Spaces:
Sleeping
Sleeping
from itertools import product | |
from sympy.core.function import (Subs, count_ops, diff, expand) | |
from sympy.core.numbers import (E, I, Rational, pi) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan) | |
from sympy.functions.elementary.trigonometric import (acos, asin, atan2) | |
from sympy.functions.elementary.trigonometric import (asec, acsc) | |
from sympy.functions.elementary.trigonometric import (acot, atan) | |
from sympy.integrals.integrals import integrate | |
from sympy.matrices.dense import Matrix | |
from sympy.simplify.simplify import simplify | |
from sympy.simplify.trigsimp import (exptrigsimp, trigsimp) | |
from sympy.testing.pytest import XFAIL | |
from sympy.abc import x, y | |
def test_trigsimp1(): | |
x, y = symbols('x,y') | |
assert trigsimp(1 - sin(x)**2) == cos(x)**2 | |
assert trigsimp(1 - cos(x)**2) == sin(x)**2 | |
assert trigsimp(sin(x)**2 + cos(x)**2) == 1 | |
assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2 | |
assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2 | |
assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1 | |
assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2 | |
assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2 | |
assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1 | |
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5 | |
assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + Rational(7, 2) | |
assert trigsimp(sin(x)/cos(x)) == tan(x) | |
assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x) | |
assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3 | |
assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2 | |
assert trigsimp(cot(x)/cos(x)) == 1/sin(x) | |
assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y) | |
assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x) | |
assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y) | |
assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y) | |
assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \ | |
sin(y)/(-sin(y)*tan(x) + cos(y)) # -tan(y)/(tan(x)*tan(y) - 1) | |
assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y) | |
assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x) | |
assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y) | |
assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y) | |
assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \ | |
sinh(y)/(sinh(y)*tanh(x) + cosh(y)) | |
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1.0 | |
e = 2*sin(x)**2 + 2*cos(x)**2 | |
assert trigsimp(log(e)) == log(2) | |
def test_trigsimp1a(): | |
assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2) | |
assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2) | |
assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2) | |
assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2) | |
assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2) | |
assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2) | |
assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2) | |
assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2) | |
assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2) | |
assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2) | |
assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2) | |
assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2) | |
def test_trigsimp2(): | |
x, y = symbols('x,y') | |
assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2, | |
recursive=True) == 1 | |
assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2, | |
recursive=True) == 1 | |
assert trigsimp( | |
Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1) | |
def test_issue_4373(): | |
x = Symbol("x") | |
assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10 | |
def test_trigsimp3(): | |
x, y = symbols('x,y') | |
assert trigsimp(sin(x)/cos(x)) == tan(x) | |
assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2 | |
assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3 | |
assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10 | |
assert trigsimp(cos(x)/sin(x)) == 1/tan(x) | |
assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2 | |
assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10 | |
assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x)) | |
def test_issue_4661(): | |
a, x, y = symbols('a x y') | |
eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2 | |
assert trigsimp(eq) == -4 | |
n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6 | |
d = -sin(x)**2 - 2*cos(x)**2 | |
assert simplify(n/d) == -1 | |
assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1 | |
eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8 | |
assert trigsimp(eq) == 0 | |
def test_issue_4494(): | |
a, b = symbols('a b') | |
eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2 | |
assert trigsimp(eq) == 1 | |
def test_issue_5948(): | |
a, x, y = symbols('a x y') | |
assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \ | |
cos(x)/sin(x)**7 | |
def test_issue_4775(): | |
a, x, y = symbols('a x y') | |
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y) | |
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3 | |
def test_issue_4280(): | |
a, x, y = symbols('a x y') | |
assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1 | |
assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2 | |
assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2 | |
def test_issue_3210(): | |
eqs = (sin(2)*cos(3) + sin(3)*cos(2), | |
-sin(2)*sin(3) + cos(2)*cos(3), | |
sin(2)*cos(3) - sin(3)*cos(2), | |
sin(2)*sin(3) + cos(2)*cos(3), | |
sin(2)*sin(3) + cos(2)*cos(3) + cos(2), | |
sinh(2)*cosh(3) + sinh(3)*cosh(2), | |
sinh(2)*sinh(3) + cosh(2)*cosh(3), | |
) | |
assert [trigsimp(e) for e in eqs] == [ | |
sin(5), | |
cos(5), | |
-sin(1), | |
cos(1), | |
cos(1) + cos(2), | |
sinh(5), | |
cosh(5), | |
] | |
def test_trigsimp_issues(): | |
a, x, y = symbols('a x y') | |
# issue 4625 - factor_terms works, too | |
assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x) | |
# issue 5948 | |
assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \ | |
cos(x)/sin(x)**3 | |
assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \ | |
sin(x)/cos(x)**3 | |
# check integer exponents | |
e = sin(x)**y/cos(x)**y | |
assert trigsimp(e) == e | |
assert trigsimp(e.subs(y, 2)) == tan(x)**2 | |
assert trigsimp(e.subs(x, 1)) == tan(1)**y | |
# check for multiple patterns | |
assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \ | |
1/tan(x)**2/tan(y)**2 | |
assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \ | |
1/(tan(x)*tan(x + y)) | |
eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2 | |
assert trigsimp(eq) == eq.factor() # factor makes denom (-1 + cos(3))**2 | |
assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \ | |
cos(2)*sin(3)**4 | |
# issue 6789; this generates an expression that formerly caused | |
# trigsimp to hang | |
assert cot(x).equals(tan(x)) is False | |
# nan or the unchanged expression is ok, but not sin(1) | |
z = cos(x)**2 + sin(x)**2 - 1 | |
z1 = tan(x)**2 - 1/cot(x)**2 | |
n = (1 + z1/z) | |
assert trigsimp(sin(n)) != sin(1) | |
eq = x*(n - 1) - x*n | |
assert trigsimp(eq) is S.NaN | |
assert trigsimp(eq, recursive=True) is S.NaN | |
assert trigsimp(1).is_Integer | |
assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1 | |
def test_trigsimp_issue_2515(): | |
x = Symbol('x') | |
assert trigsimp(x*cos(x)*tan(x)) == x*sin(x) | |
assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0 | |
def test_trigsimp_issue_3826(): | |
assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x) | |
def test_trigsimp_issue_4032(): | |
n = Symbol('n', integer=True, positive=True) | |
assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \ | |
2**(n/2)*cos(pi*n/4)/2 + 2**n/4 | |
def test_trigsimp_issue_7761(): | |
assert trigsimp(cosh(pi/4)) == cosh(pi/4) | |
def test_trigsimp_noncommutative(): | |
x, y = symbols('x,y') | |
A, B = symbols('A,B', commutative=False) | |
assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2 | |
assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2 | |
assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A | |
assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2 | |
assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2 | |
assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A | |
assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2 | |
assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2 | |
assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A | |
assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A | |
assert trigsimp(A*sin(x)/cos(x)) == A*tan(x) | |
assert trigsimp(A*tan(x)*cos(x)) == A*sin(x) | |
assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3 | |
assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2 | |
assert trigsimp(A*cot(x)/cos(x)) == A/sin(x) | |
assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y) | |
assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x) | |
assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y) | |
assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y) | |
assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y) | |
assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x) | |
assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y) | |
assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y) | |
assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A | |
def test_hyperbolic_simp(): | |
x, y = symbols('x,y') | |
assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2 | |
assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2 | |
assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1 | |
assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2 | |
assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2 | |
assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1 | |
assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2 | |
assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2 | |
assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1 | |
assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5 | |
assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + Rational(7, 2) | |
assert trigsimp(sinh(x)/cosh(x)) == tanh(x) | |
assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x)) | |
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x) | |
assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x) | |
assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3 | |
assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2 | |
assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x) | |
for a in (pi/6*I, pi/4*I, pi/3*I): | |
assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a) | |
assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a) | |
e = 2*cosh(x)**2 - 2*sinh(x)**2 | |
assert trigsimp(log(e)) == log(2) | |
# issue 19535: | |
assert trigsimp(sqrt(cosh(x)**2 - 1)) == sqrt(sinh(x)**2) | |
assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2, | |
recursive=True) == 1 | |
assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2, | |
recursive=True) == 1 | |
assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10 | |
assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2 | |
assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3 | |
assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10 | |
assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3 | |
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x) | |
assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2 | |
assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10 | |
assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x) | |
assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0 | |
assert tan(x) != 1/cot(x) # cot doesn't auto-simplify | |
assert trigsimp(tan(x) - 1/cot(x)) == 0 | |
assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7 | |
def test_trigsimp_groebner(): | |
from sympy.simplify.trigsimp import trigsimp_groebner | |
c = cos(x) | |
s = sin(x) | |
ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/( | |
-s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21) | |
resnum = (5*s - 5*c + 1) | |
resdenom = (8*s - 6*c) | |
results = [resnum/resdenom, (-resnum)/(-resdenom)] | |
assert trigsimp_groebner(ex) in results | |
assert trigsimp_groebner(s/c, hints=[tan]) == tan(x) | |
assert trigsimp_groebner(c*s) == c*s | |
assert trigsimp((-s + 1)/c + c/(-s + 1), | |
method='groebner') == 2/c | |
assert trigsimp((-s + 1)/c + c/(-s + 1), | |
method='groebner', polynomial=True) == 2/c | |
# Test quick=False works | |
assert trigsimp_groebner(ex, hints=[2]) in results | |
assert trigsimp_groebner(ex, hints=[int(2)]) in results | |
# test "I" | |
assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x) | |
# test hyperbolic / sums | |
assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)), | |
hints=[(tanh, x, y)]) == tanh(x + y) | |
def test_issue_2827_trigsimp_methods(): | |
measure1 = lambda expr: len(str(expr)) | |
measure2 = lambda expr: -count_ops(expr) | |
# Return the most complicated result | |
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2) | |
ans = Matrix([1]) | |
M = Matrix([expr]) | |
assert trigsimp(M, method='fu', measure=measure1) == ans | |
assert trigsimp(M, method='fu', measure=measure2) != ans | |
# all methods should work with Basic expressions even if they | |
# aren't Expr | |
M = Matrix.eye(1) | |
assert all(trigsimp(M, method=m) == M for m in | |
'fu matching groebner old'.split()) | |
# watch for E in exptrigsimp, not only exp() | |
eq = 1/sqrt(E) + E | |
assert exptrigsimp(eq) == eq | |
def test_issue_15129_trigsimp_methods(): | |
t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0]) | |
t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0]) | |
t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0]) | |
r1 = t1.dot(t2) | |
r2 = t1.dot(t3) | |
assert trigsimp(r1) == cos(Rational(1, 50)) | |
assert trigsimp(r2) == sin(Rational(3, 50)) | |
def test_exptrigsimp(): | |
def valid(a, b): | |
from sympy.core.random import verify_numerically as tn | |
if not (tn(a, b) and a == b): | |
return False | |
return True | |
assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x) | |
assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x) | |
assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x) | |
assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x) | |
e = [cos(x) + I*sin(x), cos(x) - I*sin(x), | |
cosh(x) - sinh(x), cosh(x) + sinh(x)] | |
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)] | |
assert all(valid(i, j) for i, j in zip( | |
[exptrigsimp(ei) for ei in e], ok)) | |
ue = [cos(x) + sin(x), cos(x) - sin(x), | |
cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)] | |
assert [exptrigsimp(ei) == ei for ei in ue] | |
res = [] | |
ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)), | |
y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)), | |
y*tanh(1 + I), 1/(y*tanh(1 + I))] | |
for a in (1, I, x, I*x, 1 + I): | |
w = exp(a) | |
eq = y*(w - 1/w)/(w + 1/w) | |
res.append(simplify(eq)) | |
res.append(simplify(1/eq)) | |
assert all(valid(i, j) for i, j in zip(res, ok)) | |
for a in range(1, 3): | |
w = exp(a) | |
e = w + 1/w | |
s = simplify(e) | |
assert s == exptrigsimp(e) | |
assert valid(s, 2*cosh(a)) | |
e = w - 1/w | |
s = simplify(e) | |
assert s == exptrigsimp(e) | |
assert valid(s, 2*sinh(a)) | |
def test_exptrigsimp_noncommutative(): | |
a,b = symbols('a b', commutative=False) | |
x = Symbol('x', commutative=True) | |
assert exp(a + x) == exptrigsimp(exp(a)*exp(x)) | |
p = exp(a)*exp(b) - exp(b)*exp(a) | |
assert p == exptrigsimp(p) != 0 | |
def test_powsimp_on_numbers(): | |
assert 2**(Rational(1, 3) - 2) == 2**Rational(1, 3)/4 | |
def test_issue_6811_fail(): | |
# from doc/src/modules/physics/mechanics/examples.rst, the current `eq` | |
# at Line 576 (in different variables) was formerly the equivalent and | |
# shorter expression given below...it would be nice to get the short one | |
# back again | |
xp, y, x, z = symbols('xp, y, x, z') | |
eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x)) | |
assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x) | |
def test_Piecewise(): | |
e1 = x*(x + y) - y*(x + y) | |
e2 = sin(x)**2 + cos(x)**2 | |
e3 = expand((x + y)*y/x) | |
# s1 = simplify(e1) | |
s2 = simplify(e2) | |
# s3 = simplify(e3) | |
# trigsimp tries not to touch non-trig containing args | |
assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \ | |
Piecewise((e1, e3 < s2), (e3, True)) | |
def test_issue_21594(): | |
assert simplify(exp(Rational(1,2)) + exp(Rational(-1,2))) == cosh(S.Half)*2 | |
def test_trigsimp_old(): | |
x, y = symbols('x,y') | |
assert trigsimp(1 - sin(x)**2, old=True) == cos(x)**2 | |
assert trigsimp(1 - cos(x)**2, old=True) == sin(x)**2 | |
assert trigsimp(sin(x)**2 + cos(x)**2, old=True) == 1 | |
assert trigsimp(1 + tan(x)**2, old=True) == 1/cos(x)**2 | |
assert trigsimp(1/cos(x)**2 - 1, old=True) == tan(x)**2 | |
assert trigsimp(1/cos(x)**2 - tan(x)**2, old=True) == 1 | |
assert trigsimp(1 + cot(x)**2, old=True) == 1/sin(x)**2 | |
assert trigsimp(1/sin(x)**2 - cot(x)**2, old=True) == 1 | |
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2, old=True) == 5 | |
assert trigsimp(sin(x)/cos(x), old=True) == tan(x) | |
assert trigsimp(2*tan(x)*cos(x), old=True) == 2*sin(x) | |
assert trigsimp(cot(x)**3*sin(x)**3, old=True) == cos(x)**3 | |
assert trigsimp(y*tan(x)**2/sin(x)**2, old=True) == y/cos(x)**2 | |
assert trigsimp(cot(x)/cos(x), old=True) == 1/sin(x) | |
assert trigsimp(sin(x + y) + sin(x - y), old=True) == 2*sin(x)*cos(y) | |
assert trigsimp(sin(x + y) - sin(x - y), old=True) == 2*sin(y)*cos(x) | |
assert trigsimp(cos(x + y) + cos(x - y), old=True) == 2*cos(x)*cos(y) | |
assert trigsimp(cos(x + y) - cos(x - y), old=True) == -2*sin(x)*sin(y) | |
assert trigsimp(sinh(x + y) + sinh(x - y), old=True) == 2*sinh(x)*cosh(y) | |
assert trigsimp(sinh(x + y) - sinh(x - y), old=True) == 2*sinh(y)*cosh(x) | |
assert trigsimp(cosh(x + y) + cosh(x - y), old=True) == 2*cosh(x)*cosh(y) | |
assert trigsimp(cosh(x + y) - cosh(x - y), old=True) == 2*sinh(x)*sinh(y) | |
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2, old=True) == 1.0 | |
assert trigsimp(sin(x)/cos(x), old=True, method='combined') == tan(x) | |
assert trigsimp(sin(x)/cos(x), old=True, method='groebner') == sin(x)/cos(x) | |
assert trigsimp(sin(x)/cos(x), old=True, method='groebner', hints=[tan]) == tan(x) | |
assert trigsimp(1-sin(sin(x)**2+cos(x)**2)**2, old=True, deep=True) == cos(1)**2 | |
def test_trigsimp_inverse(): | |
alpha = symbols('alpha') | |
s, c = sin(alpha), cos(alpha) | |
for finv in [asin, acos, asec, acsc, atan, acot]: | |
f = finv.inverse(None) | |
assert alpha == trigsimp(finv(f(alpha)), inverse=True) | |
# test atan2(cos, sin), atan2(sin, cos), etc... | |
for a, b in [[c, s], [s, c]]: | |
for i, j in product([-1, 1], repeat=2): | |
angle = atan2(i*b, j*a) | |
angle_inverted = trigsimp(angle, inverse=True) | |
assert angle_inverted != angle # assures simplification happened | |
assert sin(angle_inverted) == trigsimp(sin(angle)) | |
assert cos(angle_inverted) == trigsimp(cos(angle)) | |