File size: 33,202 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
"""Tools for solving inequalities and systems of inequalities. """
import itertools

from sympy.calculus.util import (continuous_domain, periodicity,
    function_range)
from sympy.core import sympify
from sympy.core.exprtools import factor_terms
from sympy.core.relational import Relational, Lt, Ge, Eq
from sympy.core.symbol import Symbol, Dummy
from sympy.sets.sets import Interval, FiniteSet, Union, Intersection
from sympy.core.singleton import S
from sympy.core.function import expand_mul
from sympy.functions.elementary.complexes import Abs
from sympy.logic import And
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
from sympy.polys.polyutils import _nsort
from sympy.solvers.solveset import solvify, solveset
from sympy.utilities.iterables import sift, iterable
from sympy.utilities.misc import filldedent


def solve_poly_inequality(poly, rel):
    """Solve a polynomial inequality with rational coefficients.

    Examples
    ========

    >>> from sympy import solve_poly_inequality, Poly
    >>> from sympy.abc import x

    >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
    [{0}]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
    [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]

    >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
    [{-1}, {1}]

    See Also
    ========
    solve_poly_inequalities
    """
    if not isinstance(poly, Poly):
        raise ValueError(
            'For efficiency reasons, `poly` should be a Poly instance')
    if poly.as_expr().is_number:
        t = Relational(poly.as_expr(), 0, rel)
        if t is S.true:
            return [S.Reals]
        elif t is S.false:
            return [S.EmptySet]
        else:
            raise NotImplementedError(
                "could not determine truth value of %s" % t)

    reals, intervals = poly.real_roots(multiple=False), []

    if rel == '==':
        for root, _ in reals:
            interval = Interval(root, root)
            intervals.append(interval)
    elif rel == '!=':
        left = S.NegativeInfinity

        for right, _ in reals + [(S.Infinity, 1)]:
            interval = Interval(left, right, True, True)
            intervals.append(interval)
            left = right
    else:
        if poly.LC() > 0:
            sign = +1
        else:
            sign = -1

        eq_sign, equal = None, False

        if rel == '>':
            eq_sign = +1
        elif rel == '<':
            eq_sign = -1
        elif rel == '>=':
            eq_sign, equal = +1, True
        elif rel == '<=':
            eq_sign, equal = -1, True
        else:
            raise ValueError("'%s' is not a valid relation" % rel)

        right, right_open = S.Infinity, True

        for left, multiplicity in reversed(reals):
            if multiplicity % 2:
                if sign == eq_sign:
                    intervals.insert(
                        0, Interval(left, right, not equal, right_open))

                sign, right, right_open = -sign, left, not equal
            else:
                if sign == eq_sign and not equal:
                    intervals.insert(
                        0, Interval(left, right, True, right_open))
                    right, right_open = left, True
                elif sign != eq_sign and equal:
                    intervals.insert(0, Interval(left, left))

        if sign == eq_sign:
            intervals.insert(
                0, Interval(S.NegativeInfinity, right, True, right_open))

    return intervals


def solve_poly_inequalities(polys):
    """Solve polynomial inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Poly
    >>> from sympy.solvers.inequalities import solve_poly_inequalities
    >>> from sympy.abc import x
    >>> solve_poly_inequalities(((
    ... Poly(x**2 - 3), ">"), (
    ... Poly(-x**2 + 1), ">")))
    Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
    """
    return Union(*[s for p in polys for s in solve_poly_inequality(*p)])


def solve_rational_inequalities(eqs):
    """Solve a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import solve_rational_inequalities, Poly

    >>> solve_rational_inequalities([[
    ... ((Poly(-x + 1), Poly(1, x)), '>='),
    ... ((Poly(-x + 1), Poly(1, x)), '<=')]])
    {1}

    >>> solve_rational_inequalities([[
    ... ((Poly(x), Poly(1, x)), '!='),
    ... ((Poly(-x + 1), Poly(1, x)), '>=')]])
    Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))

    See Also
    ========
    solve_poly_inequality
    """
    result = S.EmptySet

    for _eqs in eqs:
        if not _eqs:
            continue

        global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]

        for (numer, denom), rel in _eqs:
            numer_intervals = solve_poly_inequality(numer*denom, rel)
            denom_intervals = solve_poly_inequality(denom, '==')

            intervals = []

            for numer_interval, global_interval in itertools.product(
                    numer_intervals, global_intervals):
                interval = numer_interval.intersect(global_interval)

                if interval is not S.EmptySet:
                    intervals.append(interval)

            global_intervals = intervals

            intervals = []

            for global_interval in global_intervals:
                for denom_interval in denom_intervals:
                    global_interval -= denom_interval

                if global_interval is not S.EmptySet:
                    intervals.append(global_interval)

            global_intervals = intervals

            if not global_intervals:
                break

        for interval in global_intervals:
            result = result.union(interval)

    return result


def reduce_rational_inequalities(exprs, gen, relational=True):
    """Reduce a system of rational inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import Symbol
    >>> from sympy.solvers.inequalities import reduce_rational_inequalities

    >>> x = Symbol('x', real=True)

    >>> reduce_rational_inequalities([[x**2 <= 0]], x)
    Eq(x, 0)

    >>> reduce_rational_inequalities([[x + 2 > 0]], x)
    -2 < x
    >>> reduce_rational_inequalities([[(x + 2, ">")]], x)
    -2 < x
    >>> reduce_rational_inequalities([[x + 2]], x)
    Eq(x, -2)

    This function find the non-infinite solution set so if the unknown symbol
    is declared as extended real rather than real then the result may include
    finiteness conditions:

    >>> y = Symbol('y', extended_real=True)
    >>> reduce_rational_inequalities([[y + 2 > 0]], y)
    (-2 < y) & (y < oo)
    """
    exact = True
    eqs = []
    solution = S.EmptySet  # add pieces for each group
    for _exprs in exprs:
        if not _exprs:
            continue
        _eqs = []
        _sol = S.Reals
        for expr in _exprs:
            if isinstance(expr, tuple):
                expr, rel = expr
            else:
                if expr.is_Relational:
                    expr, rel = expr.lhs - expr.rhs, expr.rel_op
                else:
                    expr, rel = expr, '=='

            if expr is S.true:
                numer, denom, rel = S.Zero, S.One, '=='
            elif expr is S.false:
                numer, denom, rel = S.One, S.One, '=='
            else:
                numer, denom = expr.together().as_numer_denom()

            try:
                (numer, denom), opt = parallel_poly_from_expr(
                    (numer, denom), gen)
            except PolynomialError:
                raise PolynomialError(filldedent('''
                    only polynomials and rational functions are
                    supported in this context.
                    '''))

            if not opt.domain.is_Exact:
                numer, denom, exact = numer.to_exact(), denom.to_exact(), False

            domain = opt.domain.get_exact()

            if not (domain.is_ZZ or domain.is_QQ):
                expr = numer/denom
                expr = Relational(expr, 0, rel)
                _sol &= solve_univariate_inequality(expr, gen, relational=False)
            else:
                _eqs.append(((numer, denom), rel))

        if _eqs:
            _sol &= solve_rational_inequalities([_eqs])
            exclude = solve_rational_inequalities([[((d, d.one), '==')
                for i in eqs for ((n, d), _) in i if d.has(gen)]])
            _sol -= exclude

        solution |= _sol

    if not exact and solution:
        solution = solution.evalf()

    if relational:
        solution = solution.as_relational(gen)

    return solution


def reduce_abs_inequality(expr, rel, gen):
    """Reduce an inequality with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequality, Abs, Symbol
    >>> x = Symbol('x', real=True)

    >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
    (2 < x) & (x < 8)

    >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
    (-19/3 < x) & (x < 7/3)

    See Also
    ========

    reduce_abs_inequalities
    """
    if gen.is_extended_real is False:
         raise TypeError(filldedent('''
            Cannot solve inequalities with absolute values containing
            non-real variables.
            '''))

    def _bottom_up_scan(expr):
        exprs = []

        if expr.is_Add or expr.is_Mul:
            op = expr.func

            for arg in expr.args:
                _exprs = _bottom_up_scan(arg)

                if not exprs:
                    exprs = _exprs
                else:
                    exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in
                            itertools.product(exprs, _exprs)]
        elif expr.is_Pow:
            n = expr.exp
            if not n.is_Integer:
                raise ValueError("Only Integer Powers are allowed on Abs.")

            exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base))
        elif isinstance(expr, Abs):
            _exprs = _bottom_up_scan(expr.args[0])

            for expr, conds in _exprs:
                exprs.append(( expr, conds + [Ge(expr, 0)]))
                exprs.append((-expr, conds + [Lt(expr, 0)]))
        else:
            exprs = [(expr, [])]

        return exprs

    mapping = {'<': '>', '<=': '>='}
    inequalities = []

    for expr, conds in _bottom_up_scan(expr):
        if rel not in mapping.keys():
            expr = Relational( expr, 0, rel)
        else:
            expr = Relational(-expr, 0, mapping[rel])

        inequalities.append([expr] + conds)

    return reduce_rational_inequalities(inequalities, gen)


def reduce_abs_inequalities(exprs, gen):
    """Reduce a system of inequalities with nested absolute values.

    Examples
    ========

    >>> from sympy import reduce_abs_inequalities, Abs, Symbol
    >>> x = Symbol('x', extended_real=True)

    >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
    ... (Abs(x + 25) - 13, '>')], x)
    (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))

    >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
    (1/2 < x) & (x < 4)

    See Also
    ========

    reduce_abs_inequality
    """
    return And(*[ reduce_abs_inequality(expr, rel, gen)
        for expr, rel in exprs ])


def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
    """Solves a real univariate inequality.

    Parameters
    ==========

    expr : Relational
        The target inequality
    gen : Symbol
        The variable for which the inequality is solved
    relational : bool
        A Relational type output is expected or not
    domain : Set
        The domain over which the equation is solved
    continuous: bool
        True if expr is known to be continuous over the given domain
        (and so continuous_domain() does not need to be called on it)

    Raises
    ======

    NotImplementedError
        The solution of the inequality cannot be determined due to limitation
        in :func:`sympy.solvers.solveset.solvify`.

    Notes
    =====

    Currently, we cannot solve all the inequalities due to limitations in
    :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
    are restricted in its periodic interval.

    See Also
    ========

    sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API

    Examples
    ========

    >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
    >>> x = Symbol('x')

    >>> solve_univariate_inequality(x**2 >= 4, x)
    ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))

    >>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
    Union(Interval(-oo, -2), Interval(2, oo))

    >>> domain = Interval(0, S.Infinity)
    >>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
    Interval(2, oo)

    >>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
    Interval.open(0, pi)

    """
    from sympy.solvers.solvers import denoms

    if domain.is_subset(S.Reals) is False:
        raise NotImplementedError(filldedent('''
        Inequalities in the complex domain are
        not supported. Try the real domain by
        setting domain=S.Reals'''))
    elif domain is not S.Reals:
        rv = solve_univariate_inequality(
        expr, gen, relational=False, continuous=continuous).intersection(domain)
        if relational:
            rv = rv.as_relational(gen)
        return rv
    else:
        pass  # continue with attempt to solve in Real domain

    # This keeps the function independent of the assumptions about `gen`.
    # `solveset` makes sure this function is called only when the domain is
    # real.
    _gen = gen
    _domain = domain
    if gen.is_extended_real is False:
        rv = S.EmptySet
        return rv if not relational else rv.as_relational(_gen)
    elif gen.is_extended_real is None:
        gen = Dummy('gen', extended_real=True)
        try:
            expr = expr.xreplace({_gen: gen})
        except TypeError:
            raise TypeError(filldedent('''
                When gen is real, the relational has a complex part
                which leads to an invalid comparison like I < 0.
                '''))

    rv = None

    if expr is S.true:
        rv = domain

    elif expr is S.false:
        rv = S.EmptySet

    else:
        e = expr.lhs - expr.rhs
        period = periodicity(e, gen)
        if period == S.Zero:
            e = expand_mul(e)
            const = expr.func(e, 0)
            if const is S.true:
                rv = domain
            elif const is S.false:
                rv = S.EmptySet
        elif period is not None:
            frange = function_range(e, gen, domain)

            rel = expr.rel_op
            if rel in ('<', '<='):
                if expr.func(frange.sup, 0):
                    rv = domain
                elif not expr.func(frange.inf, 0):
                    rv = S.EmptySet

            elif rel in ('>', '>='):
                if expr.func(frange.inf, 0):
                    rv = domain
                elif not expr.func(frange.sup, 0):
                    rv = S.EmptySet

            inf, sup = domain.inf, domain.sup
            if sup - inf is S.Infinity:
                domain = Interval(0, period, False, True).intersect(_domain)
                _domain = domain

        if rv is None:
            n, d = e.as_numer_denom()
            try:
                if gen not in n.free_symbols and len(e.free_symbols) > 1:
                    raise ValueError
                # this might raise ValueError on its own
                # or it might give None...
                solns = solvify(e, gen, domain)
                if solns is None:
                    # in which case we raise ValueError
                    raise ValueError
            except (ValueError, NotImplementedError):
                # replace gen with generic x since it's
                # univariate anyway
                raise NotImplementedError(filldedent('''
                    The inequality, %s, cannot be solved using
                    solve_univariate_inequality.
                    ''' % expr.subs(gen, Symbol('x'))))

            expanded_e = expand_mul(e)
            def valid(x):
                # this is used to see if gen=x satisfies the
                # relational by substituting it into the
                # expanded form and testing against 0, e.g.
                # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
                # and expanded_e = x**2 + x - 2; the test is
                # whether a given value of x satisfies
                # x**2 + x - 2 < 0
                #
                # expanded_e, expr and gen used from enclosing scope
                v = expanded_e.subs(gen, expand_mul(x))
                try:
                    r = expr.func(v, 0)
                except TypeError:
                    r = S.false
                if r in (S.true, S.false):
                    return r
                if v.is_extended_real is False:
                    return S.false
                else:
                    v = v.n(2)
                    if v.is_comparable:
                        return expr.func(v, 0)
                    # not comparable or couldn't be evaluated
                    raise NotImplementedError(
                        'relationship did not evaluate: %s' % r)

            singularities = []
            for d in denoms(expr, gen):
                singularities.extend(solvify(d, gen, domain))
            if not continuous:
                domain = continuous_domain(expanded_e, gen, domain)

            include_x = '=' in expr.rel_op and expr.rel_op != '!='

            try:
                discontinuities = set(domain.boundary -
                    FiniteSet(domain.inf, domain.sup))
                # remove points that are not between inf and sup of domain
                critical_points = FiniteSet(*(solns + singularities + list(
                    discontinuities))).intersection(
                    Interval(domain.inf, domain.sup,
                    domain.inf not in domain, domain.sup not in domain))
                if all(r.is_number for r in critical_points):
                    reals = _nsort(critical_points, separated=True)[0]
                else:
                    sifted = sift(critical_points, lambda x: x.is_extended_real)
                    if sifted[None]:
                        # there were some roots that weren't known
                        # to be real
                        raise NotImplementedError
                    try:
                        reals = sifted[True]
                        if len(reals) > 1:
                            reals = sorted(reals)
                    except TypeError:
                        raise NotImplementedError
            except NotImplementedError:
                raise NotImplementedError('sorting of these roots is not supported')

            # If expr contains imaginary coefficients, only take real
            # values of x for which the imaginary part is 0
            make_real = S.Reals
            if (coeffI := expanded_e.coeff(S.ImaginaryUnit)) != S.Zero:
                check = True
                im_sol = FiniteSet()
                try:
                    a = solveset(coeffI, gen, domain)
                    if not isinstance(a, Interval):
                        for z in a:
                            if z not in singularities and valid(z) and z.is_extended_real:
                                im_sol += FiniteSet(z)
                    else:
                        start, end = a.inf, a.sup
                        for z in _nsort(critical_points + FiniteSet(end)):
                            valid_start = valid(start)
                            if start != end:
                                valid_z = valid(z)
                                pt = _pt(start, z)
                                if pt not in singularities and pt.is_extended_real and valid(pt):
                                    if valid_start and valid_z:
                                        im_sol += Interval(start, z)
                                    elif valid_start:
                                        im_sol += Interval.Ropen(start, z)
                                    elif valid_z:
                                        im_sol += Interval.Lopen(start, z)
                                    else:
                                        im_sol += Interval.open(start, z)
                            start = z
                        for s in singularities:
                            im_sol -= FiniteSet(s)
                except (TypeError):
                    im_sol = S.Reals
                    check = False

                if im_sol is S.EmptySet:
                    raise ValueError(filldedent('''
                        %s contains imaginary parts which cannot be
                        made 0 for any value of %s satisfying the
                        inequality, leading to relations like I < 0.
                        '''  % (expr.subs(gen, _gen), _gen)))

                make_real = make_real.intersect(im_sol)

            sol_sets = [S.EmptySet]

            start = domain.inf
            if start in domain and valid(start) and start.is_finite:
                sol_sets.append(FiniteSet(start))

            for x in reals:
                end = x

                if valid(_pt(start, end)):
                    sol_sets.append(Interval(start, end, True, True))

                if x in singularities:
                    singularities.remove(x)
                else:
                    if x in discontinuities:
                        discontinuities.remove(x)
                        _valid = valid(x)
                    else:  # it's a solution
                        _valid = include_x
                    if _valid:
                        sol_sets.append(FiniteSet(x))

                start = end

            end = domain.sup
            if end in domain and valid(end) and end.is_finite:
                sol_sets.append(FiniteSet(end))

            if valid(_pt(start, end)):
                sol_sets.append(Interval.open(start, end))

            if coeffI != S.Zero and check:
                rv = (make_real).intersect(_domain)
            else:
                rv = Intersection(
                    (Union(*sol_sets)), make_real, _domain).subs(gen, _gen)

    return rv if not relational else rv.as_relational(_gen)


def _pt(start, end):
    """Return a point between start and end"""
    if not start.is_infinite and not end.is_infinite:
        pt = (start + end)/2
    elif start.is_infinite and end.is_infinite:
        pt = S.Zero
    else:
        if (start.is_infinite and start.is_extended_positive is None or
                end.is_infinite and end.is_extended_positive is None):
            raise ValueError('cannot proceed with unsigned infinite values')
        if (end.is_infinite and end.is_extended_negative or
                start.is_infinite and start.is_extended_positive):
            start, end = end, start
        # if possible, use a multiple of self which has
        # better behavior when checking assumptions than
        # an expression obtained by adding or subtracting 1
        if end.is_infinite:
            if start.is_extended_positive:
                pt = start*2
            elif start.is_extended_negative:
                pt = start*S.Half
            else:
                pt = start + 1
        elif start.is_infinite:
            if end.is_extended_positive:
                pt = end*S.Half
            elif end.is_extended_negative:
                pt = end*2
            else:
                pt = end - 1
    return pt


def _solve_inequality(ie, s, linear=False):
    """Return the inequality with s isolated on the left, if possible.
    If the relationship is non-linear, a solution involving And or Or
    may be returned. False or True are returned if the relationship
    is never True or always True, respectively.

    If `linear` is True (default is False) an `s`-dependent expression
    will be isolated on the left, if possible
    but it will not be solved for `s` unless the expression is linear
    in `s`. Furthermore, only "safe" operations which do not change the
    sense of the relationship are applied: no division by an unsigned
    value is attempted unless the relationship involves Eq or Ne and
    no division by a value not known to be nonzero is ever attempted.

    Examples
    ========

    >>> from sympy import Eq, Symbol
    >>> from sympy.solvers.inequalities import _solve_inequality as f
    >>> from sympy.abc import x, y

    For linear expressions, the symbol can be isolated:

    >>> f(x - 2 < 0, x)
    x < 2
    >>> f(-x - 6 < x, x)
    x > -3

    Sometimes nonlinear relationships will be False

    >>> f(x**2 + 4 < 0, x)
    False

    Or they may involve more than one region of values:

    >>> f(x**2 - 4 < 0, x)
    (-2 < x) & (x < 2)

    To restrict the solution to a relational, set linear=True
    and only the x-dependent portion will be isolated on the left:

    >>> f(x**2 - 4 < 0, x, linear=True)
    x**2 < 4

    Division of only nonzero quantities is allowed, so x cannot
    be isolated by dividing by y:

    >>> y.is_nonzero is None  # it is unknown whether it is 0 or not
    True
    >>> f(x*y < 1, x)
    x*y < 1

    And while an equality (or inequality) still holds after dividing by a
    non-zero quantity

    >>> nz = Symbol('nz', nonzero=True)
    >>> f(Eq(x*nz, 1), x)
    Eq(x, 1/nz)

    the sign must be known for other inequalities involving > or <:

    >>> f(x*nz <= 1, x)
    nz*x <= 1
    >>> p = Symbol('p', positive=True)
    >>> f(x*p <= 1, x)
    x <= 1/p

    When there are denominators in the original expression that
    are removed by expansion, conditions for them will be returned
    as part of the result:

    >>> f(x < x*(2/x - 1), x)
    (x < 1) & Ne(x, 0)
    """
    from sympy.solvers.solvers import denoms
    if s not in ie.free_symbols:
        return ie
    if ie.rhs == s:
        ie = ie.reversed
    if ie.lhs == s and s not in ie.rhs.free_symbols:
        return ie

    def classify(ie, s, i):
        # return True or False if ie evaluates when substituting s with
        # i else None (if unevaluated) or NaN (when there is an error
        # in evaluating)
        try:
            v = ie.subs(s, i)
            if v is S.NaN:
                return v
            elif v not in (True, False):
                return
            return v
        except TypeError:
            return S.NaN

    rv = None
    oo = S.Infinity
    expr = ie.lhs - ie.rhs
    try:
        p = Poly(expr, s)
        if p.degree() == 0:
            rv = ie.func(p.as_expr(), 0)
        elif not linear and p.degree() > 1:
            # handle in except clause
            raise NotImplementedError
    except (PolynomialError, NotImplementedError):
        if not linear:
            try:
                rv = reduce_rational_inequalities([[ie]], s)
            except PolynomialError:
                rv = solve_univariate_inequality(ie, s)
            # remove restrictions wrt +/-oo that may have been
            # applied when using sets to simplify the relationship
            okoo = classify(ie, s, oo)
            if okoo is S.true and classify(rv, s, oo) is S.false:
                rv = rv.subs(s < oo, True)
            oknoo = classify(ie, s, -oo)
            if (oknoo is S.true and
                    classify(rv, s, -oo) is S.false):
                rv = rv.subs(-oo < s, True)
                rv = rv.subs(s > -oo, True)
            if rv is S.true:
                rv = (s <= oo) if okoo is S.true else (s < oo)
                if oknoo is not S.true:
                    rv = And(-oo < s, rv)
        else:
            p = Poly(expr)

    conds = []
    if rv is None:
        e = p.as_expr()  # this is in expanded form
        # Do a safe inversion of e, moving non-s terms
        # to the rhs and dividing by a nonzero factor if
        # the relational is Eq/Ne; for other relationals
        # the sign must also be positive or negative
        rhs = 0
        b, ax = e.as_independent(s, as_Add=True)
        e -= b
        rhs -= b
        ef = factor_terms(e)
        a, e = ef.as_independent(s, as_Add=False)
        if (a.is_zero != False or  # don't divide by potential 0
                a.is_negative ==
                a.is_positive is None and  # if sign is not known then
                ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
            e = ef
            a = S.One
        rhs /= a
        if a.is_positive:
            rv = ie.func(e, rhs)
        else:
            rv = ie.reversed.func(e, rhs)

        # return conditions under which the value is
        # valid, too.
        beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
        current_denoms = denoms(rv)
        for d in beginning_denoms - current_denoms:
            c = _solve_inequality(Eq(d, 0), s, linear=linear)
            if isinstance(c, Eq) and c.lhs == s:
                if classify(rv, s, c.rhs) is S.true:
                    # rv is permitting this value but it shouldn't
                    conds.append(~c)
        for i in (-oo, oo):
            if (classify(rv, s, i) is S.true and
                    classify(ie, s, i) is not S.true):
                conds.append(s < i if i is oo else i < s)

    conds.append(rv)
    return And(*conds)


def _reduce_inequalities(inequalities, symbols):
    # helper for reduce_inequalities

    poly_part, abs_part = {}, {}
    other = []

    for inequality in inequalities:

        expr, rel = inequality.lhs, inequality.rel_op  # rhs is 0

        # check for gens using atoms which is more strict than free_symbols to
        # guard against EX domain which won't be handled by
        # reduce_rational_inequalities
        gens = expr.atoms(Symbol)

        if len(gens) == 1:
            gen = gens.pop()
        else:
            common = expr.free_symbols & symbols
            if len(common) == 1:
                gen = common.pop()
                other.append(_solve_inequality(Relational(expr, 0, rel), gen))
                continue
            else:
                raise NotImplementedError(filldedent('''
                    inequality has more than one symbol of interest.
                    '''))

        if expr.is_polynomial(gen):
            poly_part.setdefault(gen, []).append((expr, rel))
        else:
            components = expr.find(lambda u:
                u.has(gen) and (
                u.is_Function or u.is_Pow and not u.exp.is_Integer))
            if components and all(isinstance(i, Abs) for i in components):
                abs_part.setdefault(gen, []).append((expr, rel))
            else:
                other.append(_solve_inequality(Relational(expr, 0, rel), gen))

    poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()]
    abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()]

    return And(*(poly_reduced + abs_reduced + other))


def reduce_inequalities(inequalities, symbols=[]):
    """Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    (-3 <= x) & (x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    (x < oo) & (x >= 1 - 2*y)
    """
    if not iterable(inequalities):
        inequalities = [inequalities]
    inequalities = [sympify(i) for i in inequalities]

    gens = set().union(*[i.free_symbols for i in inequalities])

    if not iterable(symbols):
        symbols = [symbols]
    symbols = (set(symbols) or gens) & gens
    if any(i.is_extended_real is False for i in symbols):
        raise TypeError(filldedent('''
            inequalities cannot contain symbols that are not real.
            '''))

    # make vanilla symbol real
    recast = {i: Dummy(i.name, extended_real=True)
        for i in gens if i.is_extended_real is None}
    inequalities = [i.xreplace(recast) for i in inequalities]
    symbols = {i.xreplace(recast) for i in symbols}

    # prefilter
    keep = []
    for i in inequalities:
        if isinstance(i, Relational):
            i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
        elif i not in (True, False):
            i = Eq(i, 0)
        if i == True:
            continue
        elif i == False:
            return S.false
        if i.lhs.is_number:
            raise NotImplementedError(
                "could not determine truth value of %s" % i)
        keep.append(i)
    inequalities = keep
    del keep

    # solve system
    rv = _reduce_inequalities(inequalities, symbols)

    # restore original symbols and return
    return rv.xreplace({v: k for k, v in recast.items()})