File size: 19,949 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
from itertools import product
from sympy.core.function import (Subs, count_ops, diff, expand)
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
from sympy.functions.elementary.trigonometric import (asec, acsc)
from sympy.functions.elementary.trigonometric import (acot, atan)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import (exptrigsimp, trigsimp)

from sympy.testing.pytest import XFAIL

from sympy.abc import x, y



def test_trigsimp1():
    x, y = symbols('x,y')

    assert trigsimp(1 - sin(x)**2) == cos(x)**2
    assert trigsimp(1 - cos(x)**2) == sin(x)**2
    assert trigsimp(sin(x)**2 + cos(x)**2) == 1
    assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
    assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
    assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
    assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
    assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2
    assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1

    assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
    assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + Rational(7, 2)

    assert trigsimp(sin(x)/cos(x)) == tan(x)
    assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
    assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
    assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
    assert trigsimp(cot(x)/cos(x)) == 1/sin(x)

    assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
    assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
    assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
    assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
    assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \
        sin(y)/(-sin(y)*tan(x) + cos(y))  # -tan(y)/(tan(x)*tan(y) - 1)

    assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
    assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
    assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
    assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
    assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \
        sinh(y)/(sinh(y)*tanh(x) + cosh(y))

    assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1.0
    e = 2*sin(x)**2 + 2*cos(x)**2
    assert trigsimp(log(e)) == log(2)


def test_trigsimp1a():
    assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2)
    assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2)
    assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2)
    assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2)
    assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2)
    assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2)
    assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2)
    assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2)
    assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2)
    assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2)
    assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2)
    assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2)


def test_trigsimp2():
    x, y = symbols('x,y')
    assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
            recursive=True) == 1
    assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
            recursive=True) == 1
    assert trigsimp(
        Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)


def test_issue_4373():
    x = Symbol("x")
    assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10


def test_trigsimp3():
    x, y = symbols('x,y')
    assert trigsimp(sin(x)/cos(x)) == tan(x)
    assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
    assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
    assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10

    assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
    assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
    assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10

    assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))


def test_issue_4661():
    a, x, y = symbols('a x y')
    eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
    assert trigsimp(eq) == -4
    n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
    d = -sin(x)**2 - 2*cos(x)**2
    assert simplify(n/d) == -1
    assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
    eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
    assert trigsimp(eq) == 0


def test_issue_4494():
    a, b = symbols('a b')
    eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2
    assert trigsimp(eq) == 1


def test_issue_5948():
    a, x, y = symbols('a x y')
    assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \
           cos(x)/sin(x)**7


def test_issue_4775():
    a, x, y = symbols('a x y')
    assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y)
    assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3


def test_issue_4280():
    a, x, y = symbols('a x y')
    assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1
    assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2
    assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2


def test_issue_3210():
    eqs = (sin(2)*cos(3) + sin(3)*cos(2),
        -sin(2)*sin(3) + cos(2)*cos(3),
        sin(2)*cos(3) - sin(3)*cos(2),
        sin(2)*sin(3) + cos(2)*cos(3),
        sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
        sinh(2)*cosh(3) + sinh(3)*cosh(2),
        sinh(2)*sinh(3) + cosh(2)*cosh(3),
        )
    assert [trigsimp(e) for e in eqs] == [
        sin(5),
        cos(5),
        -sin(1),
        cos(1),
        cos(1) + cos(2),
        sinh(5),
        cosh(5),
        ]


def test_trigsimp_issues():
    a, x, y = symbols('a x y')

    # issue 4625 - factor_terms works, too
    assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x)

    # issue 5948
    assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \
        cos(x)/sin(x)**3
    assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \
        sin(x)/cos(x)**3

    # check integer exponents
    e = sin(x)**y/cos(x)**y
    assert trigsimp(e) == e
    assert trigsimp(e.subs(y, 2)) == tan(x)**2
    assert trigsimp(e.subs(x, 1)) == tan(1)**y

    # check for multiple patterns
    assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \
        1/tan(x)**2/tan(y)**2
    assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \
        1/(tan(x)*tan(x + y))

    eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2
    assert trigsimp(eq) == eq.factor()  # factor makes denom (-1 + cos(3))**2
    assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \
        cos(2)*sin(3)**4

    # issue 6789; this generates an expression that formerly caused
    # trigsimp to hang
    assert cot(x).equals(tan(x)) is False

    # nan or the unchanged expression is ok, but not sin(1)
    z = cos(x)**2 + sin(x)**2 - 1
    z1 = tan(x)**2 - 1/cot(x)**2
    n = (1 + z1/z)
    assert trigsimp(sin(n)) != sin(1)
    eq = x*(n - 1) - x*n
    assert trigsimp(eq) is S.NaN
    assert trigsimp(eq, recursive=True) is S.NaN
    assert trigsimp(1).is_Integer

    assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1


def test_trigsimp_issue_2515():
    x = Symbol('x')
    assert trigsimp(x*cos(x)*tan(x)) == x*sin(x)
    assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0


def test_trigsimp_issue_3826():
    assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x)


def test_trigsimp_issue_4032():
    n = Symbol('n', integer=True, positive=True)
    assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \
        2**(n/2)*cos(pi*n/4)/2 + 2**n/4


def test_trigsimp_issue_7761():
    assert trigsimp(cosh(pi/4)) == cosh(pi/4)


def test_trigsimp_noncommutative():
    x, y = symbols('x,y')
    A, B = symbols('A,B', commutative=False)

    assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2
    assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2
    assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
    assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2
    assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2
    assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A
    assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2
    assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2
    assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A

    assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A

    assert trigsimp(A*sin(x)/cos(x)) == A*tan(x)
    assert trigsimp(A*tan(x)*cos(x)) == A*sin(x)
    assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3
    assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2
    assert trigsimp(A*cot(x)/cos(x)) == A/sin(x)

    assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y)
    assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x)
    assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y)
    assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y)

    assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y)
    assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x)
    assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y)
    assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y)

    assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A


def test_hyperbolic_simp():
    x, y = symbols('x,y')

    assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2
    assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2
    assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1
    assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2
    assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2
    assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1
    assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2
    assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2
    assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1

    assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5
    assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + Rational(7, 2)

    assert trigsimp(sinh(x)/cosh(x)) == tanh(x)
    assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x))
    assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
    assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x)
    assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3
    assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2
    assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x)

    for a in (pi/6*I, pi/4*I, pi/3*I):
        assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a)
        assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a)

    e = 2*cosh(x)**2 - 2*sinh(x)**2
    assert trigsimp(log(e)) == log(2)

    # issue 19535:
    assert trigsimp(sqrt(cosh(x)**2 - 1)) == sqrt(sinh(x)**2)

    assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2,
            recursive=True) == 1
    assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2,
            recursive=True) == 1

    assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10

    assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2
    assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3
    assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10
    assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3

    assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
    assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2
    assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10

    assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x)
    assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0

    assert tan(x) != 1/cot(x)  # cot doesn't auto-simplify

    assert trigsimp(tan(x) - 1/cot(x)) == 0
    assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7


def test_trigsimp_groebner():
    from sympy.simplify.trigsimp import trigsimp_groebner

    c = cos(x)
    s = sin(x)
    ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
        -s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
    resnum = (5*s - 5*c + 1)
    resdenom = (8*s - 6*c)
    results = [resnum/resdenom, (-resnum)/(-resdenom)]
    assert trigsimp_groebner(ex) in results
    assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
    assert trigsimp_groebner(c*s) == c*s
    assert trigsimp((-s + 1)/c + c/(-s + 1),
                    method='groebner') == 2/c
    assert trigsimp((-s + 1)/c + c/(-s + 1),
                    method='groebner', polynomial=True) == 2/c

    # Test quick=False works
    assert trigsimp_groebner(ex, hints=[2]) in results
    assert trigsimp_groebner(ex, hints=[int(2)]) in results

    # test "I"
    assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)

    # test hyperbolic / sums
    assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
                             hints=[(tanh, x, y)]) == tanh(x + y)


def test_issue_2827_trigsimp_methods():
    measure1 = lambda expr: len(str(expr))
    measure2 = lambda expr: -count_ops(expr)
                                       # Return the most complicated result
    expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
    ans = Matrix([1])
    M = Matrix([expr])
    assert trigsimp(M, method='fu', measure=measure1) == ans
    assert trigsimp(M, method='fu', measure=measure2) != ans
    # all methods should work with Basic expressions even if they
    # aren't Expr
    M = Matrix.eye(1)
    assert all(trigsimp(M, method=m) == M for m in
        'fu matching groebner old'.split())
    # watch for E in exptrigsimp, not only exp()
    eq = 1/sqrt(E) + E
    assert exptrigsimp(eq) == eq

def test_issue_15129_trigsimp_methods():
    t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
    t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
    t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
    r1 = t1.dot(t2)
    r2 = t1.dot(t3)
    assert trigsimp(r1) == cos(Rational(1, 50))
    assert trigsimp(r2) == sin(Rational(3, 50))

def test_exptrigsimp():
    def valid(a, b):
        from sympy.core.random import verify_numerically as tn
        if not (tn(a, b) and a == b):
            return False
        return True

    assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
    assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
    assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x)
    assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x)
    e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
         cosh(x) - sinh(x), cosh(x) + sinh(x)]
    ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
    assert all(valid(i, j) for i, j in zip(
        [exptrigsimp(ei) for ei in e], ok))

    ue = [cos(x) + sin(x), cos(x) - sin(x),
          cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
    assert [exptrigsimp(ei) == ei for ei in ue]

    res = []
    ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
        y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
        y*tanh(1 + I), 1/(y*tanh(1 + I))]
    for a in (1, I, x, I*x, 1 + I):
        w = exp(a)
        eq = y*(w - 1/w)/(w + 1/w)
        res.append(simplify(eq))
        res.append(simplify(1/eq))
    assert all(valid(i, j) for i, j in zip(res, ok))

    for a in range(1, 3):
        w = exp(a)
        e = w + 1/w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2*cosh(a))
        e = w - 1/w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2*sinh(a))

def test_exptrigsimp_noncommutative():
    a,b = symbols('a b', commutative=False)
    x = Symbol('x', commutative=True)
    assert exp(a + x) == exptrigsimp(exp(a)*exp(x))
    p = exp(a)*exp(b) - exp(b)*exp(a)
    assert p == exptrigsimp(p) != 0

def test_powsimp_on_numbers():
    assert 2**(Rational(1, 3) - 2) == 2**Rational(1, 3)/4


@XFAIL
def test_issue_6811_fail():
    # from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
    # at Line 576 (in different variables) was formerly the equivalent and
    # shorter expression given below...it would be nice to get the short one
    # back again
    xp, y, x, z = symbols('xp, y, x, z')
    eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
    assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)


def test_Piecewise():
    e1 = x*(x + y) - y*(x + y)
    e2 = sin(x)**2 + cos(x)**2
    e3 = expand((x + y)*y/x)
    # s1 = simplify(e1)
    s2 = simplify(e2)
    # s3 = simplify(e3)

    # trigsimp tries not to touch non-trig containing args
    assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \
        Piecewise((e1, e3 < s2), (e3, True))


def test_issue_21594():
    assert simplify(exp(Rational(1,2)) + exp(Rational(-1,2))) == cosh(S.Half)*2


def test_trigsimp_old():
    x, y = symbols('x,y')

    assert trigsimp(1 - sin(x)**2, old=True) == cos(x)**2
    assert trigsimp(1 - cos(x)**2, old=True) == sin(x)**2
    assert trigsimp(sin(x)**2 + cos(x)**2, old=True) == 1
    assert trigsimp(1 + tan(x)**2, old=True) == 1/cos(x)**2
    assert trigsimp(1/cos(x)**2 - 1, old=True) == tan(x)**2
    assert trigsimp(1/cos(x)**2 - tan(x)**2, old=True) == 1
    assert trigsimp(1 + cot(x)**2, old=True) == 1/sin(x)**2
    assert trigsimp(1/sin(x)**2 - cot(x)**2, old=True) == 1

    assert trigsimp(5*cos(x)**2 + 5*sin(x)**2, old=True) == 5

    assert trigsimp(sin(x)/cos(x), old=True) == tan(x)
    assert trigsimp(2*tan(x)*cos(x), old=True) == 2*sin(x)
    assert trigsimp(cot(x)**3*sin(x)**3, old=True) == cos(x)**3
    assert trigsimp(y*tan(x)**2/sin(x)**2, old=True) == y/cos(x)**2
    assert trigsimp(cot(x)/cos(x), old=True) == 1/sin(x)

    assert trigsimp(sin(x + y) + sin(x - y), old=True) == 2*sin(x)*cos(y)
    assert trigsimp(sin(x + y) - sin(x - y), old=True) == 2*sin(y)*cos(x)
    assert trigsimp(cos(x + y) + cos(x - y), old=True) == 2*cos(x)*cos(y)
    assert trigsimp(cos(x + y) - cos(x - y), old=True) == -2*sin(x)*sin(y)

    assert trigsimp(sinh(x + y) + sinh(x - y), old=True) == 2*sinh(x)*cosh(y)
    assert trigsimp(sinh(x + y) - sinh(x - y), old=True) == 2*sinh(y)*cosh(x)
    assert trigsimp(cosh(x + y) + cosh(x - y), old=True) == 2*cosh(x)*cosh(y)
    assert trigsimp(cosh(x + y) - cosh(x - y), old=True) == 2*sinh(x)*sinh(y)

    assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2, old=True) == 1.0

    assert trigsimp(sin(x)/cos(x), old=True, method='combined') == tan(x)
    assert trigsimp(sin(x)/cos(x), old=True, method='groebner') == sin(x)/cos(x)
    assert trigsimp(sin(x)/cos(x), old=True, method='groebner', hints=[tan]) == tan(x)

    assert trigsimp(1-sin(sin(x)**2+cos(x)**2)**2, old=True, deep=True) == cos(1)**2


def test_trigsimp_inverse():
    alpha = symbols('alpha')
    s, c = sin(alpha), cos(alpha)

    for finv in [asin, acos, asec, acsc, atan, acot]:
        f = finv.inverse(None)
        assert alpha == trigsimp(finv(f(alpha)), inverse=True)

    # test atan2(cos, sin), atan2(sin, cos), etc...
    for a, b in [[c, s], [s, c]]:
        for i, j in product([-1, 1], repeat=2):
            angle = atan2(i*b, j*a)
            angle_inverted = trigsimp(angle, inverse=True)
            assert angle_inverted != angle  # assures simplification happened
            assert sin(angle_inverted) == trigsimp(sin(angle))
            assert cos(angle_inverted) == trigsimp(cos(angle))