Spaces:
Sleeping
Sleeping
"""Tools for solving inequalities and systems of inequalities. """ | |
import itertools | |
from sympy.calculus.util import (continuous_domain, periodicity, | |
function_range) | |
from sympy.core import sympify | |
from sympy.core.exprtools import factor_terms | |
from sympy.core.relational import Relational, Lt, Ge, Eq | |
from sympy.core.symbol import Symbol, Dummy | |
from sympy.sets.sets import Interval, FiniteSet, Union, Intersection | |
from sympy.core.singleton import S | |
from sympy.core.function import expand_mul | |
from sympy.functions.elementary.complexes import Abs | |
from sympy.logic import And | |
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr | |
from sympy.polys.polyutils import _nsort | |
from sympy.solvers.solveset import solvify, solveset | |
from sympy.utilities.iterables import sift, iterable | |
from sympy.utilities.misc import filldedent | |
def solve_poly_inequality(poly, rel): | |
"""Solve a polynomial inequality with rational coefficients. | |
Examples | |
======== | |
>>> from sympy import solve_poly_inequality, Poly | |
>>> from sympy.abc import x | |
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==') | |
[{0}] | |
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=') | |
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)] | |
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==') | |
[{-1}, {1}] | |
See Also | |
======== | |
solve_poly_inequalities | |
""" | |
if not isinstance(poly, Poly): | |
raise ValueError( | |
'For efficiency reasons, `poly` should be a Poly instance') | |
if poly.as_expr().is_number: | |
t = Relational(poly.as_expr(), 0, rel) | |
if t is S.true: | |
return [S.Reals] | |
elif t is S.false: | |
return [S.EmptySet] | |
else: | |
raise NotImplementedError( | |
"could not determine truth value of %s" % t) | |
reals, intervals = poly.real_roots(multiple=False), [] | |
if rel == '==': | |
for root, _ in reals: | |
interval = Interval(root, root) | |
intervals.append(interval) | |
elif rel == '!=': | |
left = S.NegativeInfinity | |
for right, _ in reals + [(S.Infinity, 1)]: | |
interval = Interval(left, right, True, True) | |
intervals.append(interval) | |
left = right | |
else: | |
if poly.LC() > 0: | |
sign = +1 | |
else: | |
sign = -1 | |
eq_sign, equal = None, False | |
if rel == '>': | |
eq_sign = +1 | |
elif rel == '<': | |
eq_sign = -1 | |
elif rel == '>=': | |
eq_sign, equal = +1, True | |
elif rel == '<=': | |
eq_sign, equal = -1, True | |
else: | |
raise ValueError("'%s' is not a valid relation" % rel) | |
right, right_open = S.Infinity, True | |
for left, multiplicity in reversed(reals): | |
if multiplicity % 2: | |
if sign == eq_sign: | |
intervals.insert( | |
0, Interval(left, right, not equal, right_open)) | |
sign, right, right_open = -sign, left, not equal | |
else: | |
if sign == eq_sign and not equal: | |
intervals.insert( | |
0, Interval(left, right, True, right_open)) | |
right, right_open = left, True | |
elif sign != eq_sign and equal: | |
intervals.insert(0, Interval(left, left)) | |
if sign == eq_sign: | |
intervals.insert( | |
0, Interval(S.NegativeInfinity, right, True, right_open)) | |
return intervals | |
def solve_poly_inequalities(polys): | |
"""Solve polynomial inequalities with rational coefficients. | |
Examples | |
======== | |
>>> from sympy import Poly | |
>>> from sympy.solvers.inequalities import solve_poly_inequalities | |
>>> from sympy.abc import x | |
>>> solve_poly_inequalities((( | |
... Poly(x**2 - 3), ">"), ( | |
... Poly(-x**2 + 1), ">"))) | |
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo)) | |
""" | |
return Union(*[s for p in polys for s in solve_poly_inequality(*p)]) | |
def solve_rational_inequalities(eqs): | |
"""Solve a system of rational inequalities with rational coefficients. | |
Examples | |
======== | |
>>> from sympy.abc import x | |
>>> from sympy import solve_rational_inequalities, Poly | |
>>> solve_rational_inequalities([[ | |
... ((Poly(-x + 1), Poly(1, x)), '>='), | |
... ((Poly(-x + 1), Poly(1, x)), '<=')]]) | |
{1} | |
>>> solve_rational_inequalities([[ | |
... ((Poly(x), Poly(1, x)), '!='), | |
... ((Poly(-x + 1), Poly(1, x)), '>=')]]) | |
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1)) | |
See Also | |
======== | |
solve_poly_inequality | |
""" | |
result = S.EmptySet | |
for _eqs in eqs: | |
if not _eqs: | |
continue | |
global_intervals = [Interval(S.NegativeInfinity, S.Infinity)] | |
for (numer, denom), rel in _eqs: | |
numer_intervals = solve_poly_inequality(numer*denom, rel) | |
denom_intervals = solve_poly_inequality(denom, '==') | |
intervals = [] | |
for numer_interval, global_interval in itertools.product( | |
numer_intervals, global_intervals): | |
interval = numer_interval.intersect(global_interval) | |
if interval is not S.EmptySet: | |
intervals.append(interval) | |
global_intervals = intervals | |
intervals = [] | |
for global_interval in global_intervals: | |
for denom_interval in denom_intervals: | |
global_interval -= denom_interval | |
if global_interval is not S.EmptySet: | |
intervals.append(global_interval) | |
global_intervals = intervals | |
if not global_intervals: | |
break | |
for interval in global_intervals: | |
result = result.union(interval) | |
return result | |
def reduce_rational_inequalities(exprs, gen, relational=True): | |
"""Reduce a system of rational inequalities with rational coefficients. | |
Examples | |
======== | |
>>> from sympy import Symbol | |
>>> from sympy.solvers.inequalities import reduce_rational_inequalities | |
>>> x = Symbol('x', real=True) | |
>>> reduce_rational_inequalities([[x**2 <= 0]], x) | |
Eq(x, 0) | |
>>> reduce_rational_inequalities([[x + 2 > 0]], x) | |
-2 < x | |
>>> reduce_rational_inequalities([[(x + 2, ">")]], x) | |
-2 < x | |
>>> reduce_rational_inequalities([[x + 2]], x) | |
Eq(x, -2) | |
This function find the non-infinite solution set so if the unknown symbol | |
is declared as extended real rather than real then the result may include | |
finiteness conditions: | |
>>> y = Symbol('y', extended_real=True) | |
>>> reduce_rational_inequalities([[y + 2 > 0]], y) | |
(-2 < y) & (y < oo) | |
""" | |
exact = True | |
eqs = [] | |
solution = S.EmptySet # add pieces for each group | |
for _exprs in exprs: | |
if not _exprs: | |
continue | |
_eqs = [] | |
_sol = S.Reals | |
for expr in _exprs: | |
if isinstance(expr, tuple): | |
expr, rel = expr | |
else: | |
if expr.is_Relational: | |
expr, rel = expr.lhs - expr.rhs, expr.rel_op | |
else: | |
expr, rel = expr, '==' | |
if expr is S.true: | |
numer, denom, rel = S.Zero, S.One, '==' | |
elif expr is S.false: | |
numer, denom, rel = S.One, S.One, '==' | |
else: | |
numer, denom = expr.together().as_numer_denom() | |
try: | |
(numer, denom), opt = parallel_poly_from_expr( | |
(numer, denom), gen) | |
except PolynomialError: | |
raise PolynomialError(filldedent(''' | |
only polynomials and rational functions are | |
supported in this context. | |
''')) | |
if not opt.domain.is_Exact: | |
numer, denom, exact = numer.to_exact(), denom.to_exact(), False | |
domain = opt.domain.get_exact() | |
if not (domain.is_ZZ or domain.is_QQ): | |
expr = numer/denom | |
expr = Relational(expr, 0, rel) | |
_sol &= solve_univariate_inequality(expr, gen, relational=False) | |
else: | |
_eqs.append(((numer, denom), rel)) | |
if _eqs: | |
_sol &= solve_rational_inequalities([_eqs]) | |
exclude = solve_rational_inequalities([[((d, d.one), '==') | |
for i in eqs for ((n, d), _) in i if d.has(gen)]]) | |
_sol -= exclude | |
solution |= _sol | |
if not exact and solution: | |
solution = solution.evalf() | |
if relational: | |
solution = solution.as_relational(gen) | |
return solution | |
def reduce_abs_inequality(expr, rel, gen): | |
"""Reduce an inequality with nested absolute values. | |
Examples | |
======== | |
>>> from sympy import reduce_abs_inequality, Abs, Symbol | |
>>> x = Symbol('x', real=True) | |
>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x) | |
(2 < x) & (x < 8) | |
>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x) | |
(-19/3 < x) & (x < 7/3) | |
See Also | |
======== | |
reduce_abs_inequalities | |
""" | |
if gen.is_extended_real is False: | |
raise TypeError(filldedent(''' | |
Cannot solve inequalities with absolute values containing | |
non-real variables. | |
''')) | |
def _bottom_up_scan(expr): | |
exprs = [] | |
if expr.is_Add or expr.is_Mul: | |
op = expr.func | |
for arg in expr.args: | |
_exprs = _bottom_up_scan(arg) | |
if not exprs: | |
exprs = _exprs | |
else: | |
exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in | |
itertools.product(exprs, _exprs)] | |
elif expr.is_Pow: | |
n = expr.exp | |
if not n.is_Integer: | |
raise ValueError("Only Integer Powers are allowed on Abs.") | |
exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base)) | |
elif isinstance(expr, Abs): | |
_exprs = _bottom_up_scan(expr.args[0]) | |
for expr, conds in _exprs: | |
exprs.append(( expr, conds + [Ge(expr, 0)])) | |
exprs.append((-expr, conds + [Lt(expr, 0)])) | |
else: | |
exprs = [(expr, [])] | |
return exprs | |
mapping = {'<': '>', '<=': '>='} | |
inequalities = [] | |
for expr, conds in _bottom_up_scan(expr): | |
if rel not in mapping.keys(): | |
expr = Relational( expr, 0, rel) | |
else: | |
expr = Relational(-expr, 0, mapping[rel]) | |
inequalities.append([expr] + conds) | |
return reduce_rational_inequalities(inequalities, gen) | |
def reduce_abs_inequalities(exprs, gen): | |
"""Reduce a system of inequalities with nested absolute values. | |
Examples | |
======== | |
>>> from sympy import reduce_abs_inequalities, Abs, Symbol | |
>>> x = Symbol('x', extended_real=True) | |
>>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'), | |
... (Abs(x + 25) - 13, '>')], x) | |
(-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo))) | |
>>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x) | |
(1/2 < x) & (x < 4) | |
See Also | |
======== | |
reduce_abs_inequality | |
""" | |
return And(*[ reduce_abs_inequality(expr, rel, gen) | |
for expr, rel in exprs ]) | |
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False): | |
"""Solves a real univariate inequality. | |
Parameters | |
========== | |
expr : Relational | |
The target inequality | |
gen : Symbol | |
The variable for which the inequality is solved | |
relational : bool | |
A Relational type output is expected or not | |
domain : Set | |
The domain over which the equation is solved | |
continuous: bool | |
True if expr is known to be continuous over the given domain | |
(and so continuous_domain() does not need to be called on it) | |
Raises | |
====== | |
NotImplementedError | |
The solution of the inequality cannot be determined due to limitation | |
in :func:`sympy.solvers.solveset.solvify`. | |
Notes | |
===== | |
Currently, we cannot solve all the inequalities due to limitations in | |
:func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities | |
are restricted in its periodic interval. | |
See Also | |
======== | |
sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API | |
Examples | |
======== | |
>>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S | |
>>> x = Symbol('x') | |
>>> solve_univariate_inequality(x**2 >= 4, x) | |
((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2)) | |
>>> solve_univariate_inequality(x**2 >= 4, x, relational=False) | |
Union(Interval(-oo, -2), Interval(2, oo)) | |
>>> domain = Interval(0, S.Infinity) | |
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain) | |
Interval(2, oo) | |
>>> solve_univariate_inequality(sin(x) > 0, x, relational=False) | |
Interval.open(0, pi) | |
""" | |
from sympy.solvers.solvers import denoms | |
if domain.is_subset(S.Reals) is False: | |
raise NotImplementedError(filldedent(''' | |
Inequalities in the complex domain are | |
not supported. Try the real domain by | |
setting domain=S.Reals''')) | |
elif domain is not S.Reals: | |
rv = solve_univariate_inequality( | |
expr, gen, relational=False, continuous=continuous).intersection(domain) | |
if relational: | |
rv = rv.as_relational(gen) | |
return rv | |
else: | |
pass # continue with attempt to solve in Real domain | |
# This keeps the function independent of the assumptions about `gen`. | |
# `solveset` makes sure this function is called only when the domain is | |
# real. | |
_gen = gen | |
_domain = domain | |
if gen.is_extended_real is False: | |
rv = S.EmptySet | |
return rv if not relational else rv.as_relational(_gen) | |
elif gen.is_extended_real is None: | |
gen = Dummy('gen', extended_real=True) | |
try: | |
expr = expr.xreplace({_gen: gen}) | |
except TypeError: | |
raise TypeError(filldedent(''' | |
When gen is real, the relational has a complex part | |
which leads to an invalid comparison like I < 0. | |
''')) | |
rv = None | |
if expr is S.true: | |
rv = domain | |
elif expr is S.false: | |
rv = S.EmptySet | |
else: | |
e = expr.lhs - expr.rhs | |
period = periodicity(e, gen) | |
if period == S.Zero: | |
e = expand_mul(e) | |
const = expr.func(e, 0) | |
if const is S.true: | |
rv = domain | |
elif const is S.false: | |
rv = S.EmptySet | |
elif period is not None: | |
frange = function_range(e, gen, domain) | |
rel = expr.rel_op | |
if rel in ('<', '<='): | |
if expr.func(frange.sup, 0): | |
rv = domain | |
elif not expr.func(frange.inf, 0): | |
rv = S.EmptySet | |
elif rel in ('>', '>='): | |
if expr.func(frange.inf, 0): | |
rv = domain | |
elif not expr.func(frange.sup, 0): | |
rv = S.EmptySet | |
inf, sup = domain.inf, domain.sup | |
if sup - inf is S.Infinity: | |
domain = Interval(0, period, False, True).intersect(_domain) | |
_domain = domain | |
if rv is None: | |
n, d = e.as_numer_denom() | |
try: | |
if gen not in n.free_symbols and len(e.free_symbols) > 1: | |
raise ValueError | |
# this might raise ValueError on its own | |
# or it might give None... | |
solns = solvify(e, gen, domain) | |
if solns is None: | |
# in which case we raise ValueError | |
raise ValueError | |
except (ValueError, NotImplementedError): | |
# replace gen with generic x since it's | |
# univariate anyway | |
raise NotImplementedError(filldedent(''' | |
The inequality, %s, cannot be solved using | |
solve_univariate_inequality. | |
''' % expr.subs(gen, Symbol('x')))) | |
expanded_e = expand_mul(e) | |
def valid(x): | |
# this is used to see if gen=x satisfies the | |
# relational by substituting it into the | |
# expanded form and testing against 0, e.g. | |
# if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2 | |
# and expanded_e = x**2 + x - 2; the test is | |
# whether a given value of x satisfies | |
# x**2 + x - 2 < 0 | |
# | |
# expanded_e, expr and gen used from enclosing scope | |
v = expanded_e.subs(gen, expand_mul(x)) | |
try: | |
r = expr.func(v, 0) | |
except TypeError: | |
r = S.false | |
if r in (S.true, S.false): | |
return r | |
if v.is_extended_real is False: | |
return S.false | |
else: | |
v = v.n(2) | |
if v.is_comparable: | |
return expr.func(v, 0) | |
# not comparable or couldn't be evaluated | |
raise NotImplementedError( | |
'relationship did not evaluate: %s' % r) | |
singularities = [] | |
for d in denoms(expr, gen): | |
singularities.extend(solvify(d, gen, domain)) | |
if not continuous: | |
domain = continuous_domain(expanded_e, gen, domain) | |
include_x = '=' in expr.rel_op and expr.rel_op != '!=' | |
try: | |
discontinuities = set(domain.boundary - | |
FiniteSet(domain.inf, domain.sup)) | |
# remove points that are not between inf and sup of domain | |
critical_points = FiniteSet(*(solns + singularities + list( | |
discontinuities))).intersection( | |
Interval(domain.inf, domain.sup, | |
domain.inf not in domain, domain.sup not in domain)) | |
if all(r.is_number for r in critical_points): | |
reals = _nsort(critical_points, separated=True)[0] | |
else: | |
sifted = sift(critical_points, lambda x: x.is_extended_real) | |
if sifted[None]: | |
# there were some roots that weren't known | |
# to be real | |
raise NotImplementedError | |
try: | |
reals = sifted[True] | |
if len(reals) > 1: | |
reals = sorted(reals) | |
except TypeError: | |
raise NotImplementedError | |
except NotImplementedError: | |
raise NotImplementedError('sorting of these roots is not supported') | |
# If expr contains imaginary coefficients, only take real | |
# values of x for which the imaginary part is 0 | |
make_real = S.Reals | |
if (coeffI := expanded_e.coeff(S.ImaginaryUnit)) != S.Zero: | |
check = True | |
im_sol = FiniteSet() | |
try: | |
a = solveset(coeffI, gen, domain) | |
if not isinstance(a, Interval): | |
for z in a: | |
if z not in singularities and valid(z) and z.is_extended_real: | |
im_sol += FiniteSet(z) | |
else: | |
start, end = a.inf, a.sup | |
for z in _nsort(critical_points + FiniteSet(end)): | |
valid_start = valid(start) | |
if start != end: | |
valid_z = valid(z) | |
pt = _pt(start, z) | |
if pt not in singularities and pt.is_extended_real and valid(pt): | |
if valid_start and valid_z: | |
im_sol += Interval(start, z) | |
elif valid_start: | |
im_sol += Interval.Ropen(start, z) | |
elif valid_z: | |
im_sol += Interval.Lopen(start, z) | |
else: | |
im_sol += Interval.open(start, z) | |
start = z | |
for s in singularities: | |
im_sol -= FiniteSet(s) | |
except (TypeError): | |
im_sol = S.Reals | |
check = False | |
if im_sol is S.EmptySet: | |
raise ValueError(filldedent(''' | |
%s contains imaginary parts which cannot be | |
made 0 for any value of %s satisfying the | |
inequality, leading to relations like I < 0. | |
''' % (expr.subs(gen, _gen), _gen))) | |
make_real = make_real.intersect(im_sol) | |
sol_sets = [S.EmptySet] | |
start = domain.inf | |
if start in domain and valid(start) and start.is_finite: | |
sol_sets.append(FiniteSet(start)) | |
for x in reals: | |
end = x | |
if valid(_pt(start, end)): | |
sol_sets.append(Interval(start, end, True, True)) | |
if x in singularities: | |
singularities.remove(x) | |
else: | |
if x in discontinuities: | |
discontinuities.remove(x) | |
_valid = valid(x) | |
else: # it's a solution | |
_valid = include_x | |
if _valid: | |
sol_sets.append(FiniteSet(x)) | |
start = end | |
end = domain.sup | |
if end in domain and valid(end) and end.is_finite: | |
sol_sets.append(FiniteSet(end)) | |
if valid(_pt(start, end)): | |
sol_sets.append(Interval.open(start, end)) | |
if coeffI != S.Zero and check: | |
rv = (make_real).intersect(_domain) | |
else: | |
rv = Intersection( | |
(Union(*sol_sets)), make_real, _domain).subs(gen, _gen) | |
return rv if not relational else rv.as_relational(_gen) | |
def _pt(start, end): | |
"""Return a point between start and end""" | |
if not start.is_infinite and not end.is_infinite: | |
pt = (start + end)/2 | |
elif start.is_infinite and end.is_infinite: | |
pt = S.Zero | |
else: | |
if (start.is_infinite and start.is_extended_positive is None or | |
end.is_infinite and end.is_extended_positive is None): | |
raise ValueError('cannot proceed with unsigned infinite values') | |
if (end.is_infinite and end.is_extended_negative or | |
start.is_infinite and start.is_extended_positive): | |
start, end = end, start | |
# if possible, use a multiple of self which has | |
# better behavior when checking assumptions than | |
# an expression obtained by adding or subtracting 1 | |
if end.is_infinite: | |
if start.is_extended_positive: | |
pt = start*2 | |
elif start.is_extended_negative: | |
pt = start*S.Half | |
else: | |
pt = start + 1 | |
elif start.is_infinite: | |
if end.is_extended_positive: | |
pt = end*S.Half | |
elif end.is_extended_negative: | |
pt = end*2 | |
else: | |
pt = end - 1 | |
return pt | |
def _solve_inequality(ie, s, linear=False): | |
"""Return the inequality with s isolated on the left, if possible. | |
If the relationship is non-linear, a solution involving And or Or | |
may be returned. False or True are returned if the relationship | |
is never True or always True, respectively. | |
If `linear` is True (default is False) an `s`-dependent expression | |
will be isolated on the left, if possible | |
but it will not be solved for `s` unless the expression is linear | |
in `s`. Furthermore, only "safe" operations which do not change the | |
sense of the relationship are applied: no division by an unsigned | |
value is attempted unless the relationship involves Eq or Ne and | |
no division by a value not known to be nonzero is ever attempted. | |
Examples | |
======== | |
>>> from sympy import Eq, Symbol | |
>>> from sympy.solvers.inequalities import _solve_inequality as f | |
>>> from sympy.abc import x, y | |
For linear expressions, the symbol can be isolated: | |
>>> f(x - 2 < 0, x) | |
x < 2 | |
>>> f(-x - 6 < x, x) | |
x > -3 | |
Sometimes nonlinear relationships will be False | |
>>> f(x**2 + 4 < 0, x) | |
False | |
Or they may involve more than one region of values: | |
>>> f(x**2 - 4 < 0, x) | |
(-2 < x) & (x < 2) | |
To restrict the solution to a relational, set linear=True | |
and only the x-dependent portion will be isolated on the left: | |
>>> f(x**2 - 4 < 0, x, linear=True) | |
x**2 < 4 | |
Division of only nonzero quantities is allowed, so x cannot | |
be isolated by dividing by y: | |
>>> y.is_nonzero is None # it is unknown whether it is 0 or not | |
True | |
>>> f(x*y < 1, x) | |
x*y < 1 | |
And while an equality (or inequality) still holds after dividing by a | |
non-zero quantity | |
>>> nz = Symbol('nz', nonzero=True) | |
>>> f(Eq(x*nz, 1), x) | |
Eq(x, 1/nz) | |
the sign must be known for other inequalities involving > or <: | |
>>> f(x*nz <= 1, x) | |
nz*x <= 1 | |
>>> p = Symbol('p', positive=True) | |
>>> f(x*p <= 1, x) | |
x <= 1/p | |
When there are denominators in the original expression that | |
are removed by expansion, conditions for them will be returned | |
as part of the result: | |
>>> f(x < x*(2/x - 1), x) | |
(x < 1) & Ne(x, 0) | |
""" | |
from sympy.solvers.solvers import denoms | |
if s not in ie.free_symbols: | |
return ie | |
if ie.rhs == s: | |
ie = ie.reversed | |
if ie.lhs == s and s not in ie.rhs.free_symbols: | |
return ie | |
def classify(ie, s, i): | |
# return True or False if ie evaluates when substituting s with | |
# i else None (if unevaluated) or NaN (when there is an error | |
# in evaluating) | |
try: | |
v = ie.subs(s, i) | |
if v is S.NaN: | |
return v | |
elif v not in (True, False): | |
return | |
return v | |
except TypeError: | |
return S.NaN | |
rv = None | |
oo = S.Infinity | |
expr = ie.lhs - ie.rhs | |
try: | |
p = Poly(expr, s) | |
if p.degree() == 0: | |
rv = ie.func(p.as_expr(), 0) | |
elif not linear and p.degree() > 1: | |
# handle in except clause | |
raise NotImplementedError | |
except (PolynomialError, NotImplementedError): | |
if not linear: | |
try: | |
rv = reduce_rational_inequalities([[ie]], s) | |
except PolynomialError: | |
rv = solve_univariate_inequality(ie, s) | |
# remove restrictions wrt +/-oo that may have been | |
# applied when using sets to simplify the relationship | |
okoo = classify(ie, s, oo) | |
if okoo is S.true and classify(rv, s, oo) is S.false: | |
rv = rv.subs(s < oo, True) | |
oknoo = classify(ie, s, -oo) | |
if (oknoo is S.true and | |
classify(rv, s, -oo) is S.false): | |
rv = rv.subs(-oo < s, True) | |
rv = rv.subs(s > -oo, True) | |
if rv is S.true: | |
rv = (s <= oo) if okoo is S.true else (s < oo) | |
if oknoo is not S.true: | |
rv = And(-oo < s, rv) | |
else: | |
p = Poly(expr) | |
conds = [] | |
if rv is None: | |
e = p.as_expr() # this is in expanded form | |
# Do a safe inversion of e, moving non-s terms | |
# to the rhs and dividing by a nonzero factor if | |
# the relational is Eq/Ne; for other relationals | |
# the sign must also be positive or negative | |
rhs = 0 | |
b, ax = e.as_independent(s, as_Add=True) | |
e -= b | |
rhs -= b | |
ef = factor_terms(e) | |
a, e = ef.as_independent(s, as_Add=False) | |
if (a.is_zero != False or # don't divide by potential 0 | |
a.is_negative == | |
a.is_positive is None and # if sign is not known then | |
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne | |
e = ef | |
a = S.One | |
rhs /= a | |
if a.is_positive: | |
rv = ie.func(e, rhs) | |
else: | |
rv = ie.reversed.func(e, rhs) | |
# return conditions under which the value is | |
# valid, too. | |
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs) | |
current_denoms = denoms(rv) | |
for d in beginning_denoms - current_denoms: | |
c = _solve_inequality(Eq(d, 0), s, linear=linear) | |
if isinstance(c, Eq) and c.lhs == s: | |
if classify(rv, s, c.rhs) is S.true: | |
# rv is permitting this value but it shouldn't | |
conds.append(~c) | |
for i in (-oo, oo): | |
if (classify(rv, s, i) is S.true and | |
classify(ie, s, i) is not S.true): | |
conds.append(s < i if i is oo else i < s) | |
conds.append(rv) | |
return And(*conds) | |
def _reduce_inequalities(inequalities, symbols): | |
# helper for reduce_inequalities | |
poly_part, abs_part = {}, {} | |
other = [] | |
for inequality in inequalities: | |
expr, rel = inequality.lhs, inequality.rel_op # rhs is 0 | |
# check for gens using atoms which is more strict than free_symbols to | |
# guard against EX domain which won't be handled by | |
# reduce_rational_inequalities | |
gens = expr.atoms(Symbol) | |
if len(gens) == 1: | |
gen = gens.pop() | |
else: | |
common = expr.free_symbols & symbols | |
if len(common) == 1: | |
gen = common.pop() | |
other.append(_solve_inequality(Relational(expr, 0, rel), gen)) | |
continue | |
else: | |
raise NotImplementedError(filldedent(''' | |
inequality has more than one symbol of interest. | |
''')) | |
if expr.is_polynomial(gen): | |
poly_part.setdefault(gen, []).append((expr, rel)) | |
else: | |
components = expr.find(lambda u: | |
u.has(gen) and ( | |
u.is_Function or u.is_Pow and not u.exp.is_Integer)) | |
if components and all(isinstance(i, Abs) for i in components): | |
abs_part.setdefault(gen, []).append((expr, rel)) | |
else: | |
other.append(_solve_inequality(Relational(expr, 0, rel), gen)) | |
poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()] | |
abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()] | |
return And(*(poly_reduced + abs_reduced + other)) | |
def reduce_inequalities(inequalities, symbols=[]): | |
"""Reduce a system of inequalities with rational coefficients. | |
Examples | |
======== | |
>>> from sympy.abc import x, y | |
>>> from sympy import reduce_inequalities | |
>>> reduce_inequalities(0 <= x + 3, []) | |
(-3 <= x) & (x < oo) | |
>>> reduce_inequalities(0 <= x + y*2 - 1, [x]) | |
(x < oo) & (x >= 1 - 2*y) | |
""" | |
if not iterable(inequalities): | |
inequalities = [inequalities] | |
inequalities = [sympify(i) for i in inequalities] | |
gens = set().union(*[i.free_symbols for i in inequalities]) | |
if not iterable(symbols): | |
symbols = [symbols] | |
symbols = (set(symbols) or gens) & gens | |
if any(i.is_extended_real is False for i in symbols): | |
raise TypeError(filldedent(''' | |
inequalities cannot contain symbols that are not real. | |
''')) | |
# make vanilla symbol real | |
recast = {i: Dummy(i.name, extended_real=True) | |
for i in gens if i.is_extended_real is None} | |
inequalities = [i.xreplace(recast) for i in inequalities] | |
symbols = {i.xreplace(recast) for i in symbols} | |
# prefilter | |
keep = [] | |
for i in inequalities: | |
if isinstance(i, Relational): | |
i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0) | |
elif i not in (True, False): | |
i = Eq(i, 0) | |
if i == True: | |
continue | |
elif i == False: | |
return S.false | |
if i.lhs.is_number: | |
raise NotImplementedError( | |
"could not determine truth value of %s" % i) | |
keep.append(i) | |
inequalities = keep | |
del keep | |
# solve system | |
rv = _reduce_inequalities(inequalities, symbols) | |
# restore original symbols and return | |
return rv.xreplace({v: k for k, v in recast.items()}) | |