Spaces:
Sleeping
Sleeping
# | |
# This is the module for ODE solver classes for single ODEs. | |
# | |
from __future__ import annotations | |
from typing import ClassVar, Iterator | |
from .riccati import match_riccati, solve_riccati | |
from sympy.core import Add, S, Pow, Rational | |
from sympy.core.cache import cached_property | |
from sympy.core.exprtools import factor_terms | |
from sympy.core.expr import Expr | |
from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand | |
from sympy.core.numbers import zoo | |
from sympy.core.relational import Equality, Eq | |
from sympy.core.symbol import Symbol, Dummy, Wild | |
from sympy.core.mul import Mul | |
from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi | |
from sympy.integrals import Integral | |
from sympy.polys import Poly | |
from sympy.polys.polytools import cancel, factor, degree | |
from sympy.simplify import collect, simplify, separatevars, logcombine, posify # type: ignore | |
from sympy.simplify.radsimp import fraction | |
from sympy.utilities import numbered_symbols | |
from sympy.solvers.solvers import solve | |
from sympy.solvers.deutils import ode_order, _preprocess | |
from sympy.polys.matrices.linsolve import _lin_eq2dict | |
from sympy.polys.solvers import PolyNonlinearError | |
from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \ | |
get_sol_2F1_hypergeometric, match_2nd_hypergeometric | |
from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \ | |
_solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \ | |
_get_simplified_sol | |
from .lie_group import _ode_lie_group | |
class ODEMatchError(NotImplementedError): | |
"""Raised if a SingleODESolver is asked to solve an ODE it does not match""" | |
pass | |
class SingleODEProblem: | |
"""Represents an ordinary differential equation (ODE) | |
This class is used internally in the by dsolve and related | |
functions/classes so that properties of an ODE can be computed | |
efficiently. | |
Examples | |
======== | |
This class is used internally by dsolve. To instantiate an instance | |
directly first define an ODE problem: | |
>>> from sympy import Function, Symbol | |
>>> x = Symbol('x') | |
>>> f = Function('f') | |
>>> eq = f(x).diff(x, 2) | |
Now you can create a SingleODEProblem instance and query its properties: | |
>>> from sympy.solvers.ode.single import SingleODEProblem | |
>>> problem = SingleODEProblem(f(x).diff(x), f(x), x) | |
>>> problem.eq | |
Derivative(f(x), x) | |
>>> problem.func | |
f(x) | |
>>> problem.sym | |
x | |
""" | |
# Instance attributes: | |
eq = None # type: Expr | |
func = None # type: AppliedUndef | |
sym = None # type: Symbol | |
_order = None # type: int | |
_eq_expanded = None # type: Expr | |
_eq_preprocessed = None # type: Expr | |
_eq_high_order_free = None | |
def __init__(self, eq, func, sym, prep=True, **kwargs): | |
assert isinstance(eq, Expr) | |
assert isinstance(func, AppliedUndef) | |
assert isinstance(sym, Symbol) | |
assert isinstance(prep, bool) | |
self.eq = eq | |
self.func = func | |
self.sym = sym | |
self.prep = prep | |
self.params = kwargs | |
def order(self) -> int: | |
return ode_order(self.eq, self.func) | |
def eq_preprocessed(self) -> Expr: | |
return self._get_eq_preprocessed() | |
def eq_high_order_free(self) -> Expr: | |
a = Wild('a', exclude=[self.func]) | |
c1 = Wild('c1', exclude=[self.sym]) | |
# Precondition to try remove f(x) from highest order derivative | |
reduced_eq = None | |
if self.eq.is_Add: | |
deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order)) | |
if deriv_coef not in (1, 0): | |
r = deriv_coef.match(a*self.func**c1) | |
if r and r[c1]: | |
den = self.func**r[c1] | |
reduced_eq = Add(*[arg/den for arg in self.eq.args]) | |
if not reduced_eq: | |
reduced_eq = expand(self.eq) | |
return reduced_eq | |
def eq_expanded(self) -> Expr: | |
return expand(self.eq_preprocessed) | |
def _get_eq_preprocessed(self) -> Expr: | |
if self.prep: | |
process_eq, process_func = _preprocess(self.eq, self.func) | |
if process_func != self.func: | |
raise ValueError | |
else: | |
process_eq = self.eq | |
return process_eq | |
def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]: | |
""" | |
Returns a list of constants that do not occur | |
in eq already. | |
""" | |
ncs = self.iter_numbered_constants(start, prefix) | |
Cs = [next(ncs) for i in range(num)] | |
return Cs | |
def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: | |
""" | |
Returns an iterator of constants that do not occur | |
in eq already. | |
""" | |
atom_set = self.eq.free_symbols | |
func_set = self.eq.atoms(Function) | |
if func_set: | |
atom_set |= {Symbol(str(f.func)) for f in func_set} | |
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) | |
def is_autonomous(self): | |
u = Dummy('u') | |
x = self.sym | |
syms = self.eq.subs(self.func, u).free_symbols | |
return x not in syms | |
def get_linear_coefficients(self, eq, func, order): | |
r""" | |
Matches a differential equation to the linear form: | |
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 | |
Returns a dict of order:coeff terms, where order is the order of the | |
derivative on each term, and coeff is the coefficient of that derivative. | |
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is | |
not linear. This function assumes that ``func`` has already been checked | |
to be good. | |
Examples | |
======== | |
>>> from sympy import Function, cos, sin | |
>>> from sympy.abc import x | |
>>> from sympy.solvers.ode.single import SingleODEProblem | |
>>> f = Function('f') | |
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ | |
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ | |
... sin(x) | |
>>> obj = SingleODEProblem(eq, f(x), x) | |
>>> obj.get_linear_coefficients(eq, f(x), 3) | |
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} | |
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ | |
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ | |
... sin(f(x)) | |
>>> obj = SingleODEProblem(eq, f(x), x) | |
>>> obj.get_linear_coefficients(eq, f(x), 3) == None | |
True | |
""" | |
f = func.func | |
x = func.args[0] | |
symset = {Derivative(f(x), x, i) for i in range(order+1)} | |
try: | |
rhs, lhs_terms = _lin_eq2dict(eq, symset) | |
except PolyNonlinearError: | |
return None | |
if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()): | |
return None | |
terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)} | |
terms[-1] = rhs | |
return terms | |
# TODO: Add methods that can be used by many ODE solvers: | |
# order | |
# is_linear() | |
# get_linear_coefficients() | |
# eq_prepared (the ODE in prepared form) | |
class SingleODESolver: | |
""" | |
Base class for Single ODE solvers. | |
Subclasses should implement the _matches and _get_general_solution | |
methods. This class is not intended to be instantiated directly but its | |
subclasses are as part of dsolve. | |
Examples | |
======== | |
You can use a subclass of SingleODEProblem to solve a particular type of | |
ODE. We first define a particular ODE problem: | |
>>> from sympy import Function, Symbol | |
>>> x = Symbol('x') | |
>>> f = Function('f') | |
>>> eq = f(x).diff(x, 2) | |
Now we solve this problem using the NthAlgebraic solver which is a | |
subclass of SingleODESolver: | |
>>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem | |
>>> problem = SingleODEProblem(eq, f(x), x) | |
>>> solver = NthAlgebraic(problem) | |
>>> solver.get_general_solution() | |
[Eq(f(x), _C*x + _C)] | |
The normal way to solve an ODE is to use dsolve (which would use | |
NthAlgebraic and other solvers internally). When using dsolve a number of | |
other things are done such as evaluating integrals, simplifying the | |
solution and renumbering the constants: | |
>>> from sympy import dsolve | |
>>> dsolve(eq, hint='nth_algebraic') | |
Eq(f(x), C1 + C2*x) | |
""" | |
# Subclasses should store the hint name (the argument to dsolve) in this | |
# attribute | |
hint: ClassVar[str] | |
# Subclasses should define this to indicate if they support an _Integral | |
# hint. | |
has_integral: ClassVar[bool] | |
# The ODE to be solved | |
ode_problem = None # type: SingleODEProblem | |
# Cache whether or not the equation has matched the method | |
_matched: bool | None = None | |
# Subclasses should store in this attribute the list of order(s) of ODE | |
# that subclass can solve or leave it to None if not specific to any order | |
order: list | None = None | |
def __init__(self, ode_problem): | |
self.ode_problem = ode_problem | |
def matches(self) -> bool: | |
if self.order is not None and self.ode_problem.order not in self.order: | |
self._matched = False | |
return self._matched | |
if self._matched is None: | |
self._matched = self._matches() | |
return self._matched | |
def get_general_solution(self, *, simplify: bool = True) -> list[Equality]: | |
if not self.matches(): | |
msg = "%s solver cannot solve:\n%s" | |
raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) | |
return self._get_general_solution(simplify_flag=simplify) | |
def _matches(self) -> bool: | |
msg = "Subclasses of SingleODESolver should implement matches." | |
raise NotImplementedError(msg) | |
def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]: | |
msg = "Subclasses of SingleODESolver should implement get_general_solution." | |
raise NotImplementedError(msg) | |
class SinglePatternODESolver(SingleODESolver): | |
'''Superclass for ODE solvers based on pattern matching''' | |
def wilds(self): | |
prob = self.ode_problem | |
f = prob.func.func | |
x = prob.sym | |
order = prob.order | |
return self._wilds(f, x, order) | |
def wilds_match(self): | |
match = self._wilds_match | |
return [match.get(w, S.Zero) for w in self.wilds()] | |
def _matches(self): | |
eq = self.ode_problem.eq_expanded | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
order = self.ode_problem.order | |
df = f(x).diff(x, order) | |
if order not in [1, 2]: | |
return False | |
pattern = self._equation(f(x), x, order) | |
if not pattern.coeff(df).has(Wild): | |
eq = expand(eq / eq.coeff(df)) | |
eq = eq.collect([f(x).diff(x), f(x)], func = cancel) | |
self._wilds_match = match = eq.match(pattern) | |
if match is not None: | |
return self._verify(f(x)) | |
return False | |
def _verify(self, fx) -> bool: | |
return True | |
def _wilds(self, f, x, order): | |
msg = "Subclasses of SingleODESolver should implement _wilds" | |
raise NotImplementedError(msg) | |
def _equation(self, fx, x, order): | |
msg = "Subclasses of SingleODESolver should implement _equation" | |
raise NotImplementedError(msg) | |
class NthAlgebraic(SingleODESolver): | |
r""" | |
Solves an `n`\th order ordinary differential equation using algebra and | |
integrals. | |
There is no general form for the kind of equation that this can solve. The | |
the equation is solved algebraically treating differentiation as an | |
invertible algebraic function. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Eq | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) | |
>>> dsolve(eq, f(x), hint='nth_algebraic') | |
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] | |
Note that this solver can return algebraic solutions that do not have any | |
integration constants (f(x) = 0 in the above example). | |
""" | |
hint = 'nth_algebraic' | |
has_integral = True # nth_algebraic_Integral hint | |
def _matches(self): | |
r""" | |
Matches any differential equation that nth_algebraic can solve. Uses | |
`sympy.solve` but teaches it how to integrate derivatives. | |
This involves calling `sympy.solve` and does most of the work of finding a | |
solution (apart from evaluating the integrals). | |
""" | |
eq = self.ode_problem.eq | |
func = self.ode_problem.func | |
var = self.ode_problem.sym | |
# Derivative that solve can handle: | |
diffx = self._get_diffx(var) | |
# Replace derivatives wrt the independent variable with diffx | |
def replace(eq, var): | |
def expand_diffx(*args): | |
differand, diffs = args[0], args[1:] | |
toreplace = differand | |
for v, n in diffs: | |
for _ in range(n): | |
if v == var: | |
toreplace = diffx(toreplace) | |
else: | |
toreplace = Derivative(toreplace, v) | |
return toreplace | |
return eq.replace(Derivative, expand_diffx) | |
# Restore derivatives in solution afterwards | |
def unreplace(eq, var): | |
return eq.replace(diffx, lambda e: Derivative(e, var)) | |
subs_eqn = replace(eq, var) | |
try: | |
# turn off simplification to protect Integrals that have | |
# _t instead of fx in them and would otherwise factor | |
# as t_*Integral(1, x) | |
solns = solve(subs_eqn, func, simplify=False) | |
except NotImplementedError: | |
solns = [] | |
solns = [simplify(unreplace(soln, var)) for soln in solns] | |
solns = [Equality(func, soln) for soln in solns] | |
self.solutions = solns | |
return len(solns) != 0 | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
return self.solutions | |
# This needs to produce an invertible function but the inverse depends | |
# which variable we are integrating with respect to. Since the class can | |
# be stored in cached results we need to ensure that we always get the | |
# same class back for each particular integration variable so we store these | |
# classes in a global dict: | |
_diffx_stored: dict[Symbol, type[Function]] = {} | |
def _get_diffx(var): | |
diffcls = NthAlgebraic._diffx_stored.get(var, None) | |
if diffcls is None: | |
# A class that behaves like Derivative wrt var but is "invertible". | |
class diffx(Function): | |
def inverse(self): | |
# don't use integrate here because fx has been replaced by _t | |
# in the equation; integrals will not be correct while solve | |
# is at work. | |
return lambda expr: Integral(expr, var) + Dummy('C') | |
diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) | |
return diffcls | |
class FirstExact(SinglePatternODESolver): | |
r""" | |
Solves 1st order exact ordinary differential equations. | |
A 1st order differential equation is called exact if it is the total | |
differential of a function. That is, the differential equation | |
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 | |
is exact if there is some function `F(x, y)` such that `P(x, y) = | |
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can | |
be shown that a necessary and sufficient condition for a first order ODE | |
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. | |
Then, the solution will be as given below:: | |
>>> from sympy import Function, Eq, Integral, symbols, pprint | |
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') | |
>>> P, Q, F= map(Function, ['P', 'Q', 'F']) | |
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + | |
... Integral(Q(x0, t), (t, y0, y))), C1)) | |
x y | |
/ / | |
| | | |
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | |
| | | |
/ / | |
x0 y0 | |
Where the first partials of `P` and `Q` exist and are continuous in a | |
simply connected region. | |
A note: SymPy currently has no way to represent inert substitution on an | |
expression, so the hint ``1st_exact_Integral`` will return an integral | |
with `dy`. This is supposed to represent the function that you are | |
solving for. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, cos, sin | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), | |
... f(x), hint='1st_exact') | |
Eq(x*cos(f(x)) + f(x)**3/3, C1) | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Exact_differential_equation | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 73 | |
# indirect doctest | |
""" | |
hint = "1st_exact" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
P = Wild('P', exclude=[f(x).diff(x)]) | |
Q = Wild('Q', exclude=[f(x).diff(x)]) | |
return P, Q | |
def _equation(self, fx, x, order): | |
P, Q = self.wilds() | |
return P + Q*fx.diff(x) | |
def _verify(self, fx) -> bool: | |
P, Q = self.wilds() | |
x = self.ode_problem.sym | |
y = Dummy('y') | |
m, n = self.wilds_match() | |
m = m.subs(fx, y) | |
n = n.subs(fx, y) | |
numerator = cancel(m.diff(y) - n.diff(x)) | |
if numerator.is_zero: | |
# Is exact | |
return True | |
else: | |
# The following few conditions try to convert a non-exact | |
# differential equation into an exact one. | |
# References: | |
# 1. Differential equations with applications | |
# and historical notes - George E. Simmons | |
# 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf | |
factor_n = cancel(numerator/n) | |
factor_m = cancel(-numerator/m) | |
if y not in factor_n.free_symbols: | |
# If (dP/dy - dQ/dx) / Q = f(x) | |
# then exp(integral(f(x))*equation becomes exact | |
factor = factor_n | |
integration_variable = x | |
elif x not in factor_m.free_symbols: | |
# If (dP/dy - dQ/dx) / -P = f(y) | |
# then exp(integral(f(y))*equation becomes exact | |
factor = factor_m | |
integration_variable = y | |
else: | |
# Couldn't convert to exact | |
return False | |
factor = exp(Integral(factor, integration_variable)) | |
m *= factor | |
n *= factor | |
self._wilds_match[P] = m.subs(y, fx) | |
self._wilds_match[Q] = n.subs(y, fx) | |
return True | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
m, n = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
y = Dummy('y') | |
m = m.subs(fx, y) | |
n = n.subs(fx, y) | |
gen_sol = Eq(Subs(Integral(m, x) | |
+ Integral(n - Integral(m, x).diff(y), y), y, fx), C1) | |
return [gen_sol] | |
class FirstLinear(SinglePatternODESolver): | |
r""" | |
Solves 1st order linear differential equations. | |
These are differential equations of the form | |
.. math:: dy/dx + P(x) y = Q(x)\text{.} | |
These kinds of differential equations can be solved in a general way. The | |
integrating factor `e^{\int P(x) \,dx}` will turn the equation into a | |
separable equation. The general solution is:: | |
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin | |
>>> from sympy.abc import x | |
>>> f, P, Q = map(Function, ['f', 'P', 'Q']) | |
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) | |
>>> pprint(genform) | |
d | |
P(x)*f(x) + --(f(x)) = Q(x) | |
dx | |
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) | |
/ / \ | |
| | | | |
| | / | / | |
| | | | | | |
| | | P(x) dx | - | P(x) dx | |
| | | | | | |
| | / | / | |
f(x) = |C1 + | Q(x)*e dx|*e | |
| | | | |
\ / / | |
Examples | |
======== | |
>>> f = Function('f') | |
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), | |
... f(x), '1st_linear')) | |
f(x) = x*(C1 - cos(x)) | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 92 | |
# indirect doctest | |
""" | |
hint = '1st_linear' | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
P = Wild('P', exclude=[f(x)]) | |
Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) | |
return P, Q | |
def _equation(self, fx, x, order): | |
P, Q = self.wilds() | |
return fx.diff(x) + P*fx - Q | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
P, Q = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x)) | |
* exp(-Integral(P, x)))) | |
return [gensol] | |
class AlmostLinear(SinglePatternODESolver): | |
r""" | |
Solves an almost-linear differential equation. | |
The general form of an almost linear differential equation is | |
.. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) | |
Here `f(x)` is the function to be solved for (the dependent variable). | |
The substitution `g(f(x)) = u(x)` leads to a linear differential equation | |
for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved | |
for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving | |
`g(f(x)) = u(x)`. | |
See Also | |
======== | |
:obj:`sympy.solvers.ode.single.FirstLinear` | |
Examples | |
======== | |
>>> from sympy import dsolve, Function, pprint, sin, cos | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> d = f(x).diff(x) | |
>>> eq = x*d + x*f(x) + 1 | |
>>> dsolve(eq, f(x), hint='almost_linear') | |
Eq(f(x), (C1 - Ei(x))*exp(-x)) | |
>>> pprint(dsolve(eq, f(x), hint='almost_linear')) | |
-x | |
f(x) = (C1 - Ei(x))*e | |
>>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 | |
>>> pprint(example) | |
d | |
sin(f(x)) + cos(f(x))*--(f(x)) + 1 | |
dx | |
>>> pprint(dsolve(example, f(x), hint='almost_linear')) | |
/ -x \ / -x \ | |
[f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] | |
References | |
========== | |
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications | |
of the ACM, Volume 14, Number 8, August 1971, pp. 558 | |
""" | |
hint = "almost_linear" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
P = Wild('P', exclude=[f(x).diff(x)]) | |
Q = Wild('Q', exclude=[f(x).diff(x)]) | |
return P, Q | |
def _equation(self, fx, x, order): | |
P, Q = self.wilds() | |
return P*fx.diff(x) + Q | |
def _verify(self, fx): | |
a, b = self.wilds_match() | |
c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) | |
# a, b and c are the function a(x), b(x) and c(x) respectively. | |
# c(x) is obtained by separating out b as terms with and without fx i.e, l(y) | |
# The following conditions checks if the given equation is an almost-linear differential equation using the fact that | |
# a(x)*(l(y))' / l(y)' is independent of l(y) | |
if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): | |
self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y) | |
self.ax = a / self.ly.diff(fx) | |
self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral | |
self.bx = factor_terms(b) / self.ly | |
return True | |
return False | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
x = self.ode_problem.sym | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x)) | |
* exp(-Integral(self.bx/self.ax, x)))) | |
return [gensol] | |
class Bernoulli(SinglePatternODESolver): | |
r""" | |
Solves Bernoulli differential equations. | |
These are equations of the form | |
.. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} | |
The substitution `w = 1/y^{1-n}` will transform an equation of this form | |
into one that is linear (see the docstring of | |
:obj:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: | |
>>> from sympy import Function, dsolve, Eq, pprint | |
>>> from sympy.abc import x, n | |
>>> f, P, Q = map(Function, ['f', 'P', 'Q']) | |
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) | |
>>> pprint(genform) | |
d n | |
P(x)*f(x) + --(f(x)) = Q(x)*f (x) | |
dx | |
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) | |
-1 | |
----- | |
n - 1 | |
// / / \ \ | |
|| | | | | | |
|| | / | / | / | | |
|| | | | | | | | | |
|| | -(n - 1)* | P(x) dx | -(n - 1)* | P(x) dx | (n - 1)* | P(x) dx| | |
|| | | | | | | | | |
|| | / | / | / | | |
f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | | |
|| | | | | | |
\\ / / / / | |
Note that the equation is separable when `n = 1` (see the docstring of | |
:obj:`~sympy.solvers.ode.single.Separable`). | |
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), | |
... hint='separable_Integral')) | |
f(x) | |
/ | |
| / | |
| 1 | | |
| - dy = C1 + | (-P(x) + Q(x)) dx | |
| y | | |
| / | |
/ | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Eq, pprint, log | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), | |
... f(x), hint='Bernoulli')) | |
1 | |
f(x) = ----------------- | |
C1*x + log(x) + 1 | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 95 | |
# indirect doctest | |
""" | |
hint = "Bernoulli" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
P = Wild('P', exclude=[f(x)]) | |
Q = Wild('Q', exclude=[f(x)]) | |
n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) | |
return P, Q, n | |
def _equation(self, fx, x, order): | |
P, Q, n = self.wilds() | |
return fx.diff(x) + P*fx - Q*fx**n | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
P, Q, n = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
if n==1: | |
gensol = Eq(log(fx), ( | |
C1 + Integral((-P + Q), x) | |
)) | |
else: | |
gensol = Eq(fx**(1-n), ( | |
(C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) | |
* exp(Integral(P, x)), x) | |
) * exp(-(1 - n)*Integral(P, x))) | |
) | |
return [gensol] | |
class Factorable(SingleODESolver): | |
r""" | |
Solves equations having a solvable factor. | |
This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It | |
will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the | |
list of solutions. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) | |
>>> pprint(dsolve(eq, f(x))) | |
-x | |
[f(x) = 2, f(x) = -2, f(x) = C1*e ] | |
""" | |
hint = "factorable" | |
has_integral = False | |
def _matches(self): | |
eq_orig = self.ode_problem.eq | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
df = f(x).diff(x) | |
self.eqs = [] | |
eq = eq_orig.collect(f(x), func = cancel) | |
eq = fraction(factor(eq))[0] | |
factors = Mul.make_args(factor(eq)) | |
roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] | |
if len(roots)>1 or roots[0][1]>1: | |
for base, expo in roots: | |
if base.has(f(x)): | |
self.eqs.append(base) | |
if len(self.eqs)>0: | |
return True | |
roots = solve(eq, df) | |
if len(roots)>0: | |
self.eqs = [(df - root) for root in roots] | |
# Avoid infinite recursion | |
matches = self.eqs != [eq_orig] | |
return matches | |
for i in factors: | |
if i.has(f(x)): | |
self.eqs.append(i) | |
return len(self.eqs)>0 and len(factors)>1 | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
func = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
eqns = self.eqs | |
sols = [] | |
for eq in eqns: | |
try: | |
sol = dsolve(eq, func(x)) | |
except NotImplementedError: | |
continue | |
else: | |
if isinstance(sol, list): | |
sols.extend(sol) | |
else: | |
sols.append(sol) | |
if sols == []: | |
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" | |
+ " the factorable group method") | |
return sols | |
class RiccatiSpecial(SinglePatternODESolver): | |
r""" | |
The general Riccati equation has the form | |
.. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} | |
While it does not have a general solution [1], the "special" form, `dy/dx | |
= a y^2 - b x^c`, does have solutions in many cases [2]. This routine | |
returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained | |
by using a suitable change of variables to reduce it to the special form | |
and is valid when neither `a` nor `b` are zero and either `c` or `d` is | |
zero. | |
>>> from sympy.abc import x, a, b, c, d | |
>>> from sympy import dsolve, checkodesol, pprint, Function | |
>>> f = Function('f') | |
>>> y = f(x) | |
>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) | |
>>> sol = dsolve(genform, y, hint="Riccati_special_minus2") | |
>>> pprint(sol, wrap_line=False) | |
/ / __________________ \\ | |
| __________________ | / 2 || | |
| / 2 | \/ 4*b*d - (a + c) *log(x)|| | |
-|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| | |
\ \ 2*a // | |
f(x) = ------------------------------------------------------------------------ | |
2*b*x | |
>>> checkodesol(genform, sol, order=1)[0] | |
True | |
References | |
========== | |
- https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati | |
- https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - | |
https://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf | |
""" | |
hint = "Riccati_special_minus2" | |
has_integral = False | |
order = [1] | |
def _wilds(self, f, x, order): | |
a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) | |
b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) | |
c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) | |
d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) | |
return a, b, c, d | |
def _equation(self, fx, x, order): | |
a, b, c, d = self.wilds() | |
return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
a, b, c, d = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
mu = sqrt(4*d*b - (a - c)**2) | |
gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) | |
return [gensol] | |
class RationalRiccati(SinglePatternODESolver): | |
r""" | |
Gives general solutions to the first order Riccati differential | |
equations that have atleast one rational particular solution. | |
.. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2 | |
where `b_0`, `b_1` and `b_2` are rational functions of `x` | |
with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation). | |
Examples | |
======== | |
>>> from sympy import Symbol, Function, dsolve, checkodesol | |
>>> f = Function('f') | |
>>> x = Symbol('x') | |
>>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20 | |
>>> sol = dsolve(eq, hint="1st_rational_riccati") | |
>>> sol | |
Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1))) | |
>>> checkodesol(eq, sol) | |
(True, 0) | |
References | |
========== | |
- Riccati ODE: https://en.wikipedia.org/wiki/Riccati_equation | |
- N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs: | |
Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf | |
""" | |
has_integral = False | |
hint = "1st_rational_riccati" | |
order = [1] | |
def _wilds(self, f, x, order): | |
b0 = Wild('b0', exclude=[f(x), f(x).diff(x)]) | |
b1 = Wild('b1', exclude=[f(x), f(x).diff(x)]) | |
b2 = Wild('b2', exclude=[f(x), f(x).diff(x)]) | |
return (b0, b1, b2) | |
def _equation(self, fx, x, order): | |
b0, b1, b2 = self.wilds() | |
return fx.diff(x) - b0 - b1*fx - b2*fx**2 | |
def _matches(self): | |
eq = self.ode_problem.eq_expanded | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
order = self.ode_problem.order | |
if order != 1: | |
return False | |
match, funcs = match_riccati(eq, f, x) | |
if not match: | |
return False | |
_b0, _b1, _b2 = funcs | |
b0, b1, b2 = self.wilds() | |
self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2} | |
return True | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
# Match the equation | |
b0, b1, b2 = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
return solve_riccati(fx, x, b0, b1, b2, gensol=True) | |
class SecondNonlinearAutonomousConserved(SinglePatternODESolver): | |
r""" | |
Gives solution for the autonomous second order nonlinear | |
differential equation of the form | |
.. math :: f''(x) = g(f(x)) | |
The solution for this differential equation can be computed | |
by multiplying by `f'(x)` and integrating on both sides, | |
converting it into a first order differential equation. | |
Examples | |
======== | |
>>> from sympy import Function, symbols, dsolve | |
>>> f, g = symbols('f g', cls=Function) | |
>>> x = symbols('x') | |
>>> eq = f(x).diff(x, 2) - g(f(x)) | |
>>> dsolve(eq, simplify=False) | |
[Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), | |
Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] | |
>>> from sympy import exp, log | |
>>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) | |
>>> dsolve(eq, simplify=False) | |
[Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), | |
Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] | |
References | |
========== | |
- https://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf | |
""" | |
hint = "2nd_nonlinear_autonomous_conserved" | |
has_integral = True | |
order = [2] | |
def _wilds(self, f, x, order): | |
fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) | |
return (fy, ) | |
def _equation(self, fx, x, order): | |
fy = self.wilds()[0] | |
return fx.diff(x, 2) + fy | |
def _verify(self, fx): | |
return self.ode_problem.is_autonomous | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
g = self.wilds_match()[0] | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
u = Dummy('u') | |
g = g.subs(fx, u) | |
C1, C2 = self.ode_problem.get_numbered_constants(num=2) | |
inside = -2*Integral(g, u) + C1 | |
lhs = Integral(1/sqrt(inside), (u, fx)) | |
return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] | |
class Liouville(SinglePatternODESolver): | |
r""" | |
Solves 2nd order Liouville differential equations. | |
The general form of a Liouville ODE is | |
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! | |
\frac{dy}{dx}\!\right)^2 + h(x) | |
\frac{dy}{dx}\text{.} | |
The general solution is: | |
>>> from sympy import Function, dsolve, Eq, pprint, diff | |
>>> from sympy.abc import x | |
>>> f, g, h = map(Function, ['f', 'g', 'h']) | |
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + | |
... h(x)*diff(f(x),x), 0) | |
>>> pprint(genform) | |
2 2 | |
/d \ d d | |
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 | |
\dx / dx 2 | |
dx | |
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) | |
f(x) | |
/ / | |
| | | |
| / | / | |
| | | | | |
| - | h(x) dx | | g(y) dy | |
| | | | | |
| / | / | |
C1 + C2* | e dx + | e dy = 0 | |
| | | |
/ / | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Eq, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + | |
... diff(f(x), x)/x, f(x), hint='Liouville')) | |
________________ ________________ | |
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] | |
References | |
========== | |
- Goldstein and Braun, "Advanced Methods for the Solution of Differential | |
Equations", pp. 98 | |
- https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville | |
# indirect doctest | |
""" | |
hint = "Liouville" | |
has_integral = True | |
order = [2] | |
def _wilds(self, f, x, order): | |
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[f(x).diff(x)]) | |
k = Wild('k', exclude=[f(x).diff(x)]) | |
return d, e, k | |
def _equation(self, fx, x, order): | |
# Liouville ODE in the form | |
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) | |
# See Goldstein and Braun, "Advanced Methods for the Solution of | |
# Differential Equations", pg. 98 | |
d, e, k = self.wilds() | |
return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x) | |
def _verify(self, fx): | |
d, e, k = self.wilds_match() | |
self.y = Dummy('y') | |
x = self.ode_problem.sym | |
self.g = simplify(e/d).subs(fx, self.y) | |
self.h = simplify(k/d).subs(fx, self.y) | |
if self.y in self.h.free_symbols or x in self.g.free_symbols: | |
return False | |
return True | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
d, e, k = self.wilds_match() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
C1, C2 = self.ode_problem.get_numbered_constants(num=2) | |
int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx)) | |
gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0) | |
return [gen_sol] | |
class Separable(SinglePatternODESolver): | |
r""" | |
Solves separable 1st order differential equations. | |
This is any differential equation that can be written as `P(y) | |
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by | |
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. | |
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back | |
end, so if a separable equation is not caught by this solver, it is most | |
likely the fault of that function. | |
:py:meth:`~sympy.simplify.simplify.separatevars` is | |
smart enough to do most expansion and factoring necessary to convert a | |
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The | |
general solution is:: | |
>>> from sympy import Function, dsolve, Eq, pprint | |
>>> from sympy.abc import x | |
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) | |
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) | |
>>> pprint(genform) | |
d | |
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) | |
dx | |
>>> pprint(dsolve(genform, f(x), hint='separable_Integral')) | |
f(x) | |
/ / | |
| | | |
| b(y) | c(x) | |
| ---- dy = C1 + | ---- dx | |
| d(y) | a(x) | |
| | | |
/ / | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Eq | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), | |
... hint='separable', simplify=False)) | |
/ 2 \ 2 | |
log\3*f (x) - 1/ x | |
---------------- = C1 + -- | |
6 2 | |
References | |
========== | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 52 | |
# indirect doctest | |
""" | |
hint = "separable" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[f(x).diff(x)]) | |
return d, e | |
def _equation(self, fx, x, order): | |
d, e = self.wilds() | |
return d + e*fx.diff(x) | |
def _verify(self, fx): | |
d, e = self.wilds_match() | |
self.y = Dummy('y') | |
x = self.ode_problem.sym | |
d = separatevars(d.subs(fx, self.y)) | |
e = separatevars(e.subs(fx, self.y)) | |
# m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' | |
self.m1 = separatevars(d, dict=True, symbols=(x, self.y)) | |
self.m2 = separatevars(e, dict=True, symbols=(x, self.y)) | |
if self.m1 and self.m2: | |
return True | |
return False | |
def _get_match_object(self): | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
return self.m1, self.m2, x, fx | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
m1, m2, x, fx = self._get_match_object() | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
int = Integral(m2['coeff']*m2[self.y]/m1[self.y], | |
(self.y, None, fx)) | |
gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/ | |
m2[x], x) + C1) | |
return [gen_sol] | |
class SeparableReduced(Separable): | |
r""" | |
Solves a differential equation that can be reduced to the separable form. | |
The general form of this equation is | |
.. math:: y' + (y/x) H(x^n y) = 0\text{}. | |
This can be solved by substituting `u(y) = x^n y`. The equation then | |
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - | |
\frac{1}{x} = 0`. | |
The general solution is: | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x, n | |
>>> f, g = map(Function, ['f', 'g']) | |
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) | |
>>> pprint(genform) | |
/ n \ | |
d f(x)*g\x *f(x)/ | |
--(f(x)) + --------------- | |
dx x | |
>>> pprint(dsolve(genform, hint='separable_reduced')) | |
n | |
x *f(x) | |
/ | |
| | |
| 1 | |
| ------------ dy = C1 + log(x) | |
| y*(n - g(y)) | |
| | |
/ | |
See Also | |
======== | |
:obj:`sympy.solvers.ode.single.Separable` | |
Examples | |
======== | |
>>> from sympy import dsolve, Function, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> d = f(x).diff(x) | |
>>> eq = (x - x**2*f(x))*d - f(x) | |
>>> dsolve(eq, hint='separable_reduced') | |
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] | |
>>> pprint(dsolve(eq, hint='separable_reduced')) | |
___________ ___________ | |
/ 2 / 2 | |
1 - \/ C1*x + 1 \/ C1*x + 1 + 1 | |
[f(x) = ------------------, f(x) = ------------------] | |
x x | |
References | |
========== | |
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications | |
of the ACM, Volume 14, Number 8, August 1971, pp. 558 | |
""" | |
hint = "separable_reduced" | |
has_integral = True | |
order = [1] | |
def _degree(self, expr, x): | |
# Made this function to calculate the degree of | |
# x in an expression. If expr will be of form | |
# x**p*y, (wheare p can be variables/rationals) then it | |
# will return p. | |
for val in expr: | |
if val.has(x): | |
if isinstance(val, Pow) and val.as_base_exp()[0] == x: | |
return (val.as_base_exp()[1]) | |
elif val == x: | |
return (val.as_base_exp()[1]) | |
else: | |
return self._degree(val.args, x) | |
return 0 | |
def _powers(self, expr): | |
# this function will return all the different relative power of x w.r.t f(x). | |
# expr = x**p * f(x)**q then it will return {p/q}. | |
pows = set() | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
self.y = Dummy('y') | |
if isinstance(expr, Add): | |
exprs = expr.atoms(Add) | |
elif isinstance(expr, Mul): | |
exprs = expr.atoms(Mul) | |
elif isinstance(expr, Pow): | |
exprs = expr.atoms(Pow) | |
else: | |
exprs = {expr} | |
for arg in exprs: | |
if arg.has(x): | |
_, u = arg.as_independent(x, fx) | |
pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y) | |
pows.add(pow) | |
return pows | |
def _verify(self, fx): | |
num, den = self.wilds_match() | |
x = self.ode_problem.sym | |
factor = simplify(x/fx*num/den) | |
# Try representing factor in terms of x^n*y | |
# where n is lowest power of x in factor; | |
# first remove terms like sqrt(2)*3 from factor.atoms(Mul) | |
num, dem = factor.as_numer_denom() | |
num = expand(num) | |
dem = expand(dem) | |
pows = self._powers(num) | |
pows.update(self._powers(dem)) | |
pows = list(pows) | |
if(len(pows)==1) and pows[0]!=zoo: | |
self.t = Dummy('t') | |
self.r2 = {'t': self.t} | |
num = num.subs(x**pows[0]*fx, self.t) | |
dem = dem.subs(x**pows[0]*fx, self.t) | |
test = num/dem | |
free = test.free_symbols | |
if len(free) == 1 and free.pop() == self.t: | |
self.r2.update({'power' : pows[0], 'u' : test}) | |
return True | |
return False | |
return False | |
def _get_match_object(self): | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
u = self.r2['u'].subs(self.r2['t'], self.y) | |
ycoeff = 1/(self.y*(self.r2['power'] - u)) | |
m1 = {self.y: 1, x: -1/x, 'coeff': 1} | |
m2 = {self.y: ycoeff, x: 1, 'coeff': 1} | |
return m1, m2, x, x**self.r2['power']*fx | |
class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver): | |
r""" | |
Solves a 1st order differential equation with homogeneous coefficients | |
using the substitution `u_1 = \frac{\text{<dependent | |
variable>}}{\text{<independent variable>}}`. | |
This is a differential equation | |
.. math:: P(x, y) + Q(x, y) dy/dx = 0 | |
such that `P` and `Q` are homogeneous and of the same order. A function | |
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. | |
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See | |
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. | |
If the coefficients `P` and `Q` in the differential equation above are | |
homogeneous functions of the same order, then it can be shown that the | |
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential | |
equation into an equation separable in the variables `x` and `u`. If | |
`h(u_1)` is the function that results from making the substitution `u_1 = | |
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the | |
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + | |
Q(x, f(x)) f'(x) = 0`, then the general solution is:: | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f, g, h = map(Function, ['f', 'g', 'h']) | |
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) | |
>>> pprint(genform) | |
/f(x)\ /f(x)\ d | |
g|----| + h|----|*--(f(x)) | |
\ x / \ x / dx | |
>>> pprint(dsolve(genform, f(x), | |
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) | |
f(x) | |
---- | |
x | |
/ | |
| | |
| -h(u1) | |
log(x) = C1 + | ---------------- d(u1) | |
| u1*h(u1) + g(u1) | |
| | |
/ | |
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. | |
See also the docstrings of | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), | |
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) | |
/ 3 \ | |
|3*f(x) f (x)| | |
log|------ + -----| | |
| x 3 | | |
\ x / | |
log(x) = log(C1) - ------------------- | |
3 | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 59 | |
# indirect doctest | |
""" | |
hint = "1st_homogeneous_coeff_subs_dep_div_indep" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[f(x).diff(x)]) | |
return d, e | |
def _equation(self, fx, x, order): | |
d, e = self.wilds() | |
return d + e*fx.diff(x) | |
def _verify(self, fx): | |
self.d, self.e = self.wilds_match() | |
self.y = Dummy('y') | |
x = self.ode_problem.sym | |
self.d = separatevars(self.d.subs(fx, self.y)) | |
self.e = separatevars(self.e.subs(fx, self.y)) | |
ordera = homogeneous_order(self.d, x, self.y) | |
orderb = homogeneous_order(self.e, x, self.y) | |
if ordera == orderb and ordera is not None: | |
self.u = Dummy('u') | |
if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0: | |
return True | |
return False | |
return False | |
def _get_match_object(self): | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
self.u1 = Dummy('u1') | |
xarg = 0 | |
yarg = 0 | |
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
int = Integral( | |
(-e/(d + u1*e)).subs({x: 1, y: u1}), | |
(u1, None, fx/x)) | |
sol = logcombine(Eq(log(x), int + log(C1)), force=True) | |
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) | |
return [gen_sol] | |
class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver): | |
r""" | |
Solves a 1st order differential equation with homogeneous coefficients | |
using the substitution `u_2 = \frac{\text{<independent | |
variable>}}{\text{<dependent variable>}}`. | |
This is a differential equation | |
.. math:: P(x, y) + Q(x, y) dy/dx = 0 | |
such that `P` and `Q` are homogeneous and of the same order. A function | |
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. | |
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See | |
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. | |
If the coefficients `P` and `Q` in the differential equation above are | |
homogeneous functions of the same order, then it can be shown that the | |
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential | |
equation into an equation separable in the variables `y` and `u_2`. If | |
`h(u_2)` is the function that results from making the substitution `u_2 = | |
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the | |
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + | |
Q(x, f(x)) f'(x) = 0`, then the general solution is: | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f, g, h = map(Function, ['f', 'g', 'h']) | |
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) | |
>>> pprint(genform) | |
/ x \ / x \ d | |
g|----| + h|----|*--(f(x)) | |
\f(x)/ \f(x)/ dx | |
>>> pprint(dsolve(genform, f(x), | |
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) | |
x | |
---- | |
f(x) | |
/ | |
| | |
| -g(u1) | |
| ---------------- d(u1) | |
| u1*g(u1) + h(u1) | |
| | |
/ | |
<BLANKLINE> | |
f(x) = C1*e | |
Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`. | |
See also the docstrings of | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`. | |
Examples | |
======== | |
>>> from sympy import Function, pprint, dsolve | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), | |
... hint='1st_homogeneous_coeff_subs_indep_div_dep', | |
... simplify=False)) | |
/ 2 \ | |
|3*x | | |
log|----- + 1| | |
| 2 | | |
\f (x) / | |
log(f(x)) = log(C1) - -------------- | |
3 | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 59 | |
# indirect doctest | |
""" | |
hint = "1st_homogeneous_coeff_subs_indep_div_dep" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[f(x).diff(x)]) | |
return d, e | |
def _equation(self, fx, x, order): | |
d, e = self.wilds() | |
return d + e*fx.diff(x) | |
def _verify(self, fx): | |
self.d, self.e = self.wilds_match() | |
self.y = Dummy('y') | |
x = self.ode_problem.sym | |
self.d = separatevars(self.d.subs(fx, self.y)) | |
self.e = separatevars(self.e.subs(fx, self.y)) | |
ordera = homogeneous_order(self.d, x, self.y) | |
orderb = homogeneous_order(self.e, x, self.y) | |
if ordera == orderb and ordera is not None: | |
self.u = Dummy('u') | |
if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0: | |
return True | |
return False | |
return False | |
def _get_match_object(self): | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
self.u1 = Dummy('u1') | |
xarg = 0 | |
yarg = 0 | |
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() | |
(C1,) = self.ode_problem.get_numbered_constants(num=1) | |
int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) # type: ignore | |
sol = logcombine(Eq(log(fx), int + log(C1)), force=True) | |
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) | |
return [gen_sol] | |
class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep): | |
r""" | |
Returns the best solution to an ODE from the two hints | |
``1st_homogeneous_coeff_subs_dep_div_indep`` and | |
``1st_homogeneous_coeff_subs_indep_div_dep``. | |
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. | |
See the | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` | |
and | |
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` | |
docstrings for more information on these hints. Note that there is no | |
``ode_1st_homogeneous_coeff_best_Integral`` hint. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), | |
... hint='1st_homogeneous_coeff_best', simplify=False)) | |
/ 2 \ | |
|3*x | | |
log|----- + 1| | |
| 2 | | |
\f (x) / | |
log(f(x)) = log(C1) - -------------- | |
3 | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 59 | |
# indirect doctest | |
""" | |
hint = "1st_homogeneous_coeff_best" | |
has_integral = False | |
order = [1] | |
def _verify(self, fx): | |
if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx): | |
return True | |
return False | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
# There are two substitutions that solve the equation, u1=y/x and u2=x/y | |
# # They produce different integrals, so try them both and see which | |
# # one is easier | |
sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self) | |
sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self) | |
fx = self.ode_problem.func | |
if simplify_flag: | |
sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep") | |
sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep") | |
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify)) | |
class LinearCoefficients(HomogeneousCoeffBest): | |
r""" | |
Solves a differential equation with linear coefficients. | |
The general form of a differential equation with linear coefficients is | |
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + | |
c_2}\!\right) = 0\text{,} | |
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 | |
- a_2 b_1 \ne 0`. | |
This can be solved by substituting: | |
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} | |
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 | |
b_2}\text{.} | |
This substitution reduces the equation to a homogeneous differential | |
equation. | |
See Also | |
======== | |
:obj:`sympy.solvers.ode.single.HomogeneousCoeffBest` | |
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` | |
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` | |
Examples | |
======== | |
>>> from sympy import dsolve, Function, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> df = f(x).diff(x) | |
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) | |
>>> dsolve(eq, hint='linear_coefficients') | |
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] | |
>>> pprint(dsolve(eq, hint='linear_coefficients')) | |
___________ ___________ | |
/ 2 / 2 | |
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] | |
References | |
========== | |
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications | |
of the ACM, Volume 14, Number 8, August 1971, pp. 558 | |
""" | |
hint = "linear_coefficients" | |
has_integral = True | |
order = [1] | |
def _wilds(self, f, x, order): | |
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[f(x).diff(x)]) | |
return d, e | |
def _equation(self, fx, x, order): | |
d, e = self.wilds() | |
return d + e*fx.diff(x) | |
def _verify(self, fx): | |
self.d, self.e = self.wilds_match() | |
a, b = self.wilds() | |
F = self.d/self.e | |
x = self.ode_problem.sym | |
params = self._linear_coeff_match(F, fx) | |
if params: | |
self.xarg, self.yarg = params | |
u = Dummy('u') | |
t = Dummy('t') | |
self.y = Dummy('y') | |
# Dummy substitution for df and f(x). | |
dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u))) | |
reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx)) | |
dummy_eq = simplify(dummy_eq.subs(reps)) | |
# get the re-cast values for e and d | |
r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b) | |
if r2: | |
self.d, self.e = r2[b], r2[a] | |
orderd = homogeneous_order(self.d, x, fx) | |
ordere = homogeneous_order(self.e, x, fx) | |
if orderd == ordere and orderd is not None: | |
self.d = self.d.subs(fx, self.y) | |
self.e = self.e.subs(fx, self.y) | |
return True | |
return False | |
return False | |
def _linear_coeff_match(self, expr, func): | |
r""" | |
Helper function to match hint ``linear_coefficients``. | |
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 | |
f(x) + c_2)` where the following conditions hold: | |
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; | |
2. `c_1` or `c_2` are not equal to zero; | |
3. `a_2 b_1 - a_1 b_2` is not equal to zero. | |
Return ``xarg``, ``yarg`` where | |
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` | |
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` | |
Examples | |
======== | |
>>> from sympy import Function, sin | |
>>> from sympy.abc import x | |
>>> from sympy.solvers.ode.single import LinearCoefficients | |
>>> f = Function('f') | |
>>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11) | |
>>> obj = LinearCoefficients(eq) | |
>>> obj._linear_coeff_match(eq, f(x)) | |
(1/9, 22/9) | |
>>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)) | |
>>> obj = LinearCoefficients(eq) | |
>>> obj._linear_coeff_match(eq, f(x)) | |
(19/27, 2/27) | |
>>> eq = sin(f(x)/x) | |
>>> obj = LinearCoefficients(eq) | |
>>> obj._linear_coeff_match(eq, f(x)) | |
""" | |
f = func.func | |
x = func.args[0] | |
def abc(eq): | |
r''' | |
Internal function of _linear_coeff_match | |
that returns Rationals a, b, c | |
if eq is a*x + b*f(x) + c, else None. | |
''' | |
eq = _mexpand(eq) | |
c = eq.as_independent(x, f(x), as_Add=True)[0] | |
if not c.is_Rational: | |
return | |
a = eq.coeff(x) | |
if not a.is_Rational: | |
return | |
b = eq.coeff(f(x)) | |
if not b.is_Rational: | |
return | |
if eq == a*x + b*f(x) + c: | |
return a, b, c | |
def match(arg): | |
r''' | |
Internal function of _linear_coeff_match that returns Rationals a1, | |
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) | |
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is | |
non-zero, else None. | |
''' | |
n, d = arg.together().as_numer_denom() | |
m = abc(n) | |
if m is not None: | |
a1, b1, c1 = m | |
m = abc(d) | |
if m is not None: | |
a2, b2, c2 = m | |
d = a2*b1 - a1*b2 | |
if (c1 or c2) and d: | |
return a1, b1, c1, a2, b2, c2, d | |
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and | |
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} | |
m1 = match(m.pop()) | |
if m1 and all(match(mi) == m1 for mi in m): | |
a1, b1, c1, a2, b2, c2, denom = m1 | |
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom | |
def _get_match_object(self): | |
fx = self.ode_problem.func | |
x = self.ode_problem.sym | |
self.u1 = Dummy('u1') | |
u = Dummy('u') | |
return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg] | |
class NthOrderReducible(SingleODESolver): | |
r""" | |
Solves ODEs that only involve derivatives of the dependent variable using | |
a substitution of the form `f^n(x) = g(x)`. | |
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be | |
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and | |
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If | |
that gives an explicit solution for `g` then `f` is found simply by | |
integration. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Eq | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) | |
>>> dsolve(eq, f(x), hint='nth_order_reducible') | |
... # doctest: +NORMALIZE_WHITESPACE | |
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) | |
""" | |
hint = "nth_order_reducible" | |
has_integral = False | |
def _matches(self): | |
# Any ODE that can be solved with a substitution and | |
# repeated integration e.g.: | |
# `d^2/dx^2(y) + x*d/dx(y) = constant | |
#f'(x) must be finite for this to work | |
eq = self.ode_problem.eq_preprocessed | |
func = self.ode_problem.func | |
x = self.ode_problem.sym | |
r""" | |
Matches any differential equation that can be rewritten with a smaller | |
order. Only derivatives of ``func`` alone, wrt a single variable, | |
are considered, and only in them should ``func`` appear. | |
""" | |
# ODE only handles functions of 1 variable so this affirms that state | |
assert len(func.args) == 1 | |
vc = [d.variable_count[0] for d in eq.atoms(Derivative) | |
if d.expr == func and len(d.variable_count) == 1] | |
ords = [c for v, c in vc if v == x] | |
if len(ords) < 2: | |
return False | |
self.smallest = min(ords) | |
# make sure func does not appear outside of derivatives | |
D = Dummy() | |
if eq.subs(func.diff(x, self.smallest), D).has(func): | |
return False | |
return True | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
n = self.smallest | |
# get a unique function name for g | |
names = [a.name for a in eq.atoms(AppliedUndef)] | |
while True: | |
name = Dummy().name | |
if name not in names: | |
g = Function(name) | |
break | |
w = f(x).diff(x, n) | |
geq = eq.subs(w, g(x)) | |
gsol = dsolve(geq, g(x)) | |
if not isinstance(gsol, list): | |
gsol = [gsol] | |
# Might be multiple solutions to the reduced ODE: | |
fsol = [] | |
for gsoli in gsol: | |
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times | |
fsol.append(fsoli) | |
return fsol | |
class SecondHypergeometric(SingleODESolver): | |
r""" | |
Solves 2nd order linear differential equations. | |
It computes special function solutions which can be expressed using the | |
2F1, 1F1 or 0F1 hypergeometric functions. | |
.. math:: y'' + A(x) y' + B(x) y = 0\text{,} | |
where `A` and `B` are rational functions. | |
These kinds of differential equations have solution of non-Liouvillian form. | |
Given linear ODE can be obtained from 2F1 given by | |
.. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,} | |
where {a, b, c} are arbitrary constants. | |
Notes | |
===== | |
The algorithm should find any solution of the form | |
.. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,} | |
where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function". | |
Currently only the 2F1 case is implemented in SymPy but the other cases are | |
described in the paper and could be implemented in future (contributions | |
welcome!). | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x) | |
>>> pprint(dsolve(eq, f(x), '2nd_hypergeometric')) | |
_ | |
/ / 4 \\ |_ /-1, -1 | \ | |
|C1 + C2*|log(x) + -----||* | | | x| | |
\ \ x + 1// 2 1 \ 1 | / | |
f(x) = -------------------------------------------- | |
3 | |
(x - 1) | |
References | |
========== | |
- "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab | |
""" | |
hint = "2nd_hypergeometric" | |
has_integral = True | |
def _matches(self): | |
eq = self.ode_problem.eq_preprocessed | |
func = self.ode_problem.func | |
r = match_2nd_hypergeometric(eq, func) | |
self.match_object = None | |
if r: | |
A, B = r | |
d = equivalence_hypergeometric(A, B, func) | |
if d: | |
if d['type'] == "2F1": | |
self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) | |
if self.match_object is not None: | |
self.match_object.update({'A':A, 'B':B}) | |
# We can extend it for 1F1 and 0F1 type also. | |
return self.match_object is not None | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq | |
func = self.ode_problem.func | |
if self.match_object['type'] == "2F1": | |
sol = get_sol_2F1_hypergeometric(eq, func, self.match_object) | |
if sol is None: | |
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" | |
+ " the hypergeometric method") | |
return [sol] | |
class NthLinearConstantCoeffHomogeneous(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear homogeneous differential equation with | |
constant coefficients. | |
This is an equation of the form | |
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) | |
+ a_0 f(x) = 0\text{.} | |
These equations can be solved in a general manner, by taking the roots of | |
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + | |
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, | |
for each where `C_n` is an arbitrary constant, `r` is a root of the | |
characteristic equation and `i` is one of each from 0 to the multiplicity | |
of the root - 1 (for example, a root 3 of multiplicity 2 would create the | |
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded | |
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. | |
Complex roots always come in conjugate pairs in polynomials with real | |
coefficients, so the two roots will be represented (after simplifying the | |
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. | |
If SymPy cannot find exact roots to the characteristic equation, a | |
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return | |
instead. | |
>>> from sympy import Function, dsolve | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), | |
... hint='nth_linear_constant_coeff_homogeneous') | |
... # doctest: +NORMALIZE_WHITESPACE | |
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) | |
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) | |
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) | |
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) | |
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) | |
Note that because this method does not involve integration, there is no | |
``nth_linear_constant_coeff_homogeneous_Integral`` hint. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - | |
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), | |
... hint='nth_linear_constant_coeff_homogeneous')) | |
x -2*x | |
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Linear_differential_equation section: | |
Nonhomogeneous_equation_with_constant_coefficients | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 211 | |
# indirect doctest | |
""" | |
hint = "nth_linear_constant_coeff_homogeneous" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
func = self.ode_problem.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) | |
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): | |
if not self.r[-1]: | |
return True | |
else: | |
return False | |
return False | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
fx = self.ode_problem.func | |
order = self.ode_problem.order | |
roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order) | |
# A generator of constants | |
constants = self.ode_problem.get_numbered_constants(num=len(roots)) | |
gsol = Add(*[i*j for (i, j) in zip(constants, roots)]) | |
gsol = Eq(fx, gsol) | |
if simplify_flag: | |
gsol = _get_simplified_sol([gsol], fx, collectterms) | |
return [gsol] | |
class NthLinearConstantCoeffVariationOfParameters(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear differential equation with constant | |
coefficients using the method of variation of parameters. | |
This method works on any differential equations of the form | |
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 | |
f(x) = P(x)\text{.} | |
This method works by assuming that the particular solution takes the form | |
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} | |
where `y_i` is the `i`\th solution to the homogeneous equation. The | |
solution is then solved using Wronskian's and Cramer's Rule. The | |
particular solution is given by | |
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx | |
\right) y_i(x) \text{,} | |
where `W(x)` is the Wronskian of the fundamental system (the system of `n` | |
linearly independent solutions to the homogeneous equation), and `W_i(x)` | |
is the Wronskian of the fundamental system with the `i`\th column replaced | |
with `[0, 0, \cdots, 0, P(x)]`. | |
This method is general enough to solve any `n`\th order inhomogeneous | |
linear differential equation with constant coefficients, but sometimes | |
SymPy cannot simplify the Wronskian well enough to integrate it. If this | |
method hangs, try using the | |
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and | |
simplifying the integrals manually. Also, prefer using | |
``nth_linear_constant_coeff_undetermined_coefficients`` when it | |
applies, because it does not use integration, making it faster and more | |
reliable. | |
Warning, using simplify=False with | |
'nth_linear_constant_coeff_variation_of_parameters' in | |
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will | |
not attempt to simplify the Wronskian before integrating. It is | |
recommended that you only use simplify=False with | |
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this | |
method, especially if the solution to the homogeneous equation has | |
trigonometric functions in it. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint, exp, log | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + | |
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), | |
... hint='nth_linear_constant_coeff_variation_of_parameters')) | |
/ / / x*log(x) 11*x\\\ x | |
f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e | |
\ \ \ 6 36 /// | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Variation_of_parameters | |
- https://planetmath.org/VariationOfParameters | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 233 | |
# indirect doctest | |
""" | |
hint = "nth_linear_constant_coeff_variation_of_parameters" | |
has_integral = True | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
func = self.ode_problem.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) | |
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): | |
if self.r[-1]: | |
return True | |
else: | |
return False | |
return False | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq_high_order_free | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
order = self.ode_problem.order | |
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) | |
# A generator of constants | |
constants = self.ode_problem.get_numbered_constants(num=len(roots)) | |
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) | |
homogen_sol = Eq(f(x), homogen_sol) | |
homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) | |
if simplify_flag: | |
homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms) | |
return [homogen_sol] | |
class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear differential equation with constant | |
coefficients using the method of undetermined coefficients. | |
This method works on differential equations of the form | |
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) | |
+ a_0 f(x) = P(x)\text{,} | |
where `P(x)` is a function that has a finite number of linearly | |
independent derivatives. | |
Functions that fit this requirement are finite sums functions of the form | |
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` | |
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For | |
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, | |
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have | |
a finite number of derivatives, because they can be expanded into `\sin(a | |
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that | |
expansion, so you will need to manually rewrite the expression in terms of | |
the above to use this method. So, for example, you will need to manually | |
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method | |
of undetermined coefficients on it. | |
This method works by creating a trial function from the expression and all | |
of its linear independent derivatives and substituting them into the | |
original ODE. The coefficients for each term will be a system of linear | |
equations, which are be solved for and substituted, giving the solution. | |
If any of the trial functions are linearly dependent on the solution to | |
the homogeneous equation, they are multiplied by sufficient `x` to make | |
them linearly independent. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint, exp, cos | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - | |
... 4*exp(-x)*x**2 + cos(2*x), f(x), | |
... hint='nth_linear_constant_coeff_undetermined_coefficients')) | |
/ / 3\\ | |
| | x || -x 4*sin(2*x) 3*cos(2*x) | |
f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- | |
\ \ 3 // 25 25 | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients | |
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", | |
Dover 1963, pp. 221 | |
# indirect doctest | |
""" | |
hint = "nth_linear_constant_coeff_undetermined_coefficients" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
func = self.ode_problem.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
self.r = self.ode_problem.get_linear_coefficients(eq, func, order) | |
does_match = False | |
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): | |
if self.r[-1]: | |
eq_homogeneous = Add(eq, -self.r[-1]) | |
undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous) | |
if undetcoeff['test']: | |
self.trialset = undetcoeff['trialset'] | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
order = self.ode_problem.order | |
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) | |
# A generator of constants | |
constants = self.ode_problem.get_numbered_constants(num=len(roots)) | |
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) | |
homogen_sol = Eq(f(x), homogen_sol) | |
self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag}) | |
gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset) | |
if simplify_flag: | |
gsol = _get_simplified_sol([gsol], f(x), collectterms) | |
return [gsol] | |
class NthLinearEulerEqHomogeneous(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear homogeneous variable-coefficient | |
Cauchy-Euler equidimensional ordinary differential equation. | |
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) | |
\cdots`. | |
These equations can be solved in a general manner, by substituting | |
solutions of the form `f(x) = x^r`, and deriving a characteristic equation | |
for `r`. When there are repeated roots, we include extra terms of the | |
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration | |
constant, `r` is a root of the characteristic equation, and `k` ranges | |
over the multiplicity of `r`. In the cases where the roots are complex, | |
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` | |
are returned, based on expansions with Euler's formula. The general | |
solution is the sum of the terms found. If SymPy cannot find exact roots | |
to the characteristic equation, a | |
:py:obj:`~.ComplexRootOf` instance will be returned | |
instead. | |
>>> from sympy import Function, dsolve | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), | |
... hint='nth_linear_euler_eq_homogeneous') | |
... # doctest: +NORMALIZE_WHITESPACE | |
Eq(f(x), sqrt(x)*(C1 + C2*log(x))) | |
Note that because this method does not involve integration, there is no | |
``nth_linear_euler_eq_homogeneous_Integral`` hint. | |
The following is for internal use: | |
- ``returns = 'sol'`` returns the solution to the ODE. | |
- ``returns = 'list'`` returns a list of linearly independent solutions, | |
corresponding to the fundamental solution set, for use with non | |
homogeneous solution methods like variation of parameters and | |
undetermined coefficients. Note that, though the solutions should be | |
linearly independent, this function does not explicitly check that. You | |
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear | |
independence. Also, ``assert len(sollist) == order`` will need to pass. | |
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, | |
'list': <list of linearly independent solutions>}``. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) | |
>>> pprint(dsolve(eq, f(x), | |
... hint='nth_linear_euler_eq_homogeneous')) | |
2 | |
f(x) = x *(C1 + C2*x) | |
References | |
========== | |
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation | |
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and | |
Engineers", Springer 1999, pp. 12 | |
# indirect doctest | |
""" | |
hint = "nth_linear_euler_eq_homogeneous" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_preprocessed | |
f = self.ode_problem.func.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) | |
self.r = None | |
does_match = False | |
if order and match: | |
coeff = match[order] | |
factor = x**order / coeff | |
self.r = {i: factor*match[i] for i in match} | |
if self.r and all(_test_term(self.r[i], f(x), i) for i in | |
self.r if i >= 0): | |
if not self.r[-1]: | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
fx = self.ode_problem.func | |
eq = self.ode_problem.eq | |
homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0] | |
return [homogen_sol] | |
class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional | |
ordinary differential equation using variation of parameters. | |
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) | |
\cdots`. | |
This method works by assuming that the particular solution takes the form | |
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, } | |
where `y_i` is the `i`\th solution to the homogeneous equation. The | |
solution is then solved using Wronskian's and Cramer's Rule. The | |
particular solution is given by multiplying eq given below with `a_n x^{n}` | |
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx | |
\right) y_i(x) \text{, } | |
where `W(x)` is the Wronskian of the fundamental system (the system of `n` | |
linearly independent solutions to the homogeneous equation), and `W_i(x)` | |
is the Wronskian of the fundamental system with the `i`\th column replaced | |
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. | |
This method is general enough to solve any `n`\th order inhomogeneous | |
linear differential equation, but sometimes SymPy cannot simplify the | |
Wronskian well enough to integrate it. If this method hangs, try using the | |
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and | |
simplifying the integrals manually. Also, prefer using | |
``nth_linear_constant_coeff_undetermined_coefficients`` when it | |
applies, because it does not use integration, making it faster and more | |
reliable. | |
Warning, using simplify=False with | |
'nth_linear_constant_coeff_variation_of_parameters' in | |
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will | |
not attempt to simplify the Wronskian before integrating. It is | |
recommended that you only use simplify=False with | |
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this | |
method, especially if the solution to the homogeneous equation has | |
trigonometric functions in it. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, Derivative | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 | |
>>> dsolve(eq, f(x), | |
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() | |
Eq(f(x), C1*x + C2*x**2 + x**4/6) | |
""" | |
hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" | |
has_integral = True | |
def _matches(self): | |
eq = self.ode_problem.eq_preprocessed | |
f = self.ode_problem.func.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) | |
self.r = None | |
does_match = False | |
if order and match: | |
coeff = match[order] | |
factor = x**order / coeff | |
self.r = {i: factor*match[i] for i in match} | |
if self.r and all(_test_term(self.r[i], f(x), i) for i in | |
self.r if i >= 0): | |
if self.r[-1]: | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
order = self.ode_problem.order | |
homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r) | |
self.r[-1] = self.r[-1]/self.r[order] | |
sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) | |
return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])] | |
class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver): | |
r""" | |
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional | |
ordinary differential equation using undetermined coefficients. | |
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) | |
\cdots`. | |
These equations can be solved in a general manner, by substituting | |
solutions of the form `x = exp(t)`, and deriving a characteristic equation | |
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can | |
be then solved by nth_linear_constant_coeff_undetermined_coefficients if | |
g(exp(t)) has finite number of linearly independent derivatives. | |
Functions that fit this requirement are finite sums functions of the form | |
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` | |
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For | |
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, | |
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have | |
a finite number of derivatives, because they can be expanded into `\sin(a | |
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that | |
expansion, so you will need to manually rewrite the expression in terms of | |
the above to use this method. So, for example, you will need to manually | |
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method | |
of undetermined coefficients on it. | |
After replacement of x by exp(t), this method works by creating a trial function | |
from the expression and all of its linear independent derivatives and | |
substituting them into the original ODE. The coefficients for each term | |
will be a system of linear equations, which are be solved for and | |
substituted, giving the solution. If any of the trial functions are linearly | |
dependent on the solution to the homogeneous equation, they are multiplied | |
by sufficient `x` to make them linearly independent. | |
Examples | |
======== | |
>>> from sympy import dsolve, Function, Derivative, log | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) | |
>>> dsolve(eq, f(x), | |
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() | |
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) | |
""" | |
hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
f = self.ode_problem.func.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
match = self.ode_problem.get_linear_coefficients(eq, f(x), order) | |
self.r = None | |
does_match = False | |
if order and match: | |
coeff = match[order] | |
factor = x**order / coeff | |
self.r = {i: factor*match[i] for i in match} | |
if self.r and all(_test_term(self.r[i], f(x), i) for i in | |
self.r if i >= 0): | |
if self.r[-1]: | |
e, re = posify(self.r[-1].subs(x, exp(x))) | |
undetcoeff = _undetermined_coefficients_match(e.subs(re), x) | |
if undetcoeff['test']: | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') | |
for i in self.r.keys(): | |
if i >= 0: | |
chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand() | |
for i in range(1, degree(Poly(chareq, symbol))+1): | |
eq += chareq.coeff(symbol**i)*diff(f(x), x, i) | |
if chareq.as_coeff_add(symbol)[0]: | |
eq += chareq.as_coeff_add(symbol)[0]*f(x) | |
e, re = posify(self.r[-1].subs(x, exp(x))) | |
eq += e.subs(re) | |
self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x)) | |
sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0] | |
sol = sol.subs(x, log(x)) | |
sol = sol.subs(f(log(x)), f(x)).expand() | |
return [sol] | |
class SecondLinearBessel(SingleODESolver): | |
r""" | |
Gives solution of the Bessel differential equation | |
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) | |
if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x) | |
+ C1 bessely(n,x))`` as both the solutions are linearly independent else if | |
`n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x) | |
+ C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x) | |
+ C1 bessely(n,x))``. | |
Examples | |
======== | |
>>> from sympy.abc import x | |
>>> from sympy import Symbol | |
>>> v = Symbol('v', positive=True) | |
>>> from sympy import dsolve, Function | |
>>> f = Function('f') | |
>>> y = f(x) | |
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y | |
>>> dsolve(genform) | |
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) | |
References | |
========== | |
https://math24.net/bessel-differential-equation.html | |
""" | |
hint = "2nd_linear_bessel" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
f = self.ode_problem.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
df = f.diff(x) | |
a = Wild('a', exclude=[f,df]) | |
b = Wild('b', exclude=[x, f,df]) | |
a4 = Wild('a4', exclude=[x,f,df]) | |
b4 = Wild('b4', exclude=[x,f,df]) | |
c4 = Wild('c4', exclude=[x,f,df]) | |
d4 = Wild('d4', exclude=[x,f,df]) | |
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) | |
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) | |
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) | |
deq = a3*(f.diff(x, 2)) + b3*df + c3*f | |
r = collect(eq, | |
[f.diff(x, 2), df, f]).match(deq) | |
if order == 2 and r: | |
if not all(r[key].is_polynomial() for key in r): | |
n, d = eq.as_numer_denom() | |
eq = expand(n) | |
r = collect(eq, | |
[f.diff(x, 2), df, f]).match(deq) | |
if r and r[a3] != 0: | |
# leading coeff of f(x).diff(x, 2) | |
coeff = factor(r[a3]).match(a4*(x-b)**b4) | |
if coeff: | |
# if coeff[b4] = 0 means constant coefficient | |
if coeff[b4] == 0: | |
return False | |
point = coeff[b] | |
else: | |
return False | |
if point: | |
r[a3] = simplify(r[a3].subs(x, x+point)) | |
r[b3] = simplify(r[b3].subs(x, x+point)) | |
r[c3] = simplify(r[c3].subs(x, x+point)) | |
# making a3 in the form of x**2 | |
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) | |
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) | |
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) | |
# checking if b3 is of form c*(x-b) | |
coeff1 = factor(r[b3]).match(a4*(x)) | |
if coeff1 is None: | |
return False | |
# c3 maybe of very complex form so I am simply checking (a - b) form | |
# if yes later I will match with the standerd form of bessel in a and b | |
# a, b are wild variable defined above. | |
_coeff2 = expand(r[c3]).match(a - b) | |
if _coeff2 is None: | |
return False | |
# matching with standerd form for c3 | |
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) | |
if coeff2 is None: | |
return False | |
if _coeff2[b] == 0: | |
coeff2[d4] = 0 | |
else: | |
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] | |
self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} | |
self.rn['c4'] = coeff1[a4] | |
self.rn['b4'] = point | |
return True | |
return False | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
n = self.rn['n'] | |
a4 = self.rn['a4'] | |
c4 = self.rn['c4'] | |
d4 = self.rn['d4'] | |
b4 = self.rn['b4'] | |
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) | |
(C1, C2) = self.ode_problem.get_numbered_constants(num=2) | |
return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4) | |
+ C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))] | |
class SecondLinearAiry(SingleODESolver): | |
r""" | |
Gives solution of the Airy differential equation | |
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 | |
in terms of Airy special functions airyai and airybi. | |
Examples | |
======== | |
>>> from sympy import dsolve, Function | |
>>> from sympy.abc import x | |
>>> f = Function("f") | |
>>> eq = f(x).diff(x, 2) - x*f(x) | |
>>> dsolve(eq) | |
Eq(f(x), C1*airyai(x) + C2*airybi(x)) | |
""" | |
hint = "2nd_linear_airy" | |
has_integral = False | |
def _matches(self): | |
eq = self.ode_problem.eq_high_order_free | |
f = self.ode_problem.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
df = f.diff(x) | |
a4 = Wild('a4', exclude=[x,f,df]) | |
b4 = Wild('b4', exclude=[x,f,df]) | |
match = self.ode_problem.get_linear_coefficients(eq, f, order) | |
does_match = False | |
if order == 2 and match and match[2] != 0: | |
if match[1].is_zero: | |
self.rn = cancel(match[0]/match[2]).match(a4+b4*x) | |
if self.rn and self.rn[b4] != 0: | |
self.rn = {'b':self.rn[a4],'m':self.rn[b4]} | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
f = self.ode_problem.func.func | |
x = self.ode_problem.sym | |
(C1, C2) = self.ode_problem.get_numbered_constants(num=2) | |
b = self.rn['b'] | |
m = self.rn['m'] | |
if m.is_positive: | |
arg = - b/cbrt(m)**2 - cbrt(m)*x | |
elif m.is_negative: | |
arg = - b/cbrt(-m)**2 + cbrt(-m)*x | |
else: | |
arg = - b/cbrt(-m)**2 + cbrt(-m)*x | |
return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))] | |
class LieGroup(SingleODESolver): | |
r""" | |
This hint implements the Lie group method of solving first order differential | |
equations. The aim is to convert the given differential equation from the | |
given coordinate system into another coordinate system where it becomes | |
invariant under the one-parameter Lie group of translations. The converted | |
ODE can be easily solved by quadrature. It makes use of the | |
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the | |
infinitesimals of the transformation. | |
The coordinates `r` and `s` can be found by solving the following Partial | |
Differential Equations. | |
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} | |
= 0 | |
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} | |
= 1 | |
The differential equation becomes separable in the new coordinate system | |
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + | |
h(x, y)\frac{\partial s}{\partial y}}{ | |
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} | |
After finding the solution by integration, it is then converted back to the original | |
coordinate system by substituting `r` and `s` in terms of `x` and `y` again. | |
Examples | |
======== | |
>>> from sympy import Function, dsolve, exp, pprint | |
>>> from sympy.abc import x | |
>>> f = Function('f') | |
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), | |
... hint='lie_group')) | |
/ 2\ 2 | |
| x | -x | |
f(x) = |C1 + --|*e | |
\ 2 / | |
References | |
========== | |
- Solving differential equations by Symmetry Groups, | |
John Starrett, pp. 1 - pp. 14 | |
""" | |
hint = "lie_group" | |
has_integral = False | |
def _has_additional_params(self): | |
return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params | |
def _matches(self): | |
eq = self.ode_problem.eq | |
f = self.ode_problem.func.func | |
order = self.ode_problem.order | |
x = self.ode_problem.sym | |
df = f(x).diff(x) | |
y = Dummy('y') | |
d = Wild('d', exclude=[df, f(x).diff(x, 2)]) | |
e = Wild('e', exclude=[df]) | |
does_match = False | |
if self._has_additional_params() and order == 1: | |
xi = self.ode_problem.params['xi'] | |
eta = self.ode_problem.params['eta'] | |
self.r3 = {'xi': xi, 'eta': eta} | |
r = collect(eq, df, exact=True).match(d + e * df) | |
if r: | |
r['d'] = d | |
r['e'] = e | |
r['y'] = y | |
r[d] = r[d].subs(f(x), y) | |
r[e] = r[e].subs(f(x), y) | |
self.r3.update(r) | |
does_match = True | |
return does_match | |
def _get_general_solution(self, *, simplify_flag: bool = True): | |
eq = self.ode_problem.eq | |
x = self.ode_problem.sym | |
func = self.ode_problem.func | |
order = self.ode_problem.order | |
df = func.diff(x) | |
try: | |
eqsol = solve(eq, df) | |
except NotImplementedError: | |
eqsol = [] | |
desols = [] | |
for s in eqsol: | |
sol = _ode_lie_group(s, func, order, match=self.r3) | |
if sol: | |
desols.extend(sol) | |
if desols == []: | |
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" | |
+ " the lie group method") | |
return desols | |
solver_map = { | |
'factorable': Factorable, | |
'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous, | |
'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous, | |
'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients, | |
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients, | |
'separable': Separable, | |
'1st_exact': FirstExact, | |
'1st_linear': FirstLinear, | |
'Bernoulli': Bernoulli, | |
'Riccati_special_minus2': RiccatiSpecial, | |
'1st_rational_riccati': RationalRiccati, | |
'1st_homogeneous_coeff_best': HomogeneousCoeffBest, | |
'1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep, | |
'1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep, | |
'almost_linear': AlmostLinear, | |
'linear_coefficients': LinearCoefficients, | |
'separable_reduced': SeparableReduced, | |
'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters, | |
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters, | |
'Liouville': Liouville, | |
'2nd_linear_airy': SecondLinearAiry, | |
'2nd_linear_bessel': SecondLinearBessel, | |
'2nd_hypergeometric': SecondHypergeometric, | |
'nth_order_reducible': NthOrderReducible, | |
'2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved, | |
'nth_algebraic': NthAlgebraic, | |
'lie_group': LieGroup, | |
} | |
# Avoid circular import: | |
from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order | |