
        return one_layer_lstm


@register_decomposition(aten.lstm.input)
@aten.lstm.input.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.lstm.input.py_impl(DispatchKey.Autograd)
def lstm_impl(

    input,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

    batch_first,

):
    assert len(hx) == 2, "lstm expects two hidden states"
    params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2))
    hidden = list(zip(hx[0], hx[1]))
    layer_fn = select_one_layer_lstm_function(input, hx, params)
    out, final_hiddens = _rnn_helper(
        input,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        batch_first,
        layer_fn,
    )
    final_hiddens = list(zip(*final_hiddens))
    return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0)


@register_decomposition(aten.lstm.data)
@aten.lstm.data.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.lstm.data.py_impl(DispatchKey.Autograd)
def lstm_data_impl(

    data,

    batch_sizes,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

):
    assert len(hx) == 2, "lstm expects two hidden states"
    params = gather_params(params, has_biases, hx[0].size(2) != hx[1].size(2))
    hidden = list(zip(hx[0], hx[1]))
    out, final_hiddens = _rnn_helper(
        data,
        hidden,
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        False,
        partial(one_layer_lstm_data, batch_sizes=batch_sizes),
    )
    final_hiddens = list(zip(*final_hiddens))
    return out, torch.stack(final_hiddens[0], 0), torch.stack(final_hiddens[1], 0)


def gru_cell(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
    chunked_igates = inp.chunk(3, 1)
    chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 2)
    reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid()
    input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid()
    new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh()
    return (cur_hidden - new_gate) * input_gate + new_gate


def gru_cell_data(inp, cur_hidden, ih_weight, ih_bias, hh_weight, hh_bias):
    chunked_igates = F.linear(inp, ih_weight, ih_bias).chunk(3, 1)
    chunked_hgates = F.linear(cur_hidden, hh_weight, hh_bias).chunk(3, 1)
    reset_gate = (chunked_hgates[0] + chunked_igates[0]).sigmoid()
    input_gate = (chunked_hgates[1] + chunked_igates[1]).sigmoid()
    new_gate = (chunked_igates[2] + (chunked_hgates[2] * reset_gate)).tanh()
    return (cur_hidden - new_gate) * input_gate + new_gate


@register_decomposition(aten.gru.data)
@aten.gru.data.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.gru.data.py_impl(DispatchKey.Autograd)
def gru_impl_data(

    data,

    batch_sizes,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

):
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        data,
        hx.unbind(0),
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        False,
        partial(one_layer_rnn_data, batch_sizes=batch_sizes, hidden_fn=gru_cell_data),
    )
    return out, torch.stack(final_hiddens, 0)


@register_decomposition(aten.gru.input)
@aten.gru.input.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.gru.input.py_impl(DispatchKey.Autograd)
def gru_impl(

    input,

    hx,

    params,

    has_biases,

    num_layers,

    dropout,

    train,

    bidirectional,

    batch_first,

):
    params = gather_params(params, has_biases, False)
    out, final_hiddens = _rnn_helper(
        input,
        hx.unbind(0),
        params,
        has_biases,
        num_layers,
        dropout,
        train,
        bidirectional,
        batch_first,
        partial(one_layer_rnn, hidden_fn=gru_cell),
    )
    return out, torch.stack(final_hiddens, 0)


@register_decomposition(aten._upsample_bilinear2d_aa.vec)
@aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten._upsample_bilinear2d_aa.vec.py_impl(DispatchKey.Autograd)
def upsample_bilinear2d_aa_vec(input, output_size, align_corners, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_h = get_scale_value(scale_factors, 0)
    scale_w = get_scale_value(scale_factors, 1)
    return torch.ops.aten._upsample_bilinear2d_aa(
        input, osize, align_corners, scale_h, scale_w
    )


@register_decomposition(aten._upsample_bicubic2d_aa.vec)
@aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten._upsample_bicubic2d_aa.vec.py_impl(DispatchKey.Autograd)
def upsample_bicubic2d_aa_vec(input, output_size, align_corners, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scale_h = get_scale_value(scale_factors, 0)
    scale_w = get_scale_value(scale_factors, 1)
    return torch.ops.aten._upsample_bicubic2d_aa(
        input, osize, align_corners, scale_h, scale_w
    )


@register_decomposition(aten.upsample_bilinear2d.vec)
@register_decomposition(aten.upsample_trilinear3d.vec)
@aten.upsample_linear1d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_linear1d.vec.py_impl(DispatchKey.Autograd)
@aten.upsample_bilinear2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_bilinear2d.vec.py_impl(DispatchKey.Autograd)
@aten.upsample_trilinear3d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_trilinear3d.vec.py_impl(DispatchKey.Autograd)
def _upsample_linear_vec(input, output_size, align_corners, scale_factors):
    osize = upsample_compute_output_size(input.size(), output_size, scale_factors)
    scales = scale_factors if scale_factors else [None] * len(osize)
    return _upsample_linear(input, osize, align_corners, scales)


@register_decomposition([aten.upsample_linear1d.default, aten.upsample_linear1d.out])
@out_wrapper()
def upsample_linear1d(

    input: Tensor,

    output_size: List[int],

    align_corners: bool,

    scales_w: Optional[float] = None,

) -> Tensor:
    return _upsample_linear(input, output_size, align_corners, [scales_w])


@register_decomposition(

    [aten.upsample_bilinear2d.default, aten.upsample_bilinear2d.out]

)
@aten.upsample_bilinear2d.default.py_impl(DispatchKey.Autograd)
@out_wrapper()
def upsample_bilinear2d(

    input: Tensor,

    output_size: List[int],

    align_corners: bool,

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    return _upsample_linear(input, output_size, align_corners, [scales_h, scales_w])


@register_decomposition(

    [aten.upsample_trilinear3d.default, aten.upsample_trilinear3d.out]

)
@out_wrapper()
def upsample_trilinear3d(

    input: Tensor,

    output_size: List[int],

    align_corners: bool,

    scales_d: Optional[float] = None,

    scales_h: Optional[float] = None,

    scales_w: Optional[float] = None,

) -> Tensor:
    return _upsample_linear(
        input, output_size, align_corners, [scales_d, scales_h, scales_w]
    )


def _compute_scale(in_size, out_size, align_corners, scale=None):
    if align_corners:
        return (in_size - 1.0) / (out_size - 1.0) if out_size > 1 else 0
    else:
        return 1.0 / scale if scale is not None and scale > 0 else in_size / out_size


def _compute_source_index(scale, dst_index, align_corners):
    if align_corners:
        return scale * dst_index
    else:
        return scale * (dst_index + 0.5) - 0.5


@pw_cast_for_opmath
def _upsample_linear(

    input: Tensor,

    output_size: List[int],

    align_corners: bool,

    scales: List[Optional[float]],

) -> Tensor:
    # get dimensions of original image
    n_batch, n_channels = input.shape[:2]
    inp_sizes = input.shape[2:]
    n_dims = len(inp_sizes)

    _, dtype = utils.elementwise_dtypes(
        input,
        type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
    )

    def get_values(inp_size, out_size, scales, nsqueeze):
        # First Calculate scaling factor
        scale_factor = _compute_scale(inp_size, out_size, align_corners, scales)
        # We have to create arange with int64 dtype and use .to in order to avoid
        # additional kernels creation in inductor and get a perf slowdown
        i = torch.arange(out_size, device=input.device).to(dtype=dtype)

        x_f32 = _compute_source_index(scale_factor, i, align_corners).clamp(min=0.0)
        x_f32 = x_f32.reshape(x_f32.shape[0], *[1] * (nsqueeze))
        x = x_f32.to(torch.int64)
        xp1 = (x + 1).clamp(max=inp_size - 1)
        return x_f32, x, xp1

    values = [
        get_values(inp_size, out_size, scales, n_dims - 1 - i)
        for i, (inp_size, out_size, scales) in enumerate(
            zip(inp_sizes, output_size, scales)
        )
    ]
    xs_f32, xs, xp1s = list(zip(*values))

    vs = []
    for a in product(*[[0, 1]] * n_dims):
        idx = [None, None] + [xs[k] if a[k] == 0 else xp1s[k] for k in range(n_dims)]
        v = aten._unsafe_index(input, idx)
        v = _maybe_convert_to_dtype(v, dtype)
        vs.append(v)

    for i in reversed(range(n_dims)):
        xscale = (xs_f32[i] - xs[i]).clamp(0.0, 1.0).to(dtype)
        vs = [
            # x1 * (1 - alpha) + x2 * alpha == x1 + (x2 - x1) * alpha
            v1 + torch.mul(v2 - v1, xscale)
            for v1, v2 in zip(vs[::2], vs[1::2])
        ]

    assert len(vs) == 1
    result = vs[0]

    # convert output to correct memory format, if necessary
    memory_format = utils.suggest_memory_format(input)

    # following "heuristic: only use channels_last path when it's faster than the contiguous path"
    if input.device.type == "cuda" and n_channels < 16:
        memory_format = torch.contiguous_format

    assert isinstance(result, torch.Tensor)

    result = result.contiguous(memory_format=memory_format)

    if not input.is_floating_point():
        result = result.round()

    return result


# We should be applying decompositions after all transformations
@register_decomposition(aten.is_same_size.default)
def is_same_size(a: Tensor, b: Tensor) -> bool:
    return a.shape == b.shape


@register_decomposition([aten._reshape_alias, aten._unsafe_view])
@out_wrapper()
def _reshape_alias(x, shape, *args):
    return aten.view(x, shape)


@register_decomposition([aten._unsafe_index])
def _index(x, indices):
    return aten.index(x, indices)


def _nll_loss_forward(

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

) -> Tuple[Tensor, Tensor]:
    # self can be [N, C] or [C]
    # target can be [N] or []

    n_dims = self.dim()
    channel_dim = 1
    if n_dims < 2:
        channel_dim = 0

    if weight is not None:
        if n_dims > 1:
            shape = [
                1,
            ] * n_dims
            shape[channel_dim] = weight.shape[0]
            w = weight.view(shape)
        else:
            w = weight
        self = self * w
    safe_target = torch.where(target != ignore_index, target, 0)
    safe_target_ = safe_target.unsqueeze(channel_dim)
    # target can be [N, 1] or [1]

    result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim)

    result = torch.where(target != ignore_index, result, 0)

    if reduction == Reduction.NONE.value and n_dims > 1:
        total_weight = self.new_full((), 0.0)
        return result, total_weight

    if weight is not None:
        w = w.expand(self.shape)
        wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim)
        wsum = torch.where(target != ignore_index, wsum, 0)
        total_weight = wsum.sum()
    else:
        total_weight = (target != ignore_index).sum().to(self)

    if reduction == Reduction.SUM.value:
        result = result.sum()
    elif reduction == Reduction.MEAN.value:
        result = result.sum() / total_weight

    return result, total_weight


@register_decomposition(aten.nll_loss_forward)
@out_wrapper("output", "total_weight")
def nll_loss_forward(

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

) -> Tuple[Tensor, Tensor]:
    assert self.dim() > 0 and self.dim() <= 2, "input tensor should be 1D or 2D"
    assert (
        target.dim() <= 1
    ), "0D or 1D target tensor expected, multi-target not supported"

    no_batch_dim = self.dim() == 1 and target.dim() == 0
    assert no_batch_dim or (
        self.shape[0] == target.shape[0]
    ), f"size mismatch (got input: {self.shape}, target: {target.shape})"

    n_classes = self.shape[-1]

    assert weight is None or (
        weight.dim() == 1 and weight.numel() == n_classes
    ), f"weight tensor should be defined either for all {n_classes} classes or no classes but got weight tensor of shape: {weight.shape}"  # noqa: B950

    return _nll_loss_forward(self, target, weight, reduction, ignore_index)


@register_decomposition(aten.nll_loss2d_forward)
@out_wrapper("output", "total_weight")
def nll_loss2d_forward(

    self: Tensor,

    target: Tensor,

    weight: Optional[Tensor],

    reduction: int,

    ignore_index: int,

) -> Tuple[Tensor, Tensor]:
    return _nll_loss_forward(self, target, weight, reduction, ignore_index)


# These are adapted from aten/src/ATen/native/UpSample.h, wich is based on
# https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
def _upsample_cubic_convolution1(x: Tensor, A: float) -> Tensor:
    return ((A + 2) * x - (A + 3)) * x * x + 1


def _upsample_cubic_convolution2(x: Tensor, A: float) -> Tensor:
    return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A


def _upsample_get_cubic_coefficients(t: Tensor) -> TensorSequenceType:
    A = -0.75
    return (
        _upsample_cubic_convolution2(t + 1.0, A),
        _upsample_cubic_convolution1(t, A),
        _upsample_cubic_convolution1(1.0 - t, A),
        _upsample_cubic_convolution2(2.0 - t, A),
    )


def _upsample_cubic_interp1d(coeffs: TensorSequenceType, ts: Tensor) -> Tensor:
    coeffs2 = _upsample_get_cubic_coefficients(ts)
    return _sum_tensors(c1 * c2 for (c1, c2) in zip(coeffs, coeffs2))


# Need this instead of just sum() to keep mypy happy
def _sum_tensors(ts: Iterable[Tensor]) -> Tensor:
    return reduce(torch.add, ts)


def _linspace_from_neg_one(

    num_steps: int, align_corners: bool, dtype: torch.dtype, device: torch.device

):
    if num_steps <= 1:
        return torch.tensor(0, device=device, dtype=dtype)

    a = ((num_steps - 1) / num_steps) if not align_corners else 1
    return torch.linspace(-a, a, steps=num_steps, device=device, dtype=dtype)


def _make_base_grid_4d(theta: Tensor, h: int, w: int, align_corners: bool):
    dtype = theta.dtype
    device = theta.device

    # Using padding and summation generates a single kernel vs using torch.stack where 3 kernels generated
    # corresponding to each individual tensor: grid_x, grid_y, grid_one
    grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, w, 1)
    grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(h, 1, 1)
    grid_one = torch.ones((1, 1, 1), dtype=dtype, device=device)

    # this is just a temporary hack and we should use torch.stack here once #104480 is merged
    grid_x = torch.nn.functional.pad(grid_x, pad=(0, 2), mode="constant", value=0)
    grid_y = torch.nn.functional.pad(grid_y, pad=(1, 1), mode="constant", value=0)
    grid_one = torch.nn.functional.pad(grid_one, pad=(2, 0), mode="constant", value=0)
    return grid_x + grid_y + grid_one


def _make_base_grid_5d(theta: Tensor, d: int, h: int, w: int, align_corners: bool):
    dtype = theta.dtype
    device = theta.device

    grid_x = _linspace_from_neg_one(w, align_corners, dtype, device).view(1, 1, w, 1)
    grid_y = _linspace_from_neg_one(h, align_corners, dtype, device).view(1, h, 1, 1)
    grid_z = _linspace_from_neg_one(d, align_corners, dtype, device).view(d, 1, 1, 1)
    grid_one = torch.ones((1, 1, 1, 1), dtype=dtype, device=device)

    # this is just a temporary hack and we should use torch.stack here once #104480 is merged
    grid_x = torch.nn.functional.pad(grid_x, pad=(0, 3), mode="constant", value=0)
    grid_y = torch.nn.functional.pad(grid_y, pad=(1, 2), mode="constant", value=0)
    grid_z = torch.nn.functional.pad(grid_z, pad=(2, 1), mode="constant", value=0)
    grid_one = torch.nn.functional.pad(grid_one, pad=(3, 0), mode="constant", value=0)
    return grid_x + grid_y + grid_z + grid_one


def _affine_grid_generator_4d(theta: Tensor, size: List[int], align_corners: bool):
    n, _, h, w = size
    base_grid = _make_base_grid_4d(theta, h, w, align_corners=align_corners)
    # base_grid shape is (h, w, 3) and theta shape is (n, 2, 3)
    # We do manually a matrix multiplication which is faster than mm()
    # (h * w, 3, 1) * (n, 1, 3, 2) -> (n, h * w, 2)
    grid = (base_grid.view(-1, 3, 1) * theta.mT.unsqueeze(1)).sum(-2)
    return grid.view(n, h, w, 2)


def _affine_grid_generator_5d(theta: Tensor, size: List[int], align_corners: bool):
    n, _, d, h, w = size
    base_grid = _make_base_grid_5d(theta, d, h, w, align_corners=align_corners)
    # base_grid shape is (d, h, w, 4) and theta shape is (n, 3, 4)
    # We do manually a matrix multiplication which is faster than mm()
    # (d * h * w, 4, 1) * (n, 1, 4, 3) -> (n, h * w, 3)
    grid = (base_grid.view(-1, 4, 1) * theta.mT.unsqueeze(1)).sum(-2)
    return grid.view(n, d, h, w, 3)


@register_decomposition(aten.affine_grid_generator)
@out_wrapper()
@pw_cast_for_opmath
def affine_grid_generator(theta: Tensor, size: List[int], align_corners: bool):
    torch._check(
        len(size) in (4, 5),
        lambda: "affine_grid_generator needs 4d (spatial) or 5d (volumetric) inputs.",
    )
    if len(size) == 4:
        return _affine_grid_generator_4d(theta, size, align_corners=align_corners)
    else:
        return _affine_grid_generator_5d(theta, size, align_corners=align_corners)


def _grid_sampler_2d(

    a: Tensor,

    grid: Tensor,

    interpolation_mode: int = 0,

    padding_mode: int = 0,

    align_corners: bool = False,

    _expand_grid: bool = True,

) -> Tensor:
    # This method is a copy of grid_sampler_2d implementation and introduced with additional arg _expand_grid to
    # optionally expand the input grid for performance reasons.
    # Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
    # and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
    # However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
    # Thus we apply this hack to not expand the grid for this case.

    torch._check(
        interpolation_mode in (0, 1, 2),
        lambda: f"Invalid interpolation mode {interpolation_mode}",
    )
    torch._check(
        padding_mode in (0, 1, 2), lambda: f"Invalid padding mode {padding_mode}"
    )

    def unnormalize(coords: Tensor, size: int) -> Tensor:
        # Rescale coordinates from [-1, 1] to:
        #   [0, size - 1] if align_corners is True
        #   [-.5, size -.5] if align_corners is False
        mul = (size * 0.5 - 0.5) if align_corners else (size * 0.5)
        ofs = size * 0.5 - 0.5
        return coords * mul + ofs

    # Reflects coordinates until they fall between low and high (inclusive).
    # The bounds are passed as twice their value so that half-integer values
    # can be represented as ints.
    def reflect_coordinates(coords: Tensor, twice_low: int, twice_high: int) -> Tensor:
        if twice_low == twice_high:
            return torch.zeros_like(coords)
        coords_min = twice_low / 2
        coords_span = (twice_high - twice_low) / 2
        coords2 = (coords - coords_min).abs()
        extra = torch.fmod(coords2, coords_span)
        flips = (coords2 / coords_span).floor().to(dtype=torch.int8)
        return torch.where(
            flips & 1 == 0, extra + coords_min, coords_span + coords_min - extra
        )

    def compute_coordinates(coords: Tensor, size: int) -> Tensor:
        if padding_mode == 0:  # Zero
            return coords
        elif padding_mode == 1:  # Borders
            return torch.clamp(coords, 0, size - 1)
        else:  # padding_mode == 2, Reflection
            if align_corners:
                coords_reflected = reflect_coordinates(coords, 0, 2 * (size - 1))
            else:
                coords_reflected = reflect_coordinates(coords, -1, 2 * size - 1)
            return torch.clamp(coords_reflected, 0, size - 1)

    def compute_source_index(coords: Tensor, size: int) -> Tensor:
        coords_un = unnormalize(coords, size)
        return compute_coordinates(coords_un, size)

    N, C, iH, iW = a.shape
    _, oH, oW, two = grid.shape
    assert two == 2

    if _expand_grid:
        # Let's expand grid to [N, C, oH, oW, 2]
        # This allows to generate a single triton cuda kernel instead of two kernels.
        # Two kernels are due source indices, weights have shape (N, 1, oH, oW), xnumel=N*oH*oW
        # and output has shape (N, C, oH, oW), xnumel=N*C*oH*oW
        # Expanding grid to (N, C, oH, oW, two) unifies xnumel to N*C*oH*oW
        grid = grid.view(N, 1, oH, oW, two).expand(N, C, oH, oW, 2)

    def in_bounds_cond(xs: Tensor, ys: Tensor) -> Tensor:
        return torch.logical_and(
            0 <= xs, torch.logical_and(xs < iW, torch.logical_and(0 <= ys, ys < iH))
        )

    N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1)
    C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1)

    def clip(xs: Tensor, ys: Tensor, ws: Tensor) -> TensorSequenceType:
        cond = in_bounds_cond(xs, ys)
        # To clip to inside valid coordinates, we map the coordinates
        # to (x, y) = (0, 0) and also set the weight to 0
        # We also change the shape of the tensor to the appropriate one for
        # broadcasting with N_idx, C_idx for the purposes of advanced indexing
        c = C if _expand_grid else 1
        return tuple(
            torch.where(cond, t, 0).view(N, c, oH, oW)
            for t in (xs.to(dtype=torch.int64), ys.to(dtype=torch.int64), ws)
        )

    def get_summand(ix: Tensor, iy: Tensor, w) -> Tensor:
        # Perform clipping, index into input tensor and multiply by weight
        idx_x, idx_y, w_ = clip(ix, iy, w)
        return a[N_idx, C_idx, idx_y, idx_x] * w_

    x = grid[..., 0]
    y = grid[..., 1]

    if interpolation_mode == 0:  # Bilinear
        ix = compute_source_index(x, iW)
        iy = compute_source_index(y, iH)

        ix_nw, iy_nw = ix.floor(), iy.floor()
        ix_ne, iy_ne = ix_nw + 1, iy_nw
        ix_sw, iy_sw = ix_nw, iy_nw + 1
        ix_se, iy_se = ix_ne, iy_sw

        w_nw = (ix_se - ix) * (iy_se - iy)
        w_ne = (ix - ix_sw) * (iy_sw - iy)
        w_sw = (ix_ne - ix) * (iy - iy_ne)
        w_se = (ix - ix_nw) * (iy - iy_nw)

        return _sum_tensors(
            get_summand(ix, iy, w)
            for (ix, iy, w) in (
                (ix_nw, iy_nw, w_nw),
                (ix_ne, iy_ne, w_ne),
                (ix_sw, iy_sw, w_sw),
                (ix_se, iy_se, w_se),
            )
        )
    elif interpolation_mode == 1:  # Nearest
        ix = compute_source_index(x, iW)
        iy = compute_source_index(y, iH)

        ix_nearest = ix.round()
        iy_nearest = iy.round()

        return get_summand(ix_nearest, iy_nearest, 1)
    else:  # interpolation_mode == 2, Bicubic
        ix = unnormalize(x, iW)
        iy = unnormalize(y, iH)

        ix_nw = ix.floor()
        iy_nw = iy.floor()

        tx = ix - ix_nw
        ty = iy - iy_nw

        if not _expand_grid:
            tx = tx.unsqueeze(1)
            ty = ty.unsqueeze(1)

        def get_value_bounded(ix: Tensor, iy: Tensor) -> Tensor:
            x = compute_coordinates(ix, iW)
            y = compute_coordinates(iy, iH)
            return get_summand(x, y, 1)

        def get_coeff(ofs: int) -> Tensor:
            iy_ofs = iy_nw + (ofs - 1)
            cs = (
                get_value_bounded(ix_nw - 1, iy_ofs),
                get_value_bounded(ix_nw, iy_ofs),
                get_value_bounded(ix_nw + 1, iy_ofs),
                get_value_bounded(ix_nw + 2, iy_ofs),
            )
            return _upsample_cubic_interp1d(cs, tx)

        coeffs = tuple(get_coeff(ofs) for ofs in range(4))
        return _upsample_cubic_interp1d(coeffs, ty)


@register_decomposition(aten.grid_sampler_2d)
@out_wrapper()
@pw_cast_for_opmath
def grid_sampler_2d(

    a: Tensor,

    grid: Tensor,

    interpolation_mode: int = 0,

    padding_mode: int = 0,

    align_corners: bool = False,

) -> Tensor:
    return _grid_sampler_2d(
        a,
        grid=grid,
        interpolation_mode=interpolation_mode,
        padding_mode=padding_mode,
        align_corners=align_corners,
    )


@register_decomposition(aten.mv)
@out_wrapper()
@pw_cast_for_opmath
def mv(self, vec):
    torch._check(
        self.dim() == 2 and vec.dim() == 1,
        lambda: f"matrix @ vector expected, got {self.dim()}, {vec.dim()}",
    )
    torch._check(
        self.size(1) == vec.size(0),
        lambda: f"size mismatch, got input ({self.size(0)}x{self.size(1)}), vec ({vec.size(0)})",
    )
    return (self * vec).sum(dim=1)


@register_decomposition(aten.binary_cross_entropy_with_logits)
@out_wrapper()
def binary_cross_entropy_with_logits(

    self, target, weight=None, pos_weight=None, reduction=Reduction.MEAN.value

):
    if pos_weight is not None:
        log_weight = (pos_weight - 1) * target + 1
        loss = (1 - target) * self - (log_weight * F.logsigmoid(self))
    else:
        loss = (1 - target) * self - F.logsigmoid(self)

    if weight is not None:
        loss = loss * weight

    return apply_loss_reduction(loss, reduction)


def should_fold(tensor1: torch.Tensor, tensor2: torch.Tensor, is_out: bool) -> bool:
    # For comments of the logic of this function see eager in /native/LinearAlgebra.cpp

    t1, t2 = (tensor1, tensor2) if tensor1.ndim >= tensor2.ndim else (tensor2, tensor1)

    from torch.fx.experimental.symbolic_shapes import guard_size_oblivious

    if not (t1.ndim >= 3 and t2.ndim <= 2):
        return False
    if t2.requires_grad and not is_out:
        return True
    if tensor1.ndim == 2:
        return False
    if guard_size_oblivious(t1.numel() == 0):
        return True

    t1_shape = t1.shape
    t1_stride = t1.stride()
    return all(
        st1 == st2 * s2
        for (st1, st2, s2) in zip(t1_stride[:-2], t1_stride[1:-1], t1_shape[1:-1])
    )


@aten.matmul.default.py_impl(DispatchKey.CompositeImplicitAutograd)
@out_wrapper(pass_is_out=True)
def matmul(tensor1, tensor2, *, is_out=False):
    dim_tensor1 = tensor1.dim()
    dim_tensor2 = tensor2.dim()
    assert dim_tensor1 != 0 and dim_tensor2 != 0
    if dim_tensor1 == 1 and dim_tensor2 == 1:
        return torch.dot(tensor1, tensor2)
    elif dim_tensor1 == 2 and dim_tensor2 == 1:
        return torch.mv(tensor1, tensor2)
    elif dim_tensor1 == 1 and dim_tensor2 == 2:
        return torch.squeeze(torch.mm(torch.unsqueeze(tensor1, 0), tensor2), 0)
    elif dim_tensor1 == 2 and dim_tensor2 == 2:
        return torch.mm(tensor1, tensor2)
    elif should_fold(tensor1, tensor2, is_out):
        # dim_tensor1 >=3 && (dim_tensor2 == 1 || dim_tensor2 == 2) ||
        # dim_tensor2 >=3 && (dim_tensor1 == 1 || dim_tensor1 == 2)
        # and some condition on the strides is fulfilled

        # optimization: use mm instead of bmm by folding the batch of the larger tensor
        # into its leading matrix dimension
        transpose = dim_tensor2 > dim_tensor1
        t1 = tensor2.mT if transpose else tensor1
        t2 = (
            tensor2 if not transpose else (tensor1.t() if dim_tensor1 == 2 else tensor1)
        )
        # Invariant: t1.dim() >= 3 && (t2.dim() == 1 || t2.dim() == 2)
        #            and t1 and t2 are matmul-compatible

        # Why not t1.view(-1, sizes_1[-1])?
        # If the last dim is 0, then view(-1, 0) won't work because the -1 becomes ambiguous.
        # This can happen in e.g. [3, 5, 0] @ [0, 0].
        sizes_1 = t1.shape
        output_shape = list(sizes_1[:-1])
        folded_dim1 = reduce(operator.mul, output_shape)

        # Readjust output_shape if we are multiplying by a matrix
        t2_is_matrix = t2.dim() == 2
        if t2_is_matrix:
            output_shape.append(t2.shape[1])

        # This will almost always be a view.
        # It may not be a view if t2->requires_grad(). See should_fold in aten/ for an explanation
        t1_folded = t1.reshape(folded_dim1, sizes_1[-1])
        if t2_is_matrix:
            # This copies if we perform a 2D @ 3D and the first tensor requires_grad
            # See should_fold native/LinearAlgebra.cpp for why.
            output = t1_folded.mm(t2).view(output_shape)
            return output.mT.contiguous() if transpose else output
        else:
            return t1_folded.mv(t2).view(output_shape)

    elif dim_tensor1 >= 1 and dim_tensor2 >= 1:
        # We are multiplying b1 x n x m1 by x2 x m2 x p (where b1 can be a list);
        # we track m1 vs m2 separately even though they must match for nicer error messages
        n = tensor1.size(-2) if dim_tensor1 > 1 else 1
        m1 = tensor1.size(-1)
        batch_tensor1 = tensor1.shape[:-2]
        m2 = tensor2.size(-2) if dim_tensor2 > 1 else tensor2.size(-1)
        p = tensor2.size(-1) if dim_tensor2 > 1 else 1

        batch_tensor2: List[int] = []
        # TODO: handling of slice
        for i in range(dim_tensor2 - 2):
            batch_tensor2.append(tensor2.size(i))

        # Same optimization for the gradients as that in should_fold
        # If we're going to broadcast, we force it to go through the should_fold branch
        if (
            dim_tensor1 == 3
            and dim_tensor2 == 3
            and batch_tensor1[0] != batch_tensor2[0]
        ):
            if batch_tensor1[0] == 1 and tensor1.requires_grad:
                return matmul(tensor1.squeeze(0), tensor2)
            if batch_tensor2[0] == 1 and tensor2.requires_grad:
                return matmul(tensor1, tensor2.squeeze(0))

        # expand the batch portion (i.e. cut off matrix dimensions and expand rest)
        expand_batch_portion = list(
            torch.broadcast_shapes(batch_tensor1, batch_tensor2)
        )

        tensor1_expand_size = expand_batch_portion + [n, m1]

        expand_batch_product = prod(expand_batch_portion)

        # HACK: We need reshape with symint support
        tensor1_expanded = tensor1.expand(tensor1_expand_size).reshape(
            expand_batch_product, n, m1
        )

        vector_rhs = dim_tensor2 == 1
        if vector_rhs:
            tensor2_expand_size = expand_batch_portion + [m2]
            tensor2_expanded = (
                tensor2.expand(tensor2_expand_size)
                .reshape(expand_batch_product, m2)
                .unsqueeze(2)
            )
        else:
            tensor2_expand_size = expand_batch_portion + [m2, p]
            tensor2_expanded = tensor2.expand(tensor2_expand_size).reshape(
                expand_batch_product, m2, p
            )

        output_shape = expand_batch_portion
        if dim_tensor1 > 1:
            output_shape.append(n)

        if dim_tensor2 > 1:
            output_shape.append(p)

        if vector_rhs:
            return tensor1_expanded.bmm(tensor2_expanded).squeeze(-1).view(output_shape)
        else:
            return tensor1_expanded.bmm(tensor2_expanded).view(output_shape)
    else:
        torch._check(False, lambda: "both arguments to matmul need to be at least 1D")


@register_decomposition(aten.upsample_bicubic2d.default)
@pw_cast_for_opmath
def upsample_bicubic2d_default(

    a: Tensor,

    output_size: Tuple[int, int],

    align_corners: bool,

    scale_h: Optional[float] = None,

    scale_w: Optional[float] = None,

) -> Tensor:
    N, C, iH, iW = a.shape
    oH, oW = output_size

    def compute_scale(in_size, out_size, align_corners, scale=None):
        if align_corners:
            return (in_size - 1) / (out_size - 1) if out_size > 1 else 0
        else:
            return 1 / scale if scale is not None and scale > 0 else in_size / out_size

    def compute_source_index(scale, dst_index, align_corners):
        if align_corners:
            return scale * dst_index
        else:
            return scale * (dst_index + 0.5) - 0.5

    height_scale = compute_scale(iH, oH, align_corners, scale_h)
    width_scale = compute_scale(iW, oW, align_corners, scale_w)

    N_idx = torch.arange(N, device=a.device).view(N, 1, 1, 1)
    C_idx = torch.arange(C, device=a.device).view(1, C, 1, 1)
    out_y = torch.arange(oH, device=a.device).view((1, 1, oH, 1))
    out_x = torch.arange(oW, device=a.device).view((1, 1, 1, oW))

    real_x = compute_source_index(width_scale, out_x, align_corners)
    in_x = real_x.floor()
    t_x = real_x - in_x
    ix = in_x.to(dtype=torch.int64)

    real_y = compute_source_index(height_scale, out_y, align_corners)
    in_y = real_y.floor()
    t_y = real_y - in_y
    iy = in_y.to(dtype=torch.int64)

    iys_ofs = (iy - 1, iy, iy + 1, iy + 2)
    ixs_ofs = (ix - 1, ix, ix + 1, ix + 2)

    def load_bounded(ys, xs):
        y_idx = torch.clamp(ys, 0, iH - 1)
        x_idx = torch.clamp(xs, 0, iW - 1)
        return aten._unsafe_index(a, [N_idx, C_idx, y_idx, x_idx])

    def get_x_interp(y):
        coeffs_x = tuple(load_bounded(y, x_ofs) for x_ofs in ixs_ofs)
        return _upsample_cubic_interp1d(coeffs_x, t_x)

    coeffs_y = tuple(get_x_interp(y_ofs) for y_ofs in iys_ofs)
    result = _upsample_cubic_interp1d(coeffs_y, t_y)

    # convert output to correct memory format, if necessary
    memory_format = utils.suggest_memory_format(a)
    result = result.contiguous(memory_format=memory_format)
    return result


@register_decomposition(aten.upsample_bicubic2d.vec)
@aten.upsample_bicubic2d.vec.py_impl(DispatchKey.CompositeImplicitAutograd)
@aten.upsample_bicubic2d.vec.py_impl(DispatchKey.Autograd)
@out_wrapper()
@pw_cast_for_opmath
def upsample_bicubic2d_vec(

    a: Tensor,

    output_size: Optional[Tuple[int, int]],

    align_corners: bool,

    scale_factors: Optional[Tuple[float, float]] = None,

) -> Tensor:
    torch._check(
        bool(output_size) + bool(scale_factors) == 1,
        lambda: "Must specify exactly one of output_size and scale_factors.",
    )
    if output_size is None:
        assert scale_factors is not None
        output_size = cast(
            Tuple[int, int],
            tuple(
                sym_int(sym_float(w) * scale)
                for w, scale in zip(a.shape[2:], scale_factors)
            ),
        )
    scale_h, scale_w = scale_factors if scale_factors else (None, None)
    return upsample_bicubic2d_default(a, output_size, align_corners, scale_h, scale_w)


@register_decomposition(aten.reflection_pad1d)
@register_decomposition(aten.reflection_pad2d)
@register_decomposition(aten.reflection_pad3d)
@pw_cast_for_opmath
@out_wrapper()
def _reflection_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
    def idx(left, middle, right):
        dim_idx = torch.arange(-left, middle + right, device=a.device)
        return middle - 1 - (middle - 1 - dim_idx.abs()).abs()

    return _reflection_or_replication_pad(
        a,
        padding,
        idx,
    )


@register_decomposition(aten.replication_pad1d)
@register_decomposition(aten.replication_pad2d)
@register_decomposition(aten.replication_pad3d)
@pw_cast_for_opmath
@out_wrapper()
def _replication_pad(a: Tensor, padding: Tuple[int, ...]) -> Tensor:
    def idx(left, middle, right):
        dim_idx = torch.arange(-left, middle + right, device=a.device)
        return torch.clamp(dim_idx, 0, middle - 1)

    return _reflection_or_replication_pad(
        a,
        padding,
        idx,
    )


def _reflection_or_replication_pad(

    a: Tensor,

    padding: Tuple[int, ...],

    idx_fn: Callable[[int, int, int], Tensor],

) -> Tensor:
    dim = len(padding) // 2
    torch._check(
        a.dim() in (dim + 1, dim + 2),
        lambda: f"reflection_pad{dim}d requires {dim + 1}D or {dim + 2}D input",
    )
    inp_shape = a.shape[-dim:]
    nc_dim = a.dim() - dim

    padding_left = [padding[2 * (dim - 1 - i)] for i in range(dim)]
    padding_right = [padding[2 * (dim - 1 - i) + 1] for i in range(dim)]

    result = a
    for i in range(dim):
        idx: List[Any] = [None] * result.dim()
        idx[i + nc_dim] = idx_fn(padding_left[i], inp_shape[i], padding_right[i])
        result = aten._unsafe_index(result, idx)

    # convert output to correct memory format, if necessary
    memory_format = utils.suggest_memory_format(result)
    result = result.contiguous(memory_format=memory_format)
    return result


@register_decomposition(aten.aminmax)
@out_wrapper("min", "max")
def aminmax(self, *, dim=None, keepdim=False):
    amin = torch.amin(self, dim=dim, keepdim=keepdim)
    amax = torch.amax(self, dim=dim, keepdim=keepdim)
    return amin, amax


@register_decomposition(aten.nansum)
@out_wrapper()
def nansum(self, dim=None, keepdim=False, *, dtype=None):
    return aten.sum(torch.where(torch.isnan(self), 0, self), dim, keepdim, dtype=dtype)


@register_decomposition([aten.arange.default, aten.arange.out])
@out_wrapper()
def arange_default(

    end: NumberType,

    *,

    dtype: Optional[torch.dtype] = None,

    layout: torch.layout = torch.strided,

    device: Optional[torch.device] = None,

    pin_memory: bool = False,

):
    return aten.arange.start_step(
        0, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
    )


@register_decomposition([aten.arange.start])
def arange_start(

    start: NumberType,

    end: NumberType,

    *,

    dtype: Optional[torch.dtype] = None,

    layout: torch.layout = torch.strided,

    device: Optional[torch.device] = None,

    pin_memory: bool = False,

):
    return aten.arange.start_step(
        start, end, 1, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
    )


@register_decomposition(out_dtype)
def out_dtype_decomp(*args, **kwargs):
    from torch._higher_order_ops.out_dtype import out_dtype_dense

    return out_dtype_dense(*args, **kwargs)


@register_decomposition(aten.multi_margin_loss)
@aten.multi_margin_loss.default.py_impl(DispatchKey.Autograd)
@out_wrapper()
def multi_margin_loss(

    input: Tensor,

    target: Tensor,

    p: NumberType = 1,

    margin: NumberType = 1,

    weight: Optional[Tensor] = None,

    reduction: int = Reduction.MEAN.value,

) -> Tensor:
    input = torch.atleast_2d(input)
    target = torch.atleast_1d(target)
    nframe = input.shape[0]
    dim = input.shape[1]
    torch._check(p == 1 or p == 2, lambda: "only p == 1 and p == 2 supported")
    torch._check(
        input.ndim == 2 and dim != 0,
        lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {input.shape}",
    )
    torch._check(
        target.ndim == 1 and target.numel() == nframe,
        lambda: f"inconsistent target size, expected {nframe} but got {target.shape}",
    )
    if weight is not None:
        weight = torch.atleast_1d(weight)
        torch._check(
            weight.ndim == 1 and weight.numel() == dim,  # type: ignore[union-attr]
            lambda: f"inconsistent weight size, expected {dim} but got {weight.shape}",  # type: ignore[union-attr]
        )
    target = target.unsqueeze(1)
    u = torch.gather(input, dim=1, index=target)
    z = margin - u + input
    z = z.clamp_min(0)
    z = z if p == 1 else z * z
    if weight is not None:
        z = z * weight[target]
    idx = torch.arange(dim, device=input.device)
    z = torch.where(idx != target, z, 0)
    if reduction == Reduction.MEAN.value:
        return z.mean()
    elif reduction == Reduction.SUM.value:
        return z.sum() / z.shape[1]
    else:
        return z.mean(dim=1)


@register_decomposition(aten.multilabel_margin_loss_forward)
@aten.multilabel_margin_loss_forward.default.py_impl(DispatchKey.Autograd)
@out_wrapper("output", "is_target")
def multilabel_margin_loss_forward(

    input: Tensor,

    target: Tensor,

    reduction: int,

) -> Tuple[Tensor, Tensor]:
    orig_input_shape = input.shape
    orig_target_shape = target.shape
    input = torch.atleast_2d(input)
    target = torch.atleast_2d(target)
    dim = input.shape[1]
    torch._check(
        len(orig_input_shape) <= 2 and dim != 0,
        lambda: f"Expected non-empty vector or matrix with optional 0-dim batch size, but got: {orig_input_shape}",
    )
    torch._check(
        len(orig_target_shape) <= 2 and orig_target_shape == orig_input_shape,
        lambda: f"inconsistent target size: {orig_target_shape} for input of size: {orig_input_shape}",
    )
    # ignores labels after the first -1, detects when -1 is not present
    idx = torch.arange(dim, device=target.device)
    is_end = target == -1
    end_idx = torch.amin(torch.where(is_end, idx, dim), dim=-1, keepdim=True)
    # target indices
    target_mask = idx < end_idx
    # masks target to be able to use gather, which doesn't allow -1
    tidx0 = torch.where(target_mask, target, 0)
    u = torch.gather(input, dim=-1, index=tidx0)
    # is_target
    tidx1 = torch.where(target_mask, target, -1)
    is_target = torch.any(idx == tidx1.unsqueeze(dim=-1), dim=1)
    # loss
    z = 1.0 - u.T.unsqueeze(dim=-1) + input
    z = z.clamp_min(0)
    z = z / dim
    # masks loss
    z = torch.where(is_target, 0, z)
    # reduction
    if reduction == Reduction.MEAN.value:
        z = z.sum(dim=(0, -1)).mean()
    elif reduction == Reduction.SUM.value:
        z = z.sum()
    else:
        z = z.sum(dim=(0, -1))
    # result
    is_target = is_target.to(input.dtype).reshape(orig_target_shape)
    return z, is_target


# scaled_dot_product_attention used to be decomposed in pre-autograd, given that
# it calls _scaled_dot_product_attention_math and
# _scaled_dot_product_attention_math only has a CompositeImplicitAutograd
# kernel. As a result it's decomposed into ops with finer granularity.
# However recent PRs (#103826 #105131 #115913) added new logic in
# scaled_dot_product_attention and now it calls
# _scaled_dot_product_flash_attention_for_cpu in export path. This results
# in _scaled_dot_product_flash_attention_for_cpu showing up in export result.
# This decomposition ensures scaled_dot_product_attention is still decomposed
# the same way as before, i.e., going through
# _scaled_dot_product_attention_math. Notice that this decomp rule should be
# excluded by inductor.
@register_decomposition(aten._scaled_dot_product_flash_attention_for_cpu.default)
def scaled_dot_product_flash_attention_for_cpu(

    query: Tensor,

    key: Tensor,

    value: Tensor,

    dropout_p: float = 0.0,

    is_causal: bool = False,

    *,

    attn_mask: Optional[Tensor] = None,

    scale: Optional[float] = None,

) -> Tuple[Tensor, Tensor]:
    dtype = query.dtype
    torch._check(
        torch.is_floating_point(query),
        lambda: f"query must be FP32, FP64, BF16, FP16 but got {query.dtype}",
    )
    torch._check(
        query.dim() == 4 and key.dim() == 4 and value.dim() == 4,
        lambda: f"q, k, v must be a 4 dimensional tensor, got {query.dim()}, {key.dim()}, {value.dim()}",
    )
    torch._check(
        dropout_p == 0.0, lambda: f"dropout probability must be zero, got {dropout_p}"
    )
    torch._check(
        query.shape[3] == value.shape[3] and key.shape[3] == value.shape[3],
        lambda: "q, k, v should have the same head size",
    )

    output, attn = aten._scaled_dot_product_attention_math.default(
        query,
        key,
        value,
        attn_mask=attn_mask,
        dropout_p=dropout_p,
        is_causal=is_causal,
        dropout_mask=None,
        scale=scale,
    )
    # Why this change?
    # In pre-dispatch export scaled_dot_product_attention is executed via
    # * flash_attention.
    # flash_attention allocates output tensor as (N, L, H, E)
    #   it then transposes that to get (N, H, L, E) which is supposed to be the return
    # tensor dim for scaled_dot_product_attention
    # assume x: [N, H, L, E] is the output sdpa
    # In MHA code, this output is then permuted via (2, 0, 1, 3) to get
    # (L, N, H, E) dim tensor
    # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via
    # x = x.view(L * N, H * E)
    # During pre autograd dispatch call to contiguous is not traced because
    # flash_attention output after the x.permute is already contiguous
    # on which the view is valid
    # However, during 2nd stage export, post-dispatch, we run _match variant
    # instead of flash* to get the decomposition. _match variant returns
    # x: [N, H, L, E] applying x.permute(2, 0, 1, 3) returns
    # x: [L, N, H, E] and without converting this to contiguous tensor
    # subsequent view is not valid and the export fails
    # solution is to maintain the return tensor view from the decomp to be
    # exactly same as *flash* variant.
    # flash variants output is contiguous as [N, L, H, E]
    # _match variant out is contiguous as [N, H, L, E]
    # out = out.transpose(1, 2).contiguous gets output as contiguous
    # in [N, L, H, E].
    # Subsrequent transpose(1, 2) then returns a view on which
    # aforementioned code snippet, as showm below, is valid
    # x = x.permute(2, 0, 1, 3).contiguous() and the viewed via
    # x = x.view(L * N, H * E)

    # Really the invariant you want to maintain is:
    # pre-dispatch op-output and its decomposed representation must
    # return tensor with same view and dims
    output = output.transpose(1, 2).contiguous(memory_format=torch.contiguous_format)
    return (output.transpose(1, 2), attn)


def register_inplace(aten_op, outplace_op):
    @register_decomposition(aten_op)
    def inplace_op(*args, **kwargs):
        out = outplace_op(*args, **kwargs)
        return args[0].copy_(out)

    return inplace_op


@register_decomposition([aten.baddbmm])
@out_wrapper()
@pw_cast_for_opmath
def baddbmm(self, batch1, batch2, beta=1, alpha=1):
    if not self.is_floating_point() and not self.is_complex():
        beta = int(beta)
        alpha = int(alpha)
    result = torch.bmm(batch1, batch2)
    if not isinstance(alpha, numbers.Number) or alpha != 1:
        result = result * alpha
    if beta == 0:
        return result
    if not isinstance(beta, numbers.Number) or beta != 1:
        self = self * beta
    return self + result


@register_decomposition(aten.floor_divide)
@out_wrapper()
def floor_divide(self, other):
    return torch.div(self, other, rounding_mode="floor")


@register_decomposition(aten.sym_numel)
def sym_numel(t):
    return functools.reduce(operator.mul, t.shape, 1)


@register_decomposition([aten.sum.default, aten.sum.out])
def sum_default(

    self: Tensor,

    *,

    dtype: Optional[torch.dtype] = None,

    out: Optional[Tensor] = None,

) -> Tensor:
    if out is None:
        return aten.sum.dim_IntList(self, [], dtype=dtype)
    else:
        return aten.sum.IntList_out(self, [], dtype=dtype, out=out)


@register_decomposition([aten.squeeze.default, aten.squeeze.dim])
def squeeze_default(self: Tensor, dim: Optional[int] = None):
    if dim is None:
        return aten.squeeze.dims(self, list(range(self.dim())))
    else:
        return aten.squeeze.dims(self, [dim])


@register_decomposition(torch.ops.aten._weight_norm_interface)
def _weight_norm_interface(x, y, dim=0):
    # https://github.com/pytorch/pytorch/blob/852f8526c52190125446adc9a6ecbcc28fb66182/aten/src/ATen/native/WeightNorm.cpp#L58
    keep_dim = tuple(i for i in range(len(x.shape)) if i != dim)
    norm = x.norm(2, keep_dim, keepdim=True)
    return x * (y / norm), norm


@register_decomposition(aten.isin)
@out_wrapper()
def isin(elements, test_elements, *, assume_unique=False, invert=False):
    # handle when either elements or test_elements are Scalars (they can't both be)
    if not isinstance(elements, torch.Tensor):
        elements = torch.tensor(elements, device=test_elements.device)
    if not isinstance(test_elements, torch.Tensor):
        test_elements = torch.tensor(test_elements, device=elements.device)

    if test_elements.numel() < 10.0 * pow(elements.numel(), 0.145):
        return isin_default(elements, test_elements, invert=invert)
    else:
        return isin_sorting(
            elements, test_elements, assume_unique=assume_unique, invert=invert
        )


def isin_default(elements, test_elements, *, invert=False):
    if elements.numel() == 0:
        return torch.empty_like(elements, dtype=torch.bool)

    x = elements.view(*elements.shape, *((1,) * test_elements.ndim))
    if not invert:
        cmp = x == test_elements
    else:
        cmp = x != test_elements
    dim = tuple(range(-1, -test_elements.ndim - 1, -1))
    return cmp.any(dim=dim)


def isin_sorting(elements, test_elements, *, assume_unique=False, invert=False):
    elements_flat = elements.flatten()
    test_elements_flat = test_elements.flatten()
    if assume_unique:
        # This is the same as the aten implementation. For
        # assume_unique=False, we cannot use unique() here, so we use a
        # version with searchsorted instead.
        all_elements = torch.cat([elements_flat, test_elements_flat])
        sorted_elements, sorted_order = torch.sort(all_elements, stable=True)

        duplicate_mask = sorted_elements[1:] == sorted_elements[:-1]
        duplicate_mask = torch.constant_pad_nd(duplicate_mask, [0, 1], False)

        if invert:
            duplicate_mask = duplicate_mask.logical_not()

        mask = torch.empty_like(duplicate_mask)
        mask = mask.index_copy(0, sorted_order, duplicate_mask)

        return mask[0 : elements.numel()]
    else:
        sorted_test_elements, _ = torch.sort(test_elements_flat)
        idx = torch.searchsorted(sorted_test_elements, elements_flat)
        test_idx = torch.where(idx < sorted_test_elements.numel(), idx, 0)
        cmp = sorted_test_elements[test_idx] == elements_flat
        cmp = cmp.logical_not() if invert else cmp
        return cmp.reshape(elements.shape)


@register_decomposition(aten.take)
@out_wrapper()
def take(self, index):
    flattened = self.reshape(-1)
    return flattened[index]


register_inplace(aten.addbmm_, aten.addbmm)
register_inplace(aten.addmm_, aten.addmm)
register_inplace(aten.addmv_, aten.addmv)
register_inplace(aten.baddbmm_, aten.baddbmm)
register_inplace(aten.fill_, aten.fill)
register_inplace(aten.gelu_, aten.gelu)
register_inplace(aten.hardswish_, aten.hardswish)
register_inplace(aten.hardtanh_, aten.hardtanh)
register_inplace(aten.hardsigmoid_, aten.hardsigmoid)
register_inplace(aten.__iand__, aten.__and__)
register_inplace(aten.__ilshift__, aten.__lshift__)
register_inplace(aten.index_put_, aten.index_put)
register_inplace(aten.index_reduce_, aten.index_reduce)
register_inplace(aten.__ior__, aten.__or__)
register_inplace(aten.__irshift__, aten.__rshift__)
register_inplace(aten.__ixor__, aten.__xor__)
register_inplace(aten.leaky_relu_, aten.leaky_relu)
register_inplace(aten.logit_, aten.logit)
register_inplace(aten.relu_, aten.relu)
register_inplace(aten.renorm_, aten.renorm)
register_inplace(aten.round_, aten.round)
register_inplace(aten.scatter_, aten.scatter)
register_inplace(aten.scatter_add_, aten.scatter_add)
register_inplace(aten.scatter_reduce_, aten.scatter_reduce)
register_inplace(aten.silu_, aten.silu)