File size: 109,476 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
#
# This is the module for ODE solver classes for single ODEs.
#

from __future__ import annotations
from typing import ClassVar, Iterator

from .riccati import match_riccati, solve_riccati
from sympy.core import Add, S, Pow, Rational
from sympy.core.cache import cached_property
from sympy.core.exprtools import factor_terms
from sympy.core.expr import Expr
from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand
from sympy.core.numbers import zoo
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Dummy, Wild
from sympy.core.mul import Mul
from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi
from sympy.integrals import Integral
from sympy.polys import Poly
from sympy.polys.polytools import cancel, factor, degree
from sympy.simplify import collect, simplify, separatevars, logcombine, posify # type: ignore
from sympy.simplify.radsimp import fraction
from sympy.utilities import numbered_symbols
from sympy.solvers.solvers import solve
from sympy.solvers.deutils import ode_order, _preprocess
from sympy.polys.matrices.linsolve import _lin_eq2dict
from sympy.polys.solvers import PolyNonlinearError
from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \
    get_sol_2F1_hypergeometric, match_2nd_hypergeometric
from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \
    _solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \
        _get_simplified_sol
from .lie_group import _ode_lie_group


class ODEMatchError(NotImplementedError):
    """Raised if a SingleODESolver is asked to solve an ODE it does not match"""
    pass


class SingleODEProblem:
    """Represents an ordinary differential equation (ODE)

    This class is used internally in the by dsolve and related
    functions/classes so that properties of an ODE can be computed
    efficiently.

    Examples
    ========

    This class is used internally by dsolve. To instantiate an instance
    directly first define an ODE problem:

    >>> from sympy import Function, Symbol
    >>> x = Symbol('x')
    >>> f = Function('f')
    >>> eq = f(x).diff(x, 2)

    Now you can create a SingleODEProblem instance and query its properties:

    >>> from sympy.solvers.ode.single import SingleODEProblem
    >>> problem = SingleODEProblem(f(x).diff(x), f(x), x)
    >>> problem.eq
    Derivative(f(x), x)
    >>> problem.func
    f(x)
    >>> problem.sym
    x
    """

    # Instance attributes:
    eq = None  # type: Expr
    func = None  # type: AppliedUndef
    sym = None  # type: Symbol
    _order = None  # type: int
    _eq_expanded = None  # type: Expr
    _eq_preprocessed = None  # type: Expr
    _eq_high_order_free = None

    def __init__(self, eq, func, sym, prep=True, **kwargs):
        assert isinstance(eq, Expr)
        assert isinstance(func, AppliedUndef)
        assert isinstance(sym, Symbol)
        assert isinstance(prep, bool)
        self.eq = eq
        self.func = func
        self.sym = sym
        self.prep = prep
        self.params = kwargs

    @cached_property
    def order(self) -> int:
        return ode_order(self.eq, self.func)

    @cached_property
    def eq_preprocessed(self) -> Expr:
        return self._get_eq_preprocessed()

    @cached_property
    def eq_high_order_free(self) -> Expr:
        a = Wild('a', exclude=[self.func])
        c1 = Wild('c1', exclude=[self.sym])
        # Precondition to try remove f(x) from highest order derivative
        reduced_eq = None
        if self.eq.is_Add:
            deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order))
            if deriv_coef not in (1, 0):
                r = deriv_coef.match(a*self.func**c1)
                if r and r[c1]:
                    den = self.func**r[c1]
                    reduced_eq = Add(*[arg/den for arg in self.eq.args])
        if not reduced_eq:
            reduced_eq = expand(self.eq)
        return reduced_eq

    @cached_property
    def eq_expanded(self) -> Expr:
        return expand(self.eq_preprocessed)

    def _get_eq_preprocessed(self) -> Expr:
        if self.prep:
            process_eq, process_func = _preprocess(self.eq, self.func)
            if process_func != self.func:
                raise ValueError
        else:
            process_eq = self.eq
        return process_eq

    def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]:
        """
        Returns a list of constants that do not occur
        in eq already.
        """
        ncs = self.iter_numbered_constants(start, prefix)
        Cs = [next(ncs) for i in range(num)]
        return Cs

    def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]:
        """
        Returns an iterator of constants that do not occur
        in eq already.
        """
        atom_set = self.eq.free_symbols
        func_set = self.eq.atoms(Function)
        if func_set:
            atom_set |= {Symbol(str(f.func)) for f in func_set}
        return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)

    @cached_property
    def is_autonomous(self):
        u = Dummy('u')
        x = self.sym
        syms = self.eq.subs(self.func, u).free_symbols
        return x not in syms

    def get_linear_coefficients(self, eq, func, order):
        r"""
        Matches a differential equation to the linear form:

        .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0

        Returns a dict of order:coeff terms, where order is the order of the
        derivative on each term, and coeff is the coefficient of that derivative.
        The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is
        not linear.  This function assumes that ``func`` has already been checked
        to be good.

        Examples
        ========

        >>> from sympy import Function, cos, sin
        >>> from sympy.abc import x
        >>> from sympy.solvers.ode.single import SingleODEProblem
        >>> f = Function('f')
        >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \
        ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \
        ... sin(x)
        >>> obj = SingleODEProblem(eq, f(x), x)
        >>> obj.get_linear_coefficients(eq, f(x), 3)
        {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
        >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \
        ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \
        ... sin(f(x))
        >>> obj = SingleODEProblem(eq, f(x), x)
        >>> obj.get_linear_coefficients(eq, f(x), 3) == None
        True

        """
        f = func.func
        x = func.args[0]
        symset = {Derivative(f(x), x, i) for i in range(order+1)}
        try:
            rhs, lhs_terms = _lin_eq2dict(eq, symset)
        except PolyNonlinearError:
            return None

        if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()):
            return None
        terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)}
        terms[-1] = rhs
        return terms

    # TODO: Add methods that can be used by many ODE solvers:
    # order
    # is_linear()
    # get_linear_coefficients()
    # eq_prepared (the ODE in prepared form)


class SingleODESolver:
    """
    Base class for Single ODE solvers.

    Subclasses should implement the _matches and _get_general_solution
    methods. This class is not intended to be instantiated directly but its
    subclasses are as part of dsolve.

    Examples
    ========

    You can use a subclass of SingleODEProblem to solve a particular type of
    ODE. We first define a particular ODE problem:

    >>> from sympy import Function, Symbol
    >>> x = Symbol('x')
    >>> f = Function('f')
    >>> eq = f(x).diff(x, 2)

    Now we solve this problem using the NthAlgebraic solver which is a
    subclass of SingleODESolver:

    >>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem
    >>> problem = SingleODEProblem(eq, f(x), x)
    >>> solver = NthAlgebraic(problem)
    >>> solver.get_general_solution()
    [Eq(f(x), _C*x + _C)]

    The normal way to solve an ODE is to use dsolve (which would use
    NthAlgebraic and other solvers internally). When using dsolve a number of
    other things are done such as evaluating integrals, simplifying the
    solution and renumbering the constants:

    >>> from sympy import dsolve
    >>> dsolve(eq, hint='nth_algebraic')
    Eq(f(x), C1 + C2*x)
    """

    # Subclasses should store the hint name (the argument to dsolve) in this
    # attribute
    hint: ClassVar[str]

    # Subclasses should define this to indicate if they support an _Integral
    # hint.
    has_integral: ClassVar[bool]

    # The ODE to be solved
    ode_problem = None  # type: SingleODEProblem

    # Cache whether or not the equation has matched the method
    _matched: bool | None = None

    # Subclasses should store in this attribute the list of order(s) of ODE
    # that subclass can solve or leave it to None if not specific to any order
    order: list | None = None

    def __init__(self, ode_problem):
        self.ode_problem = ode_problem

    def matches(self) -> bool:
        if self.order is not None and self.ode_problem.order not in self.order:
            self._matched = False
            return self._matched

        if self._matched is None:
            self._matched = self._matches()
        return self._matched

    def get_general_solution(self, *, simplify: bool = True) -> list[Equality]:
        if not self.matches():
            msg = "%s solver cannot solve:\n%s"
            raise ODEMatchError(msg % (self.hint, self.ode_problem.eq))
        return self._get_general_solution(simplify_flag=simplify)

    def _matches(self) -> bool:
        msg = "Subclasses of SingleODESolver should implement matches."
        raise NotImplementedError(msg)

    def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]:
        msg = "Subclasses of SingleODESolver should implement get_general_solution."
        raise NotImplementedError(msg)


class SinglePatternODESolver(SingleODESolver):
    '''Superclass for ODE solvers based on pattern matching'''

    def wilds(self):
        prob = self.ode_problem
        f = prob.func.func
        x = prob.sym
        order = prob.order
        return self._wilds(f, x, order)

    def wilds_match(self):
        match = self._wilds_match
        return [match.get(w, S.Zero) for w in self.wilds()]

    def _matches(self):
        eq = self.ode_problem.eq_expanded
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        order = self.ode_problem.order
        df = f(x).diff(x, order)

        if order not in [1, 2]:
            return False

        pattern = self._equation(f(x), x, order)

        if not pattern.coeff(df).has(Wild):
            eq = expand(eq / eq.coeff(df))
        eq = eq.collect([f(x).diff(x), f(x)], func = cancel)

        self._wilds_match = match = eq.match(pattern)
        if match is not None:
            return self._verify(f(x))
        return False

    def _verify(self, fx) -> bool:
        return True

    def _wilds(self, f, x, order):
        msg = "Subclasses of SingleODESolver should implement _wilds"
        raise NotImplementedError(msg)

    def _equation(self, fx, x, order):
        msg = "Subclasses of SingleODESolver should implement _equation"
        raise NotImplementedError(msg)


class NthAlgebraic(SingleODESolver):
    r"""
    Solves an `n`\th order ordinary differential equation using algebra and
    integrals.

    There is no general form for the kind of equation that this can solve. The
    the equation is solved algebraically treating differentiation as an
    invertible algebraic function.

    Examples
    ========

    >>> from sympy import Function, dsolve, Eq
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0)
    >>> dsolve(eq, f(x), hint='nth_algebraic')
    [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)]

    Note that this solver can return algebraic solutions that do not have any
    integration constants (f(x) = 0 in the above example).
    """

    hint = 'nth_algebraic'
    has_integral = True  # nth_algebraic_Integral hint

    def _matches(self):
        r"""
        Matches any differential equation that nth_algebraic can solve. Uses
        `sympy.solve` but teaches it how to integrate derivatives.

        This involves calling `sympy.solve` and does most of the work of finding a
        solution (apart from evaluating the integrals).
        """
        eq = self.ode_problem.eq
        func = self.ode_problem.func
        var = self.ode_problem.sym

        # Derivative that solve can handle:
        diffx = self._get_diffx(var)

        # Replace derivatives wrt the independent variable with diffx
        def replace(eq, var):
            def expand_diffx(*args):
                differand, diffs = args[0], args[1:]
                toreplace = differand
                for v, n in diffs:
                    for _ in range(n):
                        if v == var:
                            toreplace = diffx(toreplace)
                        else:
                            toreplace = Derivative(toreplace, v)
                return toreplace
            return eq.replace(Derivative, expand_diffx)

        # Restore derivatives in solution afterwards
        def unreplace(eq, var):
            return eq.replace(diffx, lambda e: Derivative(e, var))

        subs_eqn = replace(eq, var)
        try:
            # turn off simplification to protect Integrals that have
            # _t instead of fx in them and would otherwise factor
            # as t_*Integral(1, x)
            solns = solve(subs_eqn, func, simplify=False)
        except NotImplementedError:
            solns = []

        solns = [simplify(unreplace(soln, var)) for soln in solns]
        solns = [Equality(func, soln) for soln in solns]

        self.solutions = solns
        return len(solns) != 0

    def _get_general_solution(self, *, simplify_flag: bool = True):
        return self.solutions

    # This needs to produce an invertible function but the inverse depends
    # which variable we are integrating with respect to. Since the class can
    # be stored in cached results we need to ensure that we always get the
    # same class back for each particular integration variable so we store these
    # classes in a global dict:
    _diffx_stored: dict[Symbol, type[Function]] = {}

    @staticmethod
    def _get_diffx(var):
        diffcls = NthAlgebraic._diffx_stored.get(var, None)

        if diffcls is None:
            # A class that behaves like Derivative wrt var but is "invertible".
            class diffx(Function):
                def inverse(self):
                    # don't use integrate here because fx has been replaced by _t
                    # in the equation; integrals will not be correct while solve
                    # is at work.
                    return lambda expr: Integral(expr, var) + Dummy('C')

            diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx)

        return diffcls


class FirstExact(SinglePatternODESolver):
    r"""
    Solves 1st order exact ordinary differential equations.

    A 1st order differential equation is called exact if it is the total
    differential of a function. That is, the differential equation

    .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0

    is exact if there is some function `F(x, y)` such that `P(x, y) =
    \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`.  It can
    be shown that a necessary and sufficient condition for a first order ODE
    to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`.
    Then, the solution will be as given below::

        >>> from sympy import Function, Eq, Integral, symbols, pprint
        >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
        >>> P, Q, F= map(Function, ['P', 'Q', 'F'])
        >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
        ... Integral(Q(x0, t), (t, y0, y))), C1))
                    x                y
                    /                /
                   |                |
        F(x, y) =  |  P(t, y) dt +  |  Q(x0, t) dt = C1
                   |                |
                  /                /
                  x0               y0

    Where the first partials of `P` and `Q` exist and are continuous in a
    simply connected region.

    A note: SymPy currently has no way to represent inert substitution on an
    expression, so the hint ``1st_exact_Integral`` will return an integral
    with `dy`.  This is supposed to represent the function that you are
    solving for.

    Examples
    ========

    >>> from sympy import Function, dsolve, cos, sin
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
    ... f(x), hint='1st_exact')
    Eq(x*cos(f(x)) + f(x)**3/3, C1)

    References
    ==========

    - https://en.wikipedia.org/wiki/Exact_differential_equation
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 73

    # indirect doctest

    """
    hint = "1st_exact"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        P = Wild('P', exclude=[f(x).diff(x)])
        Q = Wild('Q', exclude=[f(x).diff(x)])
        return P, Q

    def _equation(self, fx, x, order):
        P, Q = self.wilds()
        return P + Q*fx.diff(x)

    def _verify(self, fx) -> bool:
        P, Q = self.wilds()
        x = self.ode_problem.sym
        y = Dummy('y')

        m, n = self.wilds_match()

        m = m.subs(fx, y)
        n = n.subs(fx, y)
        numerator = cancel(m.diff(y) - n.diff(x))

        if numerator.is_zero:
            # Is exact
            return True
        else:
            # The following few conditions try to convert a non-exact
            # differential equation into an exact one.
            # References:
            # 1. Differential equations with applications
            # and historical notes - George E. Simmons
            # 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf

            factor_n = cancel(numerator/n)
            factor_m = cancel(-numerator/m)
            if y not in factor_n.free_symbols:
                # If (dP/dy - dQ/dx) / Q = f(x)
                # then exp(integral(f(x))*equation becomes exact
                factor = factor_n
                integration_variable = x
            elif x not in factor_m.free_symbols:
                # If (dP/dy - dQ/dx) / -P = f(y)
                # then exp(integral(f(y))*equation becomes exact
                factor = factor_m
                integration_variable = y
            else:
                # Couldn't convert to exact
                return False

            factor = exp(Integral(factor, integration_variable))
            m *= factor
            n *= factor
            self._wilds_match[P] = m.subs(y, fx)
            self._wilds_match[Q] = n.subs(y, fx)
            return True

    def _get_general_solution(self, *, simplify_flag: bool = True):
        m, n = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        y = Dummy('y')

        m = m.subs(fx, y)
        n = n.subs(fx, y)

        gen_sol = Eq(Subs(Integral(m, x)
                          + Integral(n - Integral(m, x).diff(y), y), y, fx), C1)
        return [gen_sol]


class FirstLinear(SinglePatternODESolver):
    r"""
    Solves 1st order linear differential equations.

    These are differential equations of the form

    .. math:: dy/dx + P(x) y = Q(x)\text{.}

    These kinds of differential equations can be solved in a general way.  The
    integrating factor `e^{\int P(x) \,dx}` will turn the equation into a
    separable equation.  The general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint, diff, sin
        >>> from sympy.abc import x
        >>> f, P, Q = map(Function, ['f', 'P', 'Q'])
        >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
        >>> pprint(genform)
                    d
        P(x)*f(x) + --(f(x)) = Q(x)
                    dx
        >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
                /       /                   \
                |      |                    |
                |      |         /          |     /
                |      |        |           |    |
                |      |        | P(x) dx   |  - | P(x) dx
                |      |        |           |    |
                |      |       /            |   /
        f(x) = |C1 +  | Q(x)*e           dx|*e
                |      |                    |
                \     /                     /


    Examples
    ========

    >>> f = Function('f')
    >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
    ... f(x), '1st_linear'))
    f(x) = x*(C1 - cos(x))

    References
    ==========

    - https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 92

    # indirect doctest

    """
    hint = '1st_linear'
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        P = Wild('P', exclude=[f(x)])
        Q = Wild('Q', exclude=[f(x), f(x).diff(x)])
        return P, Q

    def _equation(self, fx, x, order):
        P, Q = self.wilds()
        return fx.diff(x) + P*fx - Q

    def _get_general_solution(self, *, simplify_flag: bool = True):
        P, Q = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        (C1,)  = self.ode_problem.get_numbered_constants(num=1)
        gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x))
            * exp(-Integral(P, x))))
        return [gensol]


class AlmostLinear(SinglePatternODESolver):
    r"""
    Solves an almost-linear differential equation.

    The general form of an almost linear differential equation is

    .. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x)

    Here `f(x)` is the function to be solved for (the dependent variable).
    The substitution `g(f(x)) = u(x)` leads to a linear differential equation
    for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved
    for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving
    `g(f(x)) = u(x)`.

    See Also
    ========
    :obj:`sympy.solvers.ode.single.FirstLinear`

    Examples
    ========

    >>> from sympy import dsolve, Function, pprint, sin, cos
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> d = f(x).diff(x)
    >>> eq = x*d + x*f(x) + 1
    >>> dsolve(eq, f(x), hint='almost_linear')
    Eq(f(x), (C1 - Ei(x))*exp(-x))
    >>> pprint(dsolve(eq, f(x), hint='almost_linear'))
                        -x
    f(x) = (C1 - Ei(x))*e
    >>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1
    >>> pprint(example)
                        d
    sin(f(x)) + cos(f(x))*--(f(x)) + 1
                        dx
    >>> pprint(dsolve(example, f(x), hint='almost_linear'))
                    /    -x    \             /    -x    \
    [f(x) = pi - asin\C1*e   - 1/, f(x) = asin\C1*e   - 1/]


    References
    ==========

    - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
      of the ACM, Volume 14, Number 8, August 1971, pp. 558
    """
    hint = "almost_linear"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        P = Wild('P', exclude=[f(x).diff(x)])
        Q = Wild('Q', exclude=[f(x).diff(x)])
        return P, Q

    def _equation(self, fx, x, order):
        P, Q = self.wilds()
        return P*fx.diff(x) + Q

    def _verify(self, fx):
        a, b = self.wilds_match()
        c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b)
        # a, b and c are the function a(x), b(x) and c(x) respectively.
        # c(x) is obtained by separating out b as terms with and without fx i.e, l(y)
        # The following conditions checks if the given equation is an almost-linear differential equation using the fact that
        # a(x)*(l(y))' / l(y)' is independent of l(y)

        if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx):
            self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y)
            self.ax = a / self.ly.diff(fx)
            self.cx = -c  # cx is taken as -c(x) to simplify expression in the solution integral
            self.bx = factor_terms(b) / self.ly
            return True

        return False

    def _get_general_solution(self, *, simplify_flag: bool = True):
        x = self.ode_problem.sym
        (C1,)  = self.ode_problem.get_numbered_constants(num=1)
        gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x))
                * exp(-Integral(self.bx/self.ax, x))))

        return [gensol]


class Bernoulli(SinglePatternODESolver):
    r"""
    Solves Bernoulli differential equations.

    These are equations of the form

    .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.}

    The substitution `w = 1/y^{1-n}` will transform an equation of this form
    into one that is linear (see the docstring of
    :obj:`~sympy.solvers.ode.single.FirstLinear`).  The general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint
        >>> from sympy.abc import x, n
        >>> f, P, Q = map(Function, ['f', 'P', 'Q'])
        >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
        >>> pprint(genform)
                    d                n
        P(x)*f(x) + --(f(x)) = Q(x)*f (x)
                    dx
        >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110)
                                                                                                                -1
                                                                                                               -----
                                                                                                               n - 1
               //         /                                 /                            \                    \
               ||        |                                 |                             |                    |
               ||        |                  /              |                  /          |            /       |
               ||        |                 |               |                 |           |           |        |
               ||        |       -(n - 1)* | P(x) dx       |       -(n - 1)* | P(x) dx   |  (n - 1)* | P(x) dx|
               ||        |                 |               |                 |           |           |        |
               ||        |                /                |                /            |          /         |
        f(x) = ||C1 - n* | Q(x)*e                    dx +  | Q(x)*e                    dx|*e                  |
               ||        |                                 |                             |                    |
               \\       /                                 /                              /                    /


    Note that the equation is separable when `n = 1` (see the docstring of
    :obj:`~sympy.solvers.ode.single.Separable`).

    >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
    ... hint='separable_Integral'))
    f(x)
        /
    |                /
    |  1            |
    |  - dy = C1 +  | (-P(x) + Q(x)) dx
    |  y            |
    |              /
    /


    Examples
    ========

    >>> from sympy import Function, dsolve, Eq, pprint, log
    >>> from sympy.abc import x
    >>> f = Function('f')

    >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
    ... f(x), hint='Bernoulli'))
                    1
    f(x) =  -----------------
            C1*x + log(x) + 1

    References
    ==========

    - https://en.wikipedia.org/wiki/Bernoulli_differential_equation

    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 95

    # indirect doctest

    """
    hint = "Bernoulli"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        P = Wild('P', exclude=[f(x)])
        Q = Wild('Q', exclude=[f(x)])
        n = Wild('n', exclude=[x, f(x), f(x).diff(x)])
        return P, Q, n

    def _equation(self, fx, x, order):
        P, Q, n = self.wilds()
        return fx.diff(x) + P*fx - Q*fx**n

    def _get_general_solution(self, *, simplify_flag: bool = True):
        P, Q, n = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        if n==1:
            gensol = Eq(log(fx), (
            C1 + Integral((-P + Q), x)
        ))
        else:
            gensol = Eq(fx**(1-n), (
                (C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x))
                            * exp(Integral(P, x)), x)
                ) * exp(-(1 - n)*Integral(P, x)))
            )
        return [gensol]


class Factorable(SingleODESolver):
    r"""
        Solves equations having a solvable factor.

        This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It
        will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the
        list of solutions.

        Examples
        ========

        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x
        >>> f = Function('f')
        >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x))
        >>> pprint(dsolve(eq, f(x)))
                                        -x
        [f(x) = 2, f(x) = -2, f(x) = C1*e  ]


        """
    hint = "factorable"
    has_integral = False

    def _matches(self):
        eq_orig = self.ode_problem.eq
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        df = f(x).diff(x)
        self.eqs = []
        eq = eq_orig.collect(f(x), func = cancel)
        eq = fraction(factor(eq))[0]
        factors = Mul.make_args(factor(eq))
        roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0]
        if len(roots)>1 or roots[0][1]>1:
            for base, expo in roots:
                if base.has(f(x)):
                    self.eqs.append(base)
            if len(self.eqs)>0:
                return True
        roots = solve(eq, df)
        if len(roots)>0:
            self.eqs = [(df - root) for root in roots]
            # Avoid infinite recursion
            matches = self.eqs != [eq_orig]
            return matches
        for i in factors:
            if i.has(f(x)):
                self.eqs.append(i)
        return len(self.eqs)>0 and len(factors)>1

    def _get_general_solution(self, *, simplify_flag: bool = True):
        func = self.ode_problem.func.func
        x = self.ode_problem.sym
        eqns = self.eqs
        sols = []
        for eq in eqns:
            try:
                sol = dsolve(eq, func(x))
            except NotImplementedError:
                continue
            else:
                if isinstance(sol, list):
                    sols.extend(sol)
                else:
                    sols.append(sol)

        if sols == []:
            raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
                + " the factorable group method")
        return sols


class RiccatiSpecial(SinglePatternODESolver):
    r"""
    The general Riccati equation has the form

    .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.}

    While it does not have a general solution [1], the "special" form, `dy/dx
    = a y^2 - b x^c`, does have solutions in many cases [2].  This routine
    returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained
    by using a suitable change of variables to reduce it to the special form
    and is valid when neither `a` nor `b` are zero and either `c` or `d` is
    zero.

    >>> from sympy.abc import x, a, b, c, d
    >>> from sympy import dsolve, checkodesol, pprint, Function
    >>> f = Function('f')
    >>> y = f(x)
    >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)
    >>> sol = dsolve(genform, y, hint="Riccati_special_minus2")
    >>> pprint(sol, wrap_line=False)
            /                                 /        __________________       \\
            |           __________________    |       /                2        ||
            |          /                2     |     \/  4*b*d - (a + c)  *log(x)||
           -|a + c - \/  4*b*d - (a + c)  *tan|C1 + ----------------------------||
            \                                 \                 2*a             //
    f(x) = ------------------------------------------------------------------------
                                            2*b*x

    >>> checkodesol(genform, sol, order=1)[0]
    True

    References
    ==========

    - https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati
    - https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf -
      https://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf
    """
    hint = "Riccati_special_minus2"
    has_integral = False
    order = [1]

    def _wilds(self, f, x, order):
        a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0])
        b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0])
        c = Wild('c', exclude=[x, f(x), f(x).diff(x)])
        d = Wild('d', exclude=[x, f(x), f(x).diff(x)])
        return a, b, c, d

    def _equation(self, fx, x, order):
        a, b, c, d = self.wilds()
        return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2

    def _get_general_solution(self, *, simplify_flag: bool = True):
        a, b, c, d = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        mu = sqrt(4*d*b - (a - c)**2)

        gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x))
        return [gensol]


class RationalRiccati(SinglePatternODESolver):
    r"""
    Gives general solutions to the first order Riccati differential
    equations that have atleast one rational particular solution.

    .. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2

    where `b_0`, `b_1` and `b_2` are rational functions of `x`
    with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation).

    Examples
    ========

    >>> from sympy import Symbol, Function, dsolve, checkodesol
    >>> f = Function('f')
    >>> x = Symbol('x')

    >>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20
    >>> sol = dsolve(eq, hint="1st_rational_riccati")
    >>> sol
    Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1)))
    >>> checkodesol(eq, sol)
    (True, 0)

    References
    ==========

    - Riccati ODE:  https://en.wikipedia.org/wiki/Riccati_equation
    - N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs:
      Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf
    """
    has_integral = False
    hint = "1st_rational_riccati"
    order = [1]

    def _wilds(self, f, x, order):
        b0 = Wild('b0', exclude=[f(x), f(x).diff(x)])
        b1 = Wild('b1', exclude=[f(x), f(x).diff(x)])
        b2 = Wild('b2', exclude=[f(x), f(x).diff(x)])
        return (b0, b1, b2)

    def _equation(self, fx, x, order):
        b0, b1, b2 = self.wilds()
        return fx.diff(x) - b0 - b1*fx - b2*fx**2

    def _matches(self):
        eq = self.ode_problem.eq_expanded
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        order = self.ode_problem.order

        if order != 1:
            return False

        match, funcs = match_riccati(eq, f, x)
        if not match:
            return False
        _b0, _b1, _b2 = funcs
        b0, b1, b2 = self.wilds()
        self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2}
        return True

    def _get_general_solution(self, *, simplify_flag: bool = True):
        # Match the equation
        b0, b1, b2 = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        return solve_riccati(fx, x, b0, b1, b2, gensol=True)


class SecondNonlinearAutonomousConserved(SinglePatternODESolver):
    r"""
    Gives solution for the autonomous second order nonlinear
    differential equation of the form

    .. math :: f''(x) = g(f(x))

    The solution for this differential equation can be computed
    by multiplying by `f'(x)` and integrating on both sides,
    converting it into a first order differential equation.

    Examples
    ========

    >>> from sympy import Function, symbols, dsolve
    >>> f, g = symbols('f g', cls=Function)
    >>> x = symbols('x')

    >>> eq = f(x).diff(x, 2) - g(f(x))
    >>> dsolve(eq, simplify=False)
    [Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x),
    Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)]

    >>> from sympy import exp, log
    >>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x))
    >>> dsolve(eq, simplify=False)
    [Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x),
    Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)]

    References
    ==========

    - https://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf
    """
    hint = "2nd_nonlinear_autonomous_conserved"
    has_integral = True
    order = [2]

    def _wilds(self, f, x, order):
        fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)])
        return (fy, )

    def _equation(self, fx, x, order):
        fy = self.wilds()[0]
        return fx.diff(x, 2) + fy

    def _verify(self, fx):
        return self.ode_problem.is_autonomous

    def _get_general_solution(self, *, simplify_flag: bool = True):
        g = self.wilds_match()[0]
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        u = Dummy('u')
        g = g.subs(fx, u)
        C1, C2 = self.ode_problem.get_numbered_constants(num=2)
        inside = -2*Integral(g, u) + C1
        lhs = Integral(1/sqrt(inside), (u, fx))
        return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)]


class Liouville(SinglePatternODESolver):
    r"""
    Solves 2nd order Liouville differential equations.

    The general form of a Liouville ODE is

    .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\!
                \frac{dy}{dx}\!\right)^2 + h(x)
                \frac{dy}{dx}\text{.}

    The general solution is:

        >>> from sympy import Function, dsolve, Eq, pprint, diff
        >>> from sympy.abc import x
        >>> f, g, h = map(Function, ['f', 'g', 'h'])
        >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
        ... h(x)*diff(f(x),x), 0)
        >>> pprint(genform)
                          2                    2
                /d       \         d          d
        g(f(x))*|--(f(x))|  + h(x)*--(f(x)) + ---(f(x)) = 0
                \dx      /         dx           2
                                              dx
        >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
                                          f(x)
                  /                     /
                 |                     |
                 |     /               |     /
                 |    |                |    |
                 |  - | h(x) dx        |    | g(y) dy
                 |    |                |    |
                 |   /                 |   /
        C1 + C2* | e            dx +   |  e           dy = 0
                 |                     |
                /                     /

    Examples
    ========

    >>> from sympy import Function, dsolve, Eq, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
    ... diff(f(x), x)/x, f(x), hint='Liouville'))
               ________________           ________________
    [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ]

    References
    ==========

    - Goldstein and Braun, "Advanced Methods for the Solution of Differential
      Equations", pp. 98
    - https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville

    # indirect doctest

    """
    hint = "Liouville"
    has_integral = True
    order = [2]

    def _wilds(self, f, x, order):
        d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
        e = Wild('e', exclude=[f(x).diff(x)])
        k = Wild('k', exclude=[f(x).diff(x)])
        return d, e, k

    def _equation(self, fx, x, order):
        # Liouville ODE in the form
        # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
        # See Goldstein and Braun, "Advanced Methods for the Solution of
        # Differential Equations", pg. 98
        d, e, k = self.wilds()
        return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x)

    def _verify(self, fx):
        d, e, k = self.wilds_match()
        self.y = Dummy('y')
        x = self.ode_problem.sym
        self.g = simplify(e/d).subs(fx, self.y)
        self.h = simplify(k/d).subs(fx, self.y)
        if self.y in self.h.free_symbols or x in self.g.free_symbols:
            return False
        return True

    def _get_general_solution(self, *, simplify_flag: bool = True):
        d, e, k = self.wilds_match()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        C1, C2 = self.ode_problem.get_numbered_constants(num=2)
        int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx))
        gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0)

        return [gen_sol]


class Separable(SinglePatternODESolver):
    r"""
    Solves separable 1st order differential equations.

    This is any differential equation that can be written as `P(y)
    \tfrac{dy}{dx} = Q(x)`.  The solution can then just be found by
    rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`.
    This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back
    end, so if a separable equation is not caught by this solver, it is most
    likely the fault of that function.
    :py:meth:`~sympy.simplify.simplify.separatevars` is
    smart enough to do most expansion and factoring necessary to convert a
    separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`.  The
    general solution is::

        >>> from sympy import Function, dsolve, Eq, pprint
        >>> from sympy.abc import x
        >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
        >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
        >>> pprint(genform)
                     d
        a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
                     dx
        >>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
             f(x)
           /                  /
          |                  |
          |  b(y)            | c(x)
          |  ---- dy = C1 +  | ---- dx
          |  d(y)            | a(x)
          |                  |
         /                  /

    Examples
    ========

    >>> from sympy import Function, dsolve, Eq
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
    ... hint='separable', simplify=False))
       /   2       \         2
    log\3*f (x) - 1/        x
    ---------------- = C1 + --
           6                2

    References
    ==========

    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 52

    # indirect doctest

    """
    hint = "separable"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
        e = Wild('e', exclude=[f(x).diff(x)])
        return d, e

    def _equation(self, fx, x, order):
        d, e = self.wilds()
        return d + e*fx.diff(x)

    def _verify(self, fx):
        d, e = self.wilds_match()
        self.y = Dummy('y')
        x = self.ode_problem.sym
        d = separatevars(d.subs(fx, self.y))
        e = separatevars(e.subs(fx, self.y))
        # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
        self.m1 = separatevars(d, dict=True, symbols=(x, self.y))
        self.m2 = separatevars(e, dict=True, symbols=(x, self.y))
        if self.m1 and self.m2:
            return True
        return False

    def _get_match_object(self):
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        return self.m1, self.m2, x, fx

    def _get_general_solution(self, *, simplify_flag: bool = True):
        m1, m2, x, fx = self._get_match_object()
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        int = Integral(m2['coeff']*m2[self.y]/m1[self.y],
        (self.y, None, fx))
        gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/
        m2[x], x) + C1)
        return [gen_sol]


class SeparableReduced(Separable):
    r"""
    Solves a differential equation that can be reduced to the separable form.

    The general form of this equation is

    .. math:: y' + (y/x) H(x^n y) = 0\text{}.

    This can be solved by substituting `u(y) = x^n y`.  The equation then
    reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} -
    \frac{1}{x} = 0`.

    The general solution is:

        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x, n
        >>> f, g = map(Function, ['f', 'g'])
        >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
        >>> pprint(genform)
                         / n     \
        d          f(x)*g\x *f(x)/
        --(f(x)) + ---------------
        dx                x
        >>> pprint(dsolve(genform, hint='separable_reduced'))
         n
        x *f(x)
          /
         |
         |         1
         |    ------------ dy = C1 + log(x)
         |    y*(n - g(y))
         |
         /

    See Also
    ========
    :obj:`sympy.solvers.ode.single.Separable`

    Examples
    ========

    >>> from sympy import dsolve, Function, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> d = f(x).diff(x)
    >>> eq = (x - x**2*f(x))*d - f(x)
    >>> dsolve(eq, hint='separable_reduced')
    [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
    >>> pprint(dsolve(eq, hint='separable_reduced'))
                   ___________            ___________
                  /     2                /     2
            1 - \/  C1*x  + 1          \/  C1*x  + 1  + 1
    [f(x) = ------------------, f(x) = ------------------]
                    x                          x

    References
    ==========

    - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
      of the ACM, Volume 14, Number 8, August 1971, pp. 558
    """
    hint = "separable_reduced"
    has_integral = True
    order = [1]

    def _degree(self, expr, x):
        # Made this function to calculate the degree of
        # x in an expression. If expr will be of form
        # x**p*y, (wheare p can be variables/rationals) then it
        # will return p.
        for val in expr:
            if val.has(x):
                if isinstance(val, Pow) and val.as_base_exp()[0] == x:
                    return (val.as_base_exp()[1])
                elif val == x:
                    return (val.as_base_exp()[1])
                else:
                    return self._degree(val.args, x)
        return 0

    def _powers(self, expr):
        # this function will return all the different relative power of x w.r.t f(x).
        # expr = x**p * f(x)**q then it will return {p/q}.
        pows = set()
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        self.y = Dummy('y')
        if isinstance(expr, Add):
            exprs = expr.atoms(Add)
        elif isinstance(expr, Mul):
            exprs = expr.atoms(Mul)
        elif isinstance(expr, Pow):
            exprs = expr.atoms(Pow)
        else:
            exprs = {expr}

        for arg in exprs:
            if arg.has(x):
                _, u = arg.as_independent(x, fx)
                pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y)
                pows.add(pow)
        return pows

    def _verify(self, fx):
        num, den = self.wilds_match()
        x = self.ode_problem.sym
        factor = simplify(x/fx*num/den)
        # Try representing factor in terms of x^n*y
        # where n is lowest power of x in factor;
        # first remove terms like sqrt(2)*3 from factor.atoms(Mul)
        num, dem = factor.as_numer_denom()
        num = expand(num)
        dem = expand(dem)
        pows = self._powers(num)
        pows.update(self._powers(dem))
        pows = list(pows)
        if(len(pows)==1) and pows[0]!=zoo:
            self.t = Dummy('t')
            self.r2 = {'t': self.t}
            num = num.subs(x**pows[0]*fx, self.t)
            dem = dem.subs(x**pows[0]*fx, self.t)
            test = num/dem
            free = test.free_symbols
            if len(free) == 1 and free.pop() == self.t:
                self.r2.update({'power' : pows[0], 'u' : test})
                return True
            return False
        return False

    def _get_match_object(self):
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        u = self.r2['u'].subs(self.r2['t'], self.y)
        ycoeff = 1/(self.y*(self.r2['power'] - u))
        m1 = {self.y: 1, x: -1/x, 'coeff': 1}
        m2 = {self.y: ycoeff, x: 1, 'coeff': 1}
        return m1, m2, x, x**self.r2['power']*fx


class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver):
    r"""
    Solves a 1st order differential equation with homogeneous coefficients
    using the substitution `u_1 = \frac{\text{<dependent
    variable>}}{\text{<independent variable>}}`.

    This is a differential equation

    .. math:: P(x, y) + Q(x, y) dy/dx = 0

    such that `P` and `Q` are homogeneous and of the same order.  A function
    `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
    Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`.  See
    also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.

    If the coefficients `P` and `Q` in the differential equation above are
    homogeneous functions of the same order, then it can be shown that the
    substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential
    equation into an equation separable in the variables `x` and `u`.  If
    `h(u_1)` is the function that results from making the substitution `u_1 =
    f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the
    substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
    Q(x, f(x)) f'(x) = 0`, then the general solution is::

        >>> from sympy import Function, dsolve, pprint
        >>> from sympy.abc import x
        >>> f, g, h = map(Function, ['f', 'g', 'h'])
        >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
        >>> pprint(genform)
         /f(x)\    /f(x)\ d
        g|----| + h|----|*--(f(x))
         \ x  /    \ x  / dx
        >>> pprint(dsolve(genform, f(x),
        ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
                       f(x)
                       ----
                        x
                         /
                        |
                        |       -h(u1)
        log(x) = C1 +   |  ---------------- d(u1)
                        |  u1*h(u1) + g(u1)
                        |
                       /

    Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`.

    See also the docstrings of
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`.

    Examples
    ========

    >>> from sympy import Function, dsolve
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
    ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))
                          /          3   \
                          |3*f(x)   f (x)|
                       log|------ + -----|
                          |  x         3 |
                          \           x  /
    log(x) = log(C1) - -------------------
                                3

    References
    ==========

    - https://en.wikipedia.org/wiki/Homogeneous_differential_equation
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 59

    # indirect doctest

    """
    hint = "1st_homogeneous_coeff_subs_dep_div_indep"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
        e = Wild('e', exclude=[f(x).diff(x)])
        return d, e

    def _equation(self, fx, x, order):
        d, e = self.wilds()
        return d + e*fx.diff(x)

    def _verify(self, fx):
        self.d, self.e = self.wilds_match()
        self.y = Dummy('y')
        x = self.ode_problem.sym
        self.d = separatevars(self.d.subs(fx, self.y))
        self.e = separatevars(self.e.subs(fx, self.y))
        ordera = homogeneous_order(self.d, x, self.y)
        orderb = homogeneous_order(self.e, x, self.y)
        if ordera == orderb and ordera is not None:
            self.u = Dummy('u')
            if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0:
                return True
            return False
        return False

    def _get_match_object(self):
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        self.u1 = Dummy('u1')
        xarg = 0
        yarg = 0
        return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg]

    def _get_general_solution(self, *, simplify_flag: bool = True):
        d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object()
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        int = Integral(
            (-e/(d + u1*e)).subs({x: 1, y: u1}),
            (u1, None, fx/x))
        sol = logcombine(Eq(log(x), int + log(C1)), force=True)
        gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx)))
        return [gen_sol]


class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver):
    r"""
    Solves a 1st order differential equation with homogeneous coefficients
    using the substitution `u_2 = \frac{\text{<independent
    variable>}}{\text{<dependent variable>}}`.

    This is a differential equation

    .. math:: P(x, y) + Q(x, y) dy/dx = 0

    such that `P` and `Q` are homogeneous and of the same order.  A function
    `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
    Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`.  See
    also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.

    If the coefficients `P` and `Q` in the differential equation above are
    homogeneous functions of the same order, then it can be shown that the
    substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential
    equation into an equation separable in the variables `y` and `u_2`.  If
    `h(u_2)` is the function that results from making the substitution `u_2 =
    x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the
    substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
    Q(x, f(x)) f'(x) = 0`, then the general solution is:

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f, g, h = map(Function, ['f', 'g', 'h'])
    >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
    >>> pprint(genform)
     / x  \    / x  \ d
    g|----| + h|----|*--(f(x))
     \f(x)/    \f(x)/ dx
    >>> pprint(dsolve(genform, f(x),
    ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
                 x
                ----
                f(x)
                  /
                 |
                 |       -g(u1)
                 |  ---------------- d(u1)
                 |  u1*g(u1) + h(u1)
                 |
                /
    <BLANKLINE>
    f(x) = C1*e

    Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`.

    See also the docstrings of
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`.

    Examples
    ========

    >>> from sympy import Function, pprint, dsolve
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
    ... hint='1st_homogeneous_coeff_subs_indep_div_dep',
    ... simplify=False))
                             /   2     \
                             |3*x      |
                          log|----- + 1|
                             | 2       |
                             \f (x)    /
    log(f(x)) = log(C1) - --------------
                                3

    References
    ==========

    - https://en.wikipedia.org/wiki/Homogeneous_differential_equation
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 59

    # indirect doctest

    """
    hint = "1st_homogeneous_coeff_subs_indep_div_dep"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
        e = Wild('e', exclude=[f(x).diff(x)])
        return d, e

    def _equation(self, fx, x, order):
        d, e = self.wilds()
        return d + e*fx.diff(x)

    def _verify(self, fx):
        self.d, self.e = self.wilds_match()
        self.y = Dummy('y')
        x = self.ode_problem.sym
        self.d = separatevars(self.d.subs(fx, self.y))
        self.e = separatevars(self.e.subs(fx, self.y))
        ordera = homogeneous_order(self.d, x, self.y)
        orderb = homogeneous_order(self.e, x, self.y)
        if ordera == orderb and ordera is not None:
            self.u = Dummy('u')
            if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0:
                return True
            return False
        return False

    def _get_match_object(self):
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        self.u1 = Dummy('u1')
        xarg = 0
        yarg = 0
        return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg]

    def _get_general_solution(self, *, simplify_flag: bool = True):
        d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object()
        (C1,) = self.ode_problem.get_numbered_constants(num=1)
        int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) # type: ignore
        sol = logcombine(Eq(log(fx), int + log(C1)), force=True)
        gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx)))
        return [gen_sol]


class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep):
    r"""
    Returns the best solution to an ODE from the two hints
    ``1st_homogeneous_coeff_subs_dep_div_indep`` and
    ``1st_homogeneous_coeff_subs_indep_div_dep``.

    This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`.

    See the
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`
    and
    :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`
    docstrings for more information on these hints.  Note that there is no
    ``ode_1st_homogeneous_coeff_best_Integral`` hint.

    Examples
    ========

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
    ... hint='1st_homogeneous_coeff_best', simplify=False))
                             /   2     \
                             |3*x      |
                          log|----- + 1|
                             | 2       |
                             \f (x)    /
    log(f(x)) = log(C1) - --------------
                                3

    References
    ==========

    - https://en.wikipedia.org/wiki/Homogeneous_differential_equation
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 59

    # indirect doctest

    """
    hint = "1st_homogeneous_coeff_best"
    has_integral = False
    order = [1]

    def _verify(self, fx):
        if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx):
            return True
        return False

    def _get_general_solution(self, *, simplify_flag: bool = True):
        # There are two substitutions that solve the equation, u1=y/x and u2=x/y
        # # They produce different integrals, so try them both and see which
        # # one is easier
        sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self)
        sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self)
        fx = self.ode_problem.func
        if simplify_flag:
            sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep")
            sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep")
        return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify))


class LinearCoefficients(HomogeneousCoeffBest):
    r"""
    Solves a differential equation with linear coefficients.

    The general form of a differential equation with linear coefficients is

    .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y +
                c_2}\!\right) = 0\text{,}

    where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2
    - a_2 b_1 \ne 0`.

    This can be solved by substituting:

    .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2}

              y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1
                  b_2}\text{.}

    This substitution reduces the equation to a homogeneous differential
    equation.

    See Also
    ========
    :obj:`sympy.solvers.ode.single.HomogeneousCoeffBest`
    :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`
    :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`

    Examples
    ========

    >>> from sympy import dsolve, Function, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> df = f(x).diff(x)
    >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
    >>> dsolve(eq, hint='linear_coefficients')
    [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
    >>> pprint(dsolve(eq, hint='linear_coefficients'))
                      ___________                     ___________
                   /         2                     /         2
    [f(x) = -x - \/  C1 + 7*x   - 1, f(x) = -x + \/  C1 + 7*x   - 1]


    References
    ==========

    - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
      of the ACM, Volume 14, Number 8, August 1971, pp. 558
    """
    hint = "linear_coefficients"
    has_integral = True
    order = [1]

    def _wilds(self, f, x, order):
        d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
        e = Wild('e', exclude=[f(x).diff(x)])
        return d, e

    def _equation(self, fx, x, order):
        d, e = self.wilds()
        return d + e*fx.diff(x)

    def _verify(self, fx):
        self.d, self.e = self.wilds_match()
        a, b = self.wilds()
        F = self.d/self.e
        x = self.ode_problem.sym
        params = self._linear_coeff_match(F, fx)
        if params:
            self.xarg, self.yarg = params
            u = Dummy('u')
            t = Dummy('t')
            self.y = Dummy('y')
            # Dummy substitution for df and f(x).
            dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u)))
            reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx))
            dummy_eq = simplify(dummy_eq.subs(reps))
            # get the re-cast values for e and d
            r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b)
            if r2:
                self.d, self.e = r2[b], r2[a]
                orderd = homogeneous_order(self.d, x, fx)
                ordere = homogeneous_order(self.e, x, fx)
                if orderd == ordere and orderd is not None:
                    self.d = self.d.subs(fx, self.y)
                    self.e = self.e.subs(fx, self.y)
                    return True
                return False
            return False

    def _linear_coeff_match(self, expr, func):
        r"""
        Helper function to match hint ``linear_coefficients``.

        Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2
        f(x) + c_2)` where the following conditions hold:

        1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals;
        2. `c_1` or `c_2` are not equal to zero;
        3. `a_2 b_1 - a_1 b_2` is not equal to zero.

        Return ``xarg``, ``yarg`` where

        1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)`
        2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)`


        Examples
        ========

        >>> from sympy import Function, sin
        >>> from sympy.abc import x
        >>> from sympy.solvers.ode.single import LinearCoefficients
        >>> f = Function('f')
        >>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)
        >>> obj = LinearCoefficients(eq)
        >>> obj._linear_coeff_match(eq, f(x))
        (1/9, 22/9)
        >>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1))
        >>> obj = LinearCoefficients(eq)
        >>> obj._linear_coeff_match(eq, f(x))
        (19/27, 2/27)
        >>> eq = sin(f(x)/x)
        >>> obj = LinearCoefficients(eq)
        >>> obj._linear_coeff_match(eq, f(x))

        """
        f = func.func
        x = func.args[0]
        def abc(eq):
            r'''
            Internal function of _linear_coeff_match
            that returns Rationals a, b, c
            if eq is a*x + b*f(x) + c, else None.
            '''
            eq = _mexpand(eq)
            c = eq.as_independent(x, f(x), as_Add=True)[0]
            if not c.is_Rational:
                return
            a = eq.coeff(x)
            if not a.is_Rational:
                return
            b = eq.coeff(f(x))
            if not b.is_Rational:
                return
            if eq == a*x + b*f(x) + c:
                return a, b, c

        def match(arg):
            r'''
            Internal function of _linear_coeff_match that returns Rationals a1,
            b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x)
            + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is
            non-zero, else None.
            '''
            n, d = arg.together().as_numer_denom()
            m = abc(n)
            if m is not None:
                a1, b1, c1 = m
                m = abc(d)
                if m is not None:
                    a2, b2, c2 = m
                    d = a2*b1 - a1*b2
                    if (c1 or c2) and d:
                        return a1, b1, c1, a2, b2, c2, d

        m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and
            len(fi.args) == 1 and not fi.args[0].is_Function] or {expr}
        m1 = match(m.pop())
        if m1 and all(match(mi) == m1 for mi in m):
            a1, b1, c1, a2, b2, c2, denom = m1
            return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom

    def _get_match_object(self):
        fx = self.ode_problem.func
        x = self.ode_problem.sym
        self.u1 = Dummy('u1')
        u = Dummy('u')
        return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg]


class NthOrderReducible(SingleODESolver):
    r"""
    Solves ODEs that only involve derivatives of the dependent variable using
    a substitution of the form `f^n(x) = g(x)`.

    For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be
    transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and
    `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If
    that gives an explicit solution for `g` then `f` is found simply by
    integration.


    Examples
    ========

    >>> from sympy import Function, dsolve, Eq
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0)
    >>> dsolve(eq, f(x), hint='nth_order_reducible')
    ... # doctest: +NORMALIZE_WHITESPACE
    Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))

    """
    hint = "nth_order_reducible"
    has_integral = False

    def _matches(self):
        # Any ODE that can be solved with a substitution and
        # repeated integration e.g.:
        # `d^2/dx^2(y) + x*d/dx(y) = constant
        #f'(x) must be finite for this to work
        eq = self.ode_problem.eq_preprocessed
        func = self.ode_problem.func
        x = self.ode_problem.sym
        r"""
        Matches any differential equation that can be rewritten with a smaller
        order. Only derivatives of ``func`` alone, wrt a single variable,
        are considered, and only in them should ``func`` appear.
        """
        # ODE only handles functions of 1 variable so this affirms that state
        assert len(func.args) == 1
        vc = [d.variable_count[0] for d in eq.atoms(Derivative)
            if d.expr == func and len(d.variable_count) == 1]
        ords = [c for v, c in vc if v == x]
        if len(ords) < 2:
            return False
        self.smallest = min(ords)
        # make sure func does not appear outside of derivatives
        D = Dummy()
        if eq.subs(func.diff(x, self.smallest), D).has(func):
            return False
        return True

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        n = self.smallest
        # get a unique function name for g
        names = [a.name for a in eq.atoms(AppliedUndef)]
        while True:
            name = Dummy().name
            if name not in names:
                g = Function(name)
                break
        w = f(x).diff(x, n)
        geq = eq.subs(w, g(x))
        gsol = dsolve(geq, g(x))

        if not isinstance(gsol, list):
            gsol = [gsol]

        # Might be multiple solutions to the reduced ODE:
        fsol = []
        for gsoli in gsol:
            fsoli = dsolve(gsoli.subs(g(x), w), f(x))  # or do integration n times
            fsol.append(fsoli)

        return fsol


class SecondHypergeometric(SingleODESolver):
    r"""
    Solves 2nd order linear differential equations.

    It computes special function solutions which can be expressed using the
    2F1, 1F1 or 0F1 hypergeometric functions.

    .. math:: y'' + A(x) y' + B(x) y = 0\text{,}

    where `A` and `B` are rational functions.

    These kinds of differential equations have solution of non-Liouvillian form.

    Given linear ODE can be obtained from 2F1 given by

    .. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,}

    where {a, b, c} are arbitrary constants.

    Notes
    =====

    The algorithm should find any solution of the form

    .. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,}

    where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function".
    Currently only the 2F1 case is implemented in SymPy but the other cases are
    described in the paper and could be implemented in future (contributions
    welcome!).


    Examples
    ========

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x)
    >>> pprint(dsolve(eq, f(x), '2nd_hypergeometric'))
                                        _
           /        /           4  \\  |_  /-1, -1 |  \
           |C1 + C2*|log(x) + -----||* |   |       | x|
           \        \         x + 1// 2  1 \  1    |  /
    f(x) = --------------------------------------------
                                    3
                             (x - 1)


    References
    ==========

    - "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab

    """
    hint = "2nd_hypergeometric"
    has_integral = True

    def _matches(self):
        eq = self.ode_problem.eq_preprocessed
        func = self.ode_problem.func
        r = match_2nd_hypergeometric(eq, func)
        self.match_object = None
        if r:
            A, B = r
            d = equivalence_hypergeometric(A, B, func)
            if d:
                if d['type'] == "2F1":
                    self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func)
                    if self.match_object is not None:
                        self.match_object.update({'A':A, 'B':B})
            # We can extend it for 1F1 and 0F1 type also.
        return self.match_object is not None

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq
        func = self.ode_problem.func
        if self.match_object['type'] == "2F1":
            sol = get_sol_2F1_hypergeometric(eq, func, self.match_object)
            if sol is None:
                raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
                    + " the hypergeometric method")

        return [sol]


class NthLinearConstantCoeffHomogeneous(SingleODESolver):
    r"""
    Solves an `n`\th order linear homogeneous differential equation with
    constant coefficients.

    This is an equation of the form

    .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
                + a_0 f(x) = 0\text{.}

    These equations can be solved in a general manner, by taking the roots of
    the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m +
    a_0 = 0`.  The solution will then be the sum of `C_n x^i e^{r x}` terms,
    for each where `C_n` is an arbitrary constant, `r` is a root of the
    characteristic equation and `i` is one of each from 0 to the multiplicity
    of the root - 1 (for example, a root 3 of multiplicity 2 would create the
    terms `C_1 e^{3 x} + C_2 x e^{3 x}`).  The exponential is usually expanded
    for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`.
    Complex roots always come in conjugate pairs in polynomials with real
    coefficients, so the two roots will be represented (after simplifying the
    constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`.

    If SymPy cannot find exact roots to the characteristic equation, a
    :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return
    instead.

    >>> from sympy import Function, dsolve
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
    ... hint='nth_linear_constant_coeff_homogeneous')
    ... # doctest: +NORMALIZE_WHITESPACE
    Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
    + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1)))
    + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1)))
    + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3)))
    + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3))))

    Note that because this method does not involve integration, there is no
    ``nth_linear_constant_coeff_homogeneous_Integral`` hint.

    Examples
    ========

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
    ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
    ... hint='nth_linear_constant_coeff_homogeneous'))
                        x                            -2*x
    f(x) = (C1 + C2*x)*e  + (C3*sin(x) + C4*cos(x))*e

    References
    ==========

    - https://en.wikipedia.org/wiki/Linear_differential_equation section:
      Nonhomogeneous_equation_with_constant_coefficients
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 211

    # indirect doctest

    """
    hint = "nth_linear_constant_coeff_homogeneous"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        func = self.ode_problem.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        self.r = self.ode_problem.get_linear_coefficients(eq, func, order)
        if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
            if not self.r[-1]:
                return True
            else:
                return False
        return False

    def _get_general_solution(self, *, simplify_flag: bool = True):
        fx = self.ode_problem.func
        order = self.ode_problem.order
        roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order)
        # A generator of constants
        constants = self.ode_problem.get_numbered_constants(num=len(roots))
        gsol = Add(*[i*j for (i, j) in zip(constants, roots)])
        gsol = Eq(fx, gsol)
        if simplify_flag:
            gsol = _get_simplified_sol([gsol], fx, collectterms)

        return [gsol]


class NthLinearConstantCoeffVariationOfParameters(SingleODESolver):
    r"""
    Solves an `n`\th order linear differential equation with constant
    coefficients using the method of variation of parameters.

    This method works on any differential equations of the form

    .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0
                f(x) = P(x)\text{.}

    This method works by assuming that the particular solution takes the form

    .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,}

    where `y_i` is the `i`\th solution to the homogeneous equation.  The
    solution is then solved using Wronskian's and Cramer's Rule.  The
    particular solution is given by

    .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
                \right) y_i(x) \text{,}

    where `W(x)` is the Wronskian of the fundamental system (the system of `n`
    linearly independent solutions to the homogeneous equation), and `W_i(x)`
    is the Wronskian of the fundamental system with the `i`\th column replaced
    with `[0, 0, \cdots, 0, P(x)]`.

    This method is general enough to solve any `n`\th order inhomogeneous
    linear differential equation with constant coefficients, but sometimes
    SymPy cannot simplify the Wronskian well enough to integrate it.  If this
    method hangs, try using the
    ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
    simplifying the integrals manually.  Also, prefer using
    ``nth_linear_constant_coeff_undetermined_coefficients`` when it
    applies, because it does not use integration, making it faster and more
    reliable.

    Warning, using simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters' in
    :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
    not attempt to simplify the Wronskian before integrating.  It is
    recommended that you only use simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
    method, especially if the solution to the homogeneous equation has
    trigonometric functions in it.

    Examples
    ========

    >>> from sympy import Function, dsolve, pprint, exp, log
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
    ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
    ... hint='nth_linear_constant_coeff_variation_of_parameters'))
           /       /       /     x*log(x)   11*x\\\  x
    f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e
           \       \       \        6        36 ///

    References
    ==========

    - https://en.wikipedia.org/wiki/Variation_of_parameters
    - https://planetmath.org/VariationOfParameters
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 233

    # indirect doctest

    """
    hint = "nth_linear_constant_coeff_variation_of_parameters"
    has_integral = True

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        func = self.ode_problem.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        self.r = self.ode_problem.get_linear_coefficients(eq, func, order)

        if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
            if self.r[-1]:
                return True
            else:
                return False
        return False

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq_high_order_free
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        order = self.ode_problem.order
        roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order)
        # A generator of constants
        constants = self.ode_problem.get_numbered_constants(num=len(roots))
        homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)])
        homogen_sol = Eq(f(x), homogen_sol)
        homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag)
        if simplify_flag:
            homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms)
        return [homogen_sol]


class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver):
    r"""
    Solves an `n`\th order linear differential equation with constant
    coefficients using the method of undetermined coefficients.

    This method works on differential equations of the form

    .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
                + a_0 f(x) = P(x)\text{,}

    where `P(x)` is a function that has a finite number of linearly
    independent derivatives.

    Functions that fit this requirement are finite sums functions of the form
    `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
    is a non-negative integer and `a`, `b`, `c`, and `d` are constants.  For
    example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
    and `e^x \cos(x)` can all be used.  Products of `\sin`'s and `\cos`'s have
    a finite number of derivatives, because they can be expanded into `\sin(a
    x)` and `\cos(b x)` terms.  However, SymPy currently cannot do that
    expansion, so you will need to manually rewrite the expression in terms of
    the above to use this method.  So, for example, you will need to manually
    convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
    of undetermined coefficients on it.

    This method works by creating a trial function from the expression and all
    of its linear independent derivatives and substituting them into the
    original ODE.  The coefficients for each term will be a system of linear
    equations, which are be solved for and substituted, giving the solution.
    If any of the trial functions are linearly dependent on the solution to
    the homogeneous equation, they are multiplied by sufficient `x` to make
    them linearly independent.

    Examples
    ========

    >>> from sympy import Function, dsolve, pprint, exp, cos
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
    ... 4*exp(-x)*x**2 + cos(2*x), f(x),
    ... hint='nth_linear_constant_coeff_undetermined_coefficients'))
           /       /      3\\
           |       |     x ||  -x   4*sin(2*x)   3*cos(2*x)
    f(x) = |C1 + x*|C2 + --||*e   - ---------- + ----------
           \       \     3 //           25           25

    References
    ==========

    - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
    - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
      Dover 1963, pp. 221

    # indirect doctest

    """
    hint = "nth_linear_constant_coeff_undetermined_coefficients"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        func = self.ode_problem.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        self.r = self.ode_problem.get_linear_coefficients(eq, func, order)
        does_match = False
        if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
            if self.r[-1]:
                eq_homogeneous = Add(eq, -self.r[-1])
                undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous)
                if undetcoeff['test']:
                    self.trialset = undetcoeff['trialset']
                    does_match = True
        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        order = self.ode_problem.order
        roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order)
        # A generator of constants
        constants = self.ode_problem.get_numbered_constants(num=len(roots))
        homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)])
        homogen_sol = Eq(f(x), homogen_sol)
        self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag})
        gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset)
        if simplify_flag:
            gsol = _get_simplified_sol([gsol], f(x), collectterms)
        return [gsol]


class NthLinearEulerEqHomogeneous(SingleODESolver):
    r"""
    Solves an `n`\th order linear homogeneous variable-coefficient
    Cauchy-Euler equidimensional ordinary differential equation.

    This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
    \cdots`.

    These equations can be solved in a general manner, by substituting
    solutions of the form `f(x) = x^r`, and deriving a characteristic equation
    for `r`.  When there are repeated roots, we include extra terms of the
    form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration
    constant, `r` is a root of the characteristic equation, and `k` ranges
    over the multiplicity of `r`.  In the cases where the roots are complex,
    solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))`
    are returned, based on expansions with Euler's formula.  The general
    solution is the sum of the terms found.  If SymPy cannot find exact roots
    to the characteristic equation, a
    :py:obj:`~.ComplexRootOf` instance will be returned
    instead.

    >>> from sympy import Function, dsolve
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
    ... hint='nth_linear_euler_eq_homogeneous')
    ... # doctest: +NORMALIZE_WHITESPACE
    Eq(f(x), sqrt(x)*(C1 + C2*log(x)))

    Note that because this method does not involve integration, there is no
    ``nth_linear_euler_eq_homogeneous_Integral`` hint.

    The following is for internal use:

    - ``returns = 'sol'`` returns the solution to the ODE.
    - ``returns = 'list'`` returns a list of linearly independent solutions,
      corresponding to the fundamental solution set, for use with non
      homogeneous solution methods like variation of parameters and
      undetermined coefficients.  Note that, though the solutions should be
      linearly independent, this function does not explicitly check that.  You
      can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear
      independence.  Also, ``assert len(sollist) == order`` will need to pass.
    - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
      'list': <list of linearly independent solutions>}``.

    Examples
    ========

    >>> from sympy import Function, dsolve, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
    >>> pprint(dsolve(eq, f(x),
    ... hint='nth_linear_euler_eq_homogeneous'))
            2
    f(x) = x *(C1 + C2*x)

    References
    ==========

    - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation
    - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and
      Engineers", Springer 1999, pp. 12

    # indirect doctest

    """
    hint = "nth_linear_euler_eq_homogeneous"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_preprocessed
        f = self.ode_problem.func.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
        self.r = None
        does_match = False

        if order and match:
            coeff = match[order]
            factor = x**order / coeff
            self.r = {i: factor*match[i] for i in match}
        if self.r and all(_test_term(self.r[i], f(x), i) for i in
                          self.r if i >= 0):
            if not self.r[-1]:
                does_match = True
        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        fx = self.ode_problem.func
        eq = self.ode_problem.eq
        homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0]
        return [homogen_sol]


class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver):
    r"""
    Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
    ordinary differential equation using variation of parameters.

    This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
    \cdots`.

    This method works by assuming that the particular solution takes the form

    .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, }

    where `y_i` is the `i`\th solution to the homogeneous equation.  The
    solution is then solved using Wronskian's and Cramer's Rule.  The
    particular solution is given by multiplying eq given below with `a_n x^{n}`

    .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx
                \right) y_i(x) \text{, }

    where `W(x)` is the Wronskian of the fundamental system (the system of `n`
    linearly independent solutions to the homogeneous equation), and `W_i(x)`
    is the Wronskian of the fundamental system with the `i`\th column replaced
    with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`.

    This method is general enough to solve any `n`\th order inhomogeneous
    linear differential equation, but sometimes SymPy cannot simplify the
    Wronskian well enough to integrate it.  If this method hangs, try using the
    ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
    simplifying the integrals manually.  Also, prefer using
    ``nth_linear_constant_coeff_undetermined_coefficients`` when it
    applies, because it does not use integration, making it faster and more
    reliable.

    Warning, using simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters' in
    :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
    not attempt to simplify the Wronskian before integrating.  It is
    recommended that you only use simplify=False with
    'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
    method, especially if the solution to the homogeneous equation has
    trigonometric functions in it.

    Examples
    ========

    >>> from sympy import Function, dsolve, Derivative
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
    >>> dsolve(eq, f(x),
    ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
    Eq(f(x), C1*x + C2*x**2 + x**4/6)

    """
    hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
    has_integral = True

    def _matches(self):
        eq = self.ode_problem.eq_preprocessed
        f = self.ode_problem.func.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
        self.r = None
        does_match = False

        if order and match:
            coeff = match[order]
            factor = x**order / coeff
            self.r = {i: factor*match[i] for i in match}
        if self.r and all(_test_term(self.r[i], f(x), i) for i in
                          self.r if i >= 0):
            if self.r[-1]:
                does_match = True

        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        order = self.ode_problem.order
        homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r)
        self.r[-1] = self.r[-1]/self.r[order]
        sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag)

        return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])]


class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver):
    r"""
    Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
    ordinary differential equation using undetermined coefficients.

    This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
    \cdots`.

    These equations can be solved in a general manner, by substituting
    solutions of the form `x = exp(t)`, and deriving a characteristic equation
    of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can
    be then solved by nth_linear_constant_coeff_undetermined_coefficients if
    g(exp(t)) has finite number of linearly independent derivatives.

    Functions that fit this requirement are finite sums functions of the form
    `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
    is a non-negative integer and `a`, `b`, `c`, and `d` are constants.  For
    example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
    and `e^x \cos(x)` can all be used.  Products of `\sin`'s and `\cos`'s have
    a finite number of derivatives, because they can be expanded into `\sin(a
    x)` and `\cos(b x)` terms.  However, SymPy currently cannot do that
    expansion, so you will need to manually rewrite the expression in terms of
    the above to use this method.  So, for example, you will need to manually
    convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
    of undetermined coefficients on it.

    After replacement of x by exp(t), this method works by creating a trial function
    from the expression and all of its linear independent derivatives and
    substituting them into the original ODE.  The coefficients for each term
    will be a system of linear equations, which are be solved for and
    substituted, giving the solution. If any of the trial functions are linearly
    dependent on the solution to the homogeneous equation, they are multiplied
    by sufficient `x` to make them linearly independent.

    Examples
    ========

    >>> from sympy import dsolve, Function, Derivative, log
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
    >>> dsolve(eq, f(x),
    ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
    Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)

    """
    hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        f = self.ode_problem.func.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
        self.r = None
        does_match = False

        if order and match:
            coeff = match[order]
            factor = x**order / coeff
            self.r = {i: factor*match[i] for i in match}
        if self.r and all(_test_term(self.r[i], f(x), i) for i in
                          self.r if i >= 0):
            if self.r[-1]:
                e, re = posify(self.r[-1].subs(x, exp(x)))
                undetcoeff = _undetermined_coefficients_match(e.subs(re), x)
                if undetcoeff['test']:
                    does_match = True
        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        chareq, eq, symbol = S.Zero, S.Zero, Dummy('x')
        for i in self.r.keys():
            if i >= 0:
                chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand()

        for i in range(1, degree(Poly(chareq, symbol))+1):
            eq += chareq.coeff(symbol**i)*diff(f(x), x, i)

        if chareq.as_coeff_add(symbol)[0]:
            eq += chareq.as_coeff_add(symbol)[0]*f(x)
        e, re = posify(self.r[-1].subs(x, exp(x)))
        eq += e.subs(re)

        self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x))
        sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0]
        sol = sol.subs(x, log(x))
        sol = sol.subs(f(log(x)), f(x)).expand()

        return [sol]


class SecondLinearBessel(SingleODESolver):
    r"""
    Gives solution of the Bessel differential equation

    .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x)

    if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x)
    + C1 bessely(n,x))`` as both the solutions are linearly independent else if
    `n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x)
    + C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x)
    + C1 bessely(n,x))``.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import Symbol
    >>> v = Symbol('v', positive=True)
    >>> from sympy import dsolve, Function
    >>> f = Function('f')
    >>> y = f(x)
    >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
    >>> dsolve(genform)
    Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))

    References
    ==========

    https://math24.net/bessel-differential-equation.html

    """
    hint = "2nd_linear_bessel"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        f = self.ode_problem.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        df = f.diff(x)
        a = Wild('a', exclude=[f,df])
        b = Wild('b', exclude=[x, f,df])
        a4 = Wild('a4', exclude=[x,f,df])
        b4 = Wild('b4', exclude=[x,f,df])
        c4 = Wild('c4', exclude=[x,f,df])
        d4 = Wild('d4', exclude=[x,f,df])
        a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)])
        b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)])
        c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)])
        deq = a3*(f.diff(x, 2)) + b3*df + c3*f
        r = collect(eq,
            [f.diff(x, 2), df, f]).match(deq)
        if order == 2 and r:
            if not all(r[key].is_polynomial() for key in r):
                n, d = eq.as_numer_denom()
                eq = expand(n)
                r = collect(eq,
                    [f.diff(x, 2), df, f]).match(deq)

        if r and r[a3] != 0:
            # leading coeff of f(x).diff(x, 2)
            coeff = factor(r[a3]).match(a4*(x-b)**b4)

            if coeff:
            # if coeff[b4] = 0 means constant coefficient
                if coeff[b4] == 0:
                    return False
                point = coeff[b]
            else:
                return False

            if point:
                r[a3] = simplify(r[a3].subs(x, x+point))
                r[b3] = simplify(r[b3].subs(x, x+point))
                r[c3] = simplify(r[c3].subs(x, x+point))

            # making a3 in the form of x**2
            r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4])))
            r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4])))
            r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4])))
            # checking if b3 is of form c*(x-b)
            coeff1 = factor(r[b3]).match(a4*(x))
            if coeff1 is None:
                return False
            # c3 maybe of very complex form so I am simply checking (a - b) form
            # if yes later I will match with the standerd form of bessel in a and b
            # a, b are wild variable defined above.
            _coeff2 = expand(r[c3]).match(a - b)
            if _coeff2 is None:
                return False
            # matching with standerd form for c3
            coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4))
            if coeff2 is None:
                return False

            if _coeff2[b] == 0:
                coeff2[d4] = 0
            else:
                coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4]

            self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]}
            self.rn['c4'] = coeff1[a4]
            self.rn['b4'] = point
            return True
        return False

    def _get_general_solution(self, *, simplify_flag: bool = True):
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        n = self.rn['n']
        a4 = self.rn['a4']
        c4 = self.rn['c4']
        d4 = self.rn['d4']
        b4 = self.rn['b4']
        n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2)
        (C1, C2) = self.ode_problem.get_numbered_constants(num=2)
        return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4)
            + C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))]


class SecondLinearAiry(SingleODESolver):
    r"""
    Gives solution of the Airy differential equation

    .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0

    in terms of Airy special functions airyai and airybi.

    Examples
    ========

    >>> from sympy import dsolve, Function
    >>> from sympy.abc import x
    >>> f = Function("f")
    >>> eq = f(x).diff(x, 2) - x*f(x)
    >>> dsolve(eq)
    Eq(f(x), C1*airyai(x) + C2*airybi(x))
    """
    hint = "2nd_linear_airy"
    has_integral = False

    def _matches(self):
        eq = self.ode_problem.eq_high_order_free
        f = self.ode_problem.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        df = f.diff(x)
        a4 = Wild('a4', exclude=[x,f,df])
        b4 = Wild('b4', exclude=[x,f,df])
        match = self.ode_problem.get_linear_coefficients(eq, f, order)
        does_match = False
        if order == 2 and match and match[2] != 0:
            if match[1].is_zero:
                self.rn = cancel(match[0]/match[2]).match(a4+b4*x)
                if self.rn and self.rn[b4] != 0:
                    self.rn = {'b':self.rn[a4],'m':self.rn[b4]}
                    does_match = True
        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        f = self.ode_problem.func.func
        x = self.ode_problem.sym
        (C1, C2) = self.ode_problem.get_numbered_constants(num=2)
        b = self.rn['b']
        m = self.rn['m']
        if m.is_positive:
            arg = - b/cbrt(m)**2 - cbrt(m)*x
        elif m.is_negative:
            arg = - b/cbrt(-m)**2 + cbrt(-m)*x
        else:
            arg = - b/cbrt(-m)**2 + cbrt(-m)*x

        return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))]


class LieGroup(SingleODESolver):
    r"""
    This hint implements the Lie group method of solving first order differential
    equations. The aim is to convert the given differential equation from the
    given coordinate system into another coordinate system where it becomes
    invariant under the one-parameter Lie group of translations. The converted
    ODE can be easily solved by quadrature. It makes use of the
    :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the
    infinitesimals of the transformation.

    The coordinates `r` and `s` can be found by solving the following Partial
    Differential Equations.

    .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y}
                  = 0

    .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y}
                  = 1

    The differential equation becomes separable in the new coordinate system

    .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} +
                 h(x, y)\frac{\partial s}{\partial y}}{
                 \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}}

    After finding the solution by integration, it is then converted back to the original
    coordinate system by substituting `r` and `s` in terms of `x` and `y` again.

    Examples
    ========

    >>> from sympy import Function, dsolve, exp, pprint
    >>> from sympy.abc import x
    >>> f = Function('f')
    >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
    ... hint='lie_group'))
           /      2\    2
           |     x |  -x
    f(x) = |C1 + --|*e
           \     2 /


    References
    ==========

    - Solving differential equations by Symmetry Groups,
      John Starrett, pp. 1 - pp. 14

    """
    hint = "lie_group"
    has_integral = False

    def _has_additional_params(self):
        return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params

    def _matches(self):
        eq = self.ode_problem.eq
        f = self.ode_problem.func.func
        order = self.ode_problem.order
        x = self.ode_problem.sym
        df = f(x).diff(x)
        y = Dummy('y')
        d = Wild('d', exclude=[df, f(x).diff(x, 2)])
        e = Wild('e', exclude=[df])
        does_match = False
        if self._has_additional_params() and order == 1:
            xi = self.ode_problem.params['xi']
            eta = self.ode_problem.params['eta']
            self.r3 = {'xi': xi, 'eta': eta}
            r = collect(eq, df, exact=True).match(d + e * df)
            if r:
                r['d'] = d
                r['e'] = e
                r['y'] = y
                r[d] = r[d].subs(f(x), y)
                r[e] = r[e].subs(f(x), y)
                self.r3.update(r)
            does_match = True
        return does_match

    def _get_general_solution(self, *, simplify_flag: bool = True):
        eq = self.ode_problem.eq
        x = self.ode_problem.sym
        func = self.ode_problem.func
        order = self.ode_problem.order
        df = func.diff(x)

        try:
            eqsol = solve(eq, df)
        except NotImplementedError:
            eqsol = []

        desols = []
        for s in eqsol:
            sol = _ode_lie_group(s, func, order, match=self.r3)
            if sol:
                desols.extend(sol)

        if desols == []:
            raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
                + " the lie group method")
        return desols


solver_map = {
    'factorable': Factorable,
    'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous,
    'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous,
    'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients,
    'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients,
    'separable': Separable,
    '1st_exact': FirstExact,
    '1st_linear': FirstLinear,
    'Bernoulli': Bernoulli,
    'Riccati_special_minus2': RiccatiSpecial,
    '1st_rational_riccati': RationalRiccati,
    '1st_homogeneous_coeff_best': HomogeneousCoeffBest,
    '1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep,
    '1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep,
    'almost_linear': AlmostLinear,
    'linear_coefficients': LinearCoefficients,
    'separable_reduced': SeparableReduced,
    'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters,
    'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters,
    'Liouville': Liouville,
    '2nd_linear_airy': SecondLinearAiry,
    '2nd_linear_bessel': SecondLinearBessel,
    '2nd_hypergeometric': SecondHypergeometric,
    'nth_order_reducible': NthOrderReducible,
    '2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved,
    'nth_algebraic': NthAlgebraic,
    'lie_group': LieGroup,
    }

# Avoid circular import:
from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order