Spaces:
Sleeping
Sleeping
from sympy.concrete.summations import Sum | |
from sympy.core.add import Add | |
from sympy.core.containers import TupleKind | |
from sympy.core.function import Lambda | |
from sympy.core.kind import NumberKind, UndefinedKind | |
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo) | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.core.sympify import sympify | |
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.logic.boolalg import (false, true) | |
from sympy.matrices.kind import MatrixKind | |
from sympy.matrices.dense import Matrix | |
from sympy.polys.rootoftools import rootof | |
from sympy.sets.contains import Contains | |
from sympy.sets.fancysets import (ImageSet, Range) | |
from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind) | |
from mpmath import mpi | |
from sympy.core.expr import unchanged | |
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan | |
from sympy.logic import And, Or, Xor | |
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy | |
from sympy.utilities.iterables import cartes | |
from sympy.abc import x, y, z, m, n | |
EmptySet = S.EmptySet | |
def test_imageset(): | |
ints = S.Integers | |
assert imageset(x, x - 1, S.Naturals) is S.Naturals0 | |
assert imageset(x, x + 1, S.Naturals0) is S.Naturals | |
assert imageset(x, abs(x), S.Naturals0) is S.Naturals0 | |
assert imageset(x, abs(x), S.Naturals) is S.Naturals | |
assert imageset(x, abs(x), S.Integers) is S.Naturals0 | |
# issue 16878a | |
r = symbols('r', real=True) | |
assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None | |
assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False | |
assert (r, r) in imageset(x, (x, x), S.Reals) | |
assert 1 + I in imageset(x, x + I, S.Reals) | |
assert {1} not in imageset(x, (x,), S.Reals) | |
assert (1, 1) not in imageset(x, (x,), S.Reals) | |
raises(TypeError, lambda: imageset(x, ints)) | |
raises(ValueError, lambda: imageset(x, y, z, ints)) | |
raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y)) | |
assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints) | |
raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints)) | |
assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints) | |
def f(x): | |
return cos(x) | |
assert imageset(f, ints) == imageset(x, cos(x), ints) | |
f = lambda x: cos(x) | |
assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints) | |
assert imageset(x, 1, ints) == FiniteSet(1) | |
assert imageset(x, y, ints) == {y} | |
assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)} | |
clash = Symbol('x', integer=true) | |
assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr) | |
in ('x0 + x', 'x + x0')) | |
x1, x2 = symbols("x1, x2") | |
assert imageset(lambda x, y: | |
Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq( | |
ImageSet(Lambda((x1, x2), x1 + x2), | |
Interval(1, 2), Interval(2, 3))) | |
def test_is_empty(): | |
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, | |
S.UniversalSet]: | |
assert s.is_empty is False | |
assert S.EmptySet.is_empty is True | |
def test_is_finiteset(): | |
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, | |
S.UniversalSet]: | |
assert s.is_finite_set is False | |
assert S.EmptySet.is_finite_set is True | |
assert FiniteSet(1, 2).is_finite_set is True | |
assert Interval(1, 2).is_finite_set is False | |
assert Interval(x, y).is_finite_set is None | |
assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True | |
assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False | |
assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None | |
assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False | |
assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False | |
assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True | |
assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None | |
assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True | |
assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None | |
assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True | |
assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True | |
assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None | |
assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False | |
assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False | |
assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True | |
def test_deprecated_is_EmptySet(): | |
with warns_deprecated_sympy(): | |
S.EmptySet.is_EmptySet | |
with warns_deprecated_sympy(): | |
FiniteSet(1).is_EmptySet | |
def test_interval_arguments(): | |
assert Interval(0, oo) == Interval(0, oo, False, True) | |
assert Interval(0, oo).right_open is true | |
assert Interval(-oo, 0) == Interval(-oo, 0, True, False) | |
assert Interval(-oo, 0).left_open is true | |
assert Interval(oo, -oo) == S.EmptySet | |
assert Interval(oo, oo) == S.EmptySet | |
assert Interval(-oo, -oo) == S.EmptySet | |
assert Interval(oo, x) == S.EmptySet | |
assert Interval(oo, oo) == S.EmptySet | |
assert Interval(x, -oo) == S.EmptySet | |
assert Interval(x, x) == {x} | |
assert isinstance(Interval(1, 1), FiniteSet) | |
e = Sum(x, (x, 1, 3)) | |
assert isinstance(Interval(e, e), FiniteSet) | |
assert Interval(1, 0) == S.EmptySet | |
assert Interval(1, 1).measure == 0 | |
assert Interval(1, 1, False, True) == S.EmptySet | |
assert Interval(1, 1, True, False) == S.EmptySet | |
assert Interval(1, 1, True, True) == S.EmptySet | |
assert isinstance(Interval(0, Symbol('a')), Interval) | |
assert Interval(Symbol('a', positive=True), 0) == S.EmptySet | |
raises(ValueError, lambda: Interval(0, S.ImaginaryUnit)) | |
raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False))) | |
raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit)) | |
raises(NotImplementedError, lambda: Interval(0, 1, And(x, y))) | |
raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y))) | |
raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y))) | |
def test_interval_symbolic_end_points(): | |
a = Symbol('a', real=True) | |
assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3) | |
assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a) | |
assert Interval(0, a).contains(1) == LessThan(1, a) | |
def test_interval_is_empty(): | |
x, y = symbols('x, y') | |
r = Symbol('r', real=True) | |
p = Symbol('p', positive=True) | |
n = Symbol('n', negative=True) | |
nn = Symbol('nn', nonnegative=True) | |
assert Interval(1, 2).is_empty == False | |
assert Interval(3, 3).is_empty == False # FiniteSet | |
assert Interval(r, r).is_empty == False # FiniteSet | |
assert Interval(r, r + nn).is_empty == False | |
assert Interval(x, x).is_empty == False | |
assert Interval(1, oo).is_empty == False | |
assert Interval(-oo, oo).is_empty == False | |
assert Interval(-oo, 1).is_empty == False | |
assert Interval(x, y).is_empty == None | |
assert Interval(r, oo).is_empty == False # real implies finite | |
assert Interval(n, 0).is_empty == False | |
assert Interval(n, 0, left_open=True).is_empty == False | |
assert Interval(p, 0).is_empty == True # EmptySet | |
assert Interval(nn, 0).is_empty == None | |
assert Interval(n, p).is_empty == False | |
assert Interval(0, p, left_open=True).is_empty == False | |
assert Interval(0, p, right_open=True).is_empty == False | |
assert Interval(0, nn, left_open=True).is_empty == None | |
assert Interval(0, nn, right_open=True).is_empty == None | |
def test_union(): | |
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3) | |
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3) | |
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4) | |
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3) | |
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3) | |
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \ | |
Interval(1, 3, False, True) | |
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3) | |
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3) | |
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \ | |
Interval(1, 3, True) | |
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \ | |
Interval(1, 3, True, True) | |
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \ | |
Interval(1, 3, True) | |
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3) | |
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \ | |
Interval(1, 3) | |
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \ | |
Interval(1, 3) | |
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2) | |
assert Union(S.EmptySet) == S.EmptySet | |
assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \ | |
Interval(0, 1) | |
# issue #18241: | |
x = Symbol('x') | |
assert Union(Interval(0, 1), FiniteSet(1, x)) == Union( | |
Interval(0, 1), FiniteSet(x)) | |
assert unchanged(Union, Interval(0, 1), FiniteSet(2, x)) | |
assert Interval(1, 2).union(Interval(2, 3)) == \ | |
Interval(1, 2) + Interval(2, 3) | |
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3) | |
assert Union(Set()) == Set() | |
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3) | |
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs') | |
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3) | |
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3) | |
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4) | |
assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet | |
assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3) | |
x = Symbol("x") | |
y = Symbol("y") | |
z = Symbol("z") | |
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \ | |
FiniteSet(x, FiniteSet(y, z)) | |
# Test that Intervals and FiniteSets play nicely | |
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3) | |
assert Interval(1, 3, True, True) + FiniteSet(3) == \ | |
Interval(1, 3, True, False) | |
X = Interval(1, 3) + FiniteSet(5) | |
Y = Interval(1, 2) + FiniteSet(3) | |
XandY = X.intersect(Y) | |
assert 2 in X and 3 in X and 3 in XandY | |
assert XandY.is_subset(X) and XandY.is_subset(Y) | |
raises(TypeError, lambda: Union(1, 2, 3)) | |
assert X.is_iterable is False | |
# issue 7843 | |
assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \ | |
FiniteSet(-sqrt(-I), sqrt(-I)) | |
assert Union(S.Reals, S.Integers) == S.Reals | |
def test_union_iter(): | |
# Use Range because it is ordered | |
u = Union(Range(3), Range(5), Range(4), evaluate=False) | |
# Round robin | |
assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4] | |
def test_union_is_empty(): | |
assert (Interval(x, y) + FiniteSet(1)).is_empty == False | |
assert (Interval(x, y) + Interval(-x, y)).is_empty == None | |
def test_difference(): | |
assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True) | |
assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True) | |
assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True) | |
assert Interval(1, 3, True) - Interval(2, 3, True) == \ | |
Interval(1, 2, True, False) | |
assert Interval(0, 2) - FiniteSet(1) == \ | |
Union(Interval(0, 1, False, True), Interval(1, 2, True, False)) | |
# issue #18119 | |
assert S.Reals - FiniteSet(I) == S.Reals | |
assert S.Reals - FiniteSet(-I, I) == S.Reals | |
assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10) | |
assert Interval(0, 10) - FiniteSet(1, I) == Union( | |
Interval.Ropen(0, 1), Interval.Lopen(1, 10)) | |
assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement( | |
Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2), | |
evaluate=False) | |
assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3) | |
assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham') | |
assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \ | |
FiniteSet(1, 2) | |
assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4) | |
assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \ | |
Union(Interval(0, 1, False, True), FiniteSet(4)) | |
assert -1 in S.Reals - S.Naturals | |
def test_Complement(): | |
A = FiniteSet(1, 3, 4) | |
B = FiniteSet(3, 4) | |
C = Interval(1, 3) | |
D = Interval(1, 2) | |
assert Complement(A, B, evaluate=False).is_iterable is True | |
assert Complement(A, C, evaluate=False).is_iterable is True | |
assert Complement(C, D, evaluate=False).is_iterable is None | |
assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1) | |
assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4) | |
raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False))) | |
assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True) | |
assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1) | |
assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)), | |
Interval(1, 3)) == \ | |
Union(Interval(0, 1, False, True), FiniteSet(4)) | |
assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False) | |
assert -1 in Complement(S.Reals, S.Naturals, evaluate=False) | |
assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False) | |
assert Complement(S.Integers, S.UniversalSet) == EmptySet | |
assert S.UniversalSet.complement(S.Integers) == EmptySet | |
assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0))) | |
assert S.EmptySet - S.Integers == S.EmptySet | |
assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1) | |
assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \ | |
Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi)) | |
# issue 12712 | |
assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \ | |
Complement(FiniteSet(x, y), Interval(-10, 10)) | |
A = FiniteSet(*symbols('a:c')) | |
B = FiniteSet(*symbols('d:f')) | |
assert unchanged(Complement, ProductSet(A, A), B) | |
A2 = ProductSet(A, A) | |
B3 = ProductSet(B, B, B) | |
assert A2 - B3 == A2 | |
assert B3 - A2 == B3 | |
def test_set_operations_nonsets(): | |
'''Tests that e.g. FiniteSet(1) * 2 raises TypeError''' | |
ops = [ | |
lambda a, b: a + b, | |
lambda a, b: a - b, | |
lambda a, b: a * b, | |
lambda a, b: a / b, | |
lambda a, b: a // b, | |
lambda a, b: a | b, | |
lambda a, b: a & b, | |
lambda a, b: a ^ b, | |
# FiniteSet(1) ** 2 gives a ProductSet | |
#lambda a, b: a ** b, | |
] | |
Sx = FiniteSet(x) | |
Sy = FiniteSet(y) | |
sets = [ | |
{1}, | |
FiniteSet(1), | |
Interval(1, 2), | |
Union(Sx, Interval(1, 2)), | |
Intersection(Sx, Sy), | |
Complement(Sx, Sy), | |
ProductSet(Sx, Sy), | |
S.EmptySet, | |
] | |
nums = [0, 1, 2, S(0), S(1), S(2)] | |
for si in sets: | |
for ni in nums: | |
for op in ops: | |
raises(TypeError, lambda : op(si, ni)) | |
raises(TypeError, lambda : op(ni, si)) | |
raises(TypeError, lambda: si ** object()) | |
raises(TypeError, lambda: si ** {1}) | |
def test_complement(): | |
assert Complement({1, 2}, {1}) == {2} | |
assert Interval(0, 1).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True)) | |
assert Interval(0, 1, True, False).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True)) | |
assert Interval(0, 1, False, True).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True)) | |
assert Interval(0, 1, True, True).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True)) | |
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet | |
assert S.UniversalSet.complement(S.Reals) == S.EmptySet | |
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet | |
assert S.EmptySet.complement(S.Reals) == S.Reals | |
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True), | |
Interval(3, oo, True, True)) | |
assert FiniteSet(0).complement(S.Reals) == \ | |
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True)) | |
assert (FiniteSet(5) + Interval(S.NegativeInfinity, | |
0)).complement(S.Reals) == \ | |
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True) | |
assert FiniteSet(1, 2, 3).complement(S.Reals) == \ | |
Interval(S.NegativeInfinity, 1, True, True) + \ | |
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\ | |
Interval(3, S.Infinity, True, True) | |
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x)) | |
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) + | |
Interval(0, oo, True, True) | |
, FiniteSet(x), evaluate=False) | |
square = Interval(0, 1) * Interval(0, 1) | |
notsquare = square.complement(S.Reals*S.Reals) | |
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) | |
assert not any( | |
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) | |
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)]) | |
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)]) | |
def test_intersect1(): | |
assert all(S.Integers.intersection(i) is i for i in | |
(S.Naturals, S.Naturals0)) | |
assert all(i.intersection(S.Integers) is i for i in | |
(S.Naturals, S.Naturals0)) | |
s = S.Naturals0 | |
assert S.Naturals.intersection(s) is S.Naturals | |
assert s.intersection(S.Naturals) is S.Naturals | |
x = Symbol('x') | |
assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2) | |
assert Interval(0, 2).intersect(Interval(1, 2, True)) == \ | |
Interval(1, 2, True) | |
assert Interval(0, 2, True).intersect(Interval(1, 2)) == \ | |
Interval(1, 2, False, False) | |
assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \ | |
Interval(1, 2, False, True) | |
assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \ | |
Union(Interval(0, 1), Interval(2, 2)) | |
assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2) | |
assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x) | |
assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \ | |
FiniteSet('ham') | |
assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet | |
assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3) | |
assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet | |
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \ | |
Union(Interval(1, 1), Interval(2, 2)) | |
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \ | |
Union(Interval(0, 1), Interval(2, 2)) | |
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \ | |
S.EmptySet | |
assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \ | |
S.EmptySet | |
assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \ | |
Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5))) | |
assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \ | |
Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False) | |
assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \ | |
Intersection({1, 2}, Interval(x, y), evaluate=False) | |
assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \ | |
Intersection({1, 2}, Interval(x, y), evaluate=False) | |
# XXX: Is the real=True necessary here? | |
# https://github.com/sympy/sympy/issues/17532 | |
m, n = symbols('m, n', real=True) | |
assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \ | |
FiniteSet(m) | |
# issue 8217 | |
assert Intersection(FiniteSet(x), FiniteSet(y)) == \ | |
Intersection(FiniteSet(x), FiniteSet(y), evaluate=False) | |
assert FiniteSet(x).intersect(S.Reals) == \ | |
Intersection(S.Reals, FiniteSet(x), evaluate=False) | |
# tests for the intersection alias | |
assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3) | |
assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet | |
assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \ | |
Union(Interval(1, 1), Interval(2, 2)) | |
# canonical boundary selected | |
a = sqrt(2*sqrt(6) + 5) | |
b = sqrt(2) + sqrt(3) | |
assert Interval(a, 4).intersection(Interval(b, 5)) == Interval(b, 4) | |
assert Interval(1, a).intersection(Interval(0, b)) == Interval(1, b) | |
def test_intersection_interval_float(): | |
# intersection of Intervals with mixed Rational/Float boundaries should | |
# lead to Float boundaries in all cases regardless of which Interval is | |
# open or closed. | |
typs = [ | |
(Interval, Interval, Interval), | |
(Interval, Interval.open, Interval.open), | |
(Interval, Interval.Lopen, Interval.Lopen), | |
(Interval, Interval.Ropen, Interval.Ropen), | |
(Interval.open, Interval.open, Interval.open), | |
(Interval.open, Interval.Lopen, Interval.open), | |
(Interval.open, Interval.Ropen, Interval.open), | |
(Interval.Lopen, Interval.Lopen, Interval.Lopen), | |
(Interval.Lopen, Interval.Ropen, Interval.open), | |
(Interval.Ropen, Interval.Ropen, Interval.Ropen), | |
] | |
as_float = lambda a1, a2: a2 if isinstance(a2, float) else a1 | |
for t1, t2, t3 in typs: | |
for t1i, t2i in [(t1, t2), (t2, t1)]: | |
for a1, a2, b1, b2 in cartes([2, 2.0], [2, 2.0], [3, 3.0], [3, 3.0]): | |
I1 = t1(a1, b1) | |
I2 = t2(a2, b2) | |
I3 = t3(as_float(a1, a2), as_float(b1, b2)) | |
assert I1.intersect(I2) == I3 | |
def test_intersection(): | |
# iterable | |
i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False) | |
assert i.is_iterable | |
assert set(i) == {S(2), S(3)} | |
# challenging intervals | |
x = Symbol('x', real=True) | |
i = Intersection(Interval(0, 3), Interval(x, 6)) | |
assert (5 in i) is False | |
raises(TypeError, lambda: 2 in i) | |
# Singleton special cases | |
assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet | |
assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x) | |
# Products | |
line = Interval(0, 5) | |
i = Intersection(line**2, line**3, evaluate=False) | |
assert (2, 2) not in i | |
assert (2, 2, 2) not in i | |
raises(TypeError, lambda: list(i)) | |
a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False) | |
assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals]) | |
assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet | |
# issue 12178 | |
assert Intersection() == S.UniversalSet | |
# issue 16987 | |
assert Intersection({1}, {1}, {x}) == Intersection({1}, {x}) | |
def test_issue_9623(): | |
n = Symbol('n') | |
a = S.Reals | |
b = Interval(0, oo) | |
c = FiniteSet(n) | |
assert Intersection(a, b, c) == Intersection(b, c) | |
assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet | |
def test_is_disjoint(): | |
assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False | |
assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True | |
def test_ProductSet__len__(): | |
A = FiniteSet(1, 2) | |
B = FiniteSet(1, 2, 3) | |
assert ProductSet(A).__len__() == 2 | |
assert ProductSet(A).__len__() is not S(2) | |
assert ProductSet(A, B).__len__() == 6 | |
assert ProductSet(A, B).__len__() is not S(6) | |
def test_ProductSet(): | |
# ProductSet is always a set of Tuples | |
assert ProductSet(S.Reals) == S.Reals ** 1 | |
assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2 | |
assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3 | |
assert ProductSet(S.Reals) != S.Reals | |
assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals | |
assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals | |
assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten() | |
assert 1 not in ProductSet(S.Reals) | |
assert (1,) in ProductSet(S.Reals) | |
assert 1 not in ProductSet(S.Reals, S.Reals) | |
assert (1, 2) in ProductSet(S.Reals, S.Reals) | |
assert (1, I) not in ProductSet(S.Reals, S.Reals) | |
assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals) | |
assert (1, 2, 3) in S.Reals ** 3 | |
assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals | |
assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals | |
assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals | |
assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals) | |
assert ProductSet() == FiniteSet(()) | |
assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet | |
# See GH-17458 | |
for ni in range(5): | |
Rn = ProductSet(*(S.Reals,) * ni) | |
assert (1,) * ni in Rn | |
assert 1 not in Rn | |
assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals) | |
S1 = S.Reals | |
S2 = S.Integers | |
x1 = pi | |
x2 = 3 | |
assert x1 in S1 | |
assert x2 in S2 | |
assert (x1, x2) in S1 * S2 | |
S3 = S1 * S2 | |
x3 = (x1, x2) | |
assert x3 in S3 | |
assert (x3, x3) in S3 * S3 | |
assert x3 + x3 not in S3 * S3 | |
raises(ValueError, lambda: S.Reals**-1) | |
with warns_deprecated_sympy(): | |
ProductSet(FiniteSet(s) for s in range(2)) | |
raises(TypeError, lambda: ProductSet(None)) | |
S1 = FiniteSet(1, 2) | |
S2 = FiniteSet(3, 4) | |
S3 = ProductSet(S1, S2) | |
assert (S3.as_relational(x, y) | |
== And(S1.as_relational(x), S2.as_relational(y)) | |
== And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4)))) | |
raises(ValueError, lambda: S3.as_relational(x)) | |
raises(ValueError, lambda: S3.as_relational(x, 1)) | |
raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y)) | |
Z2 = ProductSet(S.Integers, S.Integers) | |
assert Z2.contains((1, 2)) is S.true | |
assert Z2.contains((1,)) is S.false | |
assert Z2.contains(x) == Contains(x, Z2, evaluate=False) | |
assert Z2.contains(x).subs(x, 1) is S.false | |
assert Z2.contains((x, 1)).subs(x, 2) is S.true | |
assert Z2.contains((x, y)) == Contains(x, S.Integers) & Contains(y, S.Integers) | |
assert unchanged(Contains, (x, y), Z2) | |
assert Contains((1, 2), Z2) is S.true | |
def test_ProductSet_of_single_arg_is_not_arg(): | |
assert unchanged(ProductSet, Interval(0, 1)) | |
assert unchanged(ProductSet, ProductSet(Interval(0, 1))) | |
def test_ProductSet_is_empty(): | |
assert ProductSet(S.Integers, S.Reals).is_empty == False | |
assert ProductSet(Interval(x, 1), S.Reals).is_empty == None | |
def test_interval_subs(): | |
a = Symbol('a', real=True) | |
assert Interval(0, a).subs(a, 2) == Interval(0, 2) | |
assert Interval(a, 0).subs(a, 2) == S.EmptySet | |
def test_interval_to_mpi(): | |
assert Interval(0, 1).to_mpi() == mpi(0, 1) | |
assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1) | |
assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1)) | |
def test_set_evalf(): | |
assert Interval(S(11)/64, S.Half).evalf() == Interval( | |
Float('0.171875'), Float('0.5')) | |
assert Interval(x, S.Half, right_open=True).evalf() == Interval( | |
x, Float('0.5'), right_open=True) | |
assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5')) | |
assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x) | |
def test_measure(): | |
a = Symbol('a', real=True) | |
assert Interval(1, 3).measure == 2 | |
assert Interval(0, a).measure == a | |
assert Interval(1, a).measure == a - 1 | |
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2 | |
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \ | |
== 2 | |
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0 | |
assert S.EmptySet.measure == 0 | |
square = Interval(0, 10) * Interval(0, 10) | |
offsetsquare = Interval(5, 15) * Interval(5, 15) | |
band = Interval(-oo, oo) * Interval(2, 4) | |
assert square.measure == offsetsquare.measure == 100 | |
assert (square + offsetsquare).measure == 175 # there is some overlap | |
assert (square - offsetsquare).measure == 75 | |
assert (square * FiniteSet(1, 2, 3)).measure == 0 | |
assert (square.intersect(band)).measure == 20 | |
assert (square + band).measure is oo | |
assert (band * FiniteSet(1, 2, 3)).measure is nan | |
def test_is_subset(): | |
assert Interval(0, 1).is_subset(Interval(0, 2)) is True | |
assert Interval(0, 3).is_subset(Interval(0, 2)) is False | |
assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False | |
assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4)) | |
assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False | |
assert FiniteSet(1).is_subset(Interval(0, 2)) | |
assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False | |
assert (Interval(1, 2) + FiniteSet(3)).is_subset( | |
Interval(0, 2, False, True) + FiniteSet(2, 3)) | |
assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True | |
assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False | |
assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True | |
assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True | |
assert Interval(0, 1).is_subset(S.EmptySet) is False | |
assert S.EmptySet.is_subset(S.EmptySet) is True | |
raises(ValueError, lambda: S.EmptySet.is_subset(1)) | |
# tests for the issubset alias | |
assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True | |
assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True | |
assert S.Naturals.is_subset(S.Integers) | |
assert S.Naturals0.is_subset(S.Integers) | |
assert FiniteSet(x).is_subset(FiniteSet(y)) is None | |
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True | |
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False | |
assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False | |
assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False | |
n = Symbol('n', integer=True) | |
assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False | |
assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False | |
assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True | |
assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False | |
assert Range(-oo, 1).is_subset(FiniteSet(1)) is False | |
assert Range(3).is_subset(FiniteSet(0, 1, n)) is None | |
assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True | |
assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False | |
#issue 19513 | |
assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None | |
def test_is_proper_subset(): | |
assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True | |
assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False | |
assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True | |
raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0)) | |
def test_is_superset(): | |
assert Interval(0, 1).is_superset(Interval(0, 2)) == False | |
assert Interval(0, 3).is_superset(Interval(0, 2)) | |
assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False | |
assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False | |
assert FiniteSet(1).is_superset(Interval(0, 2)) == False | |
assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False | |
assert (Interval(1, 2) + FiniteSet(3)).is_superset( | |
Interval(0, 2, False, True) + FiniteSet(2, 3)) == False | |
assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False | |
assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False | |
assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False | |
assert Interval(0, 1).is_superset(S.EmptySet) == True | |
assert S.EmptySet.is_superset(S.EmptySet) == True | |
raises(ValueError, lambda: S.EmptySet.is_superset(1)) | |
# tests for the issuperset alias | |
assert Interval(0, 1).issuperset(S.EmptySet) == True | |
assert S.EmptySet.issuperset(S.EmptySet) == True | |
def test_is_proper_superset(): | |
assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False | |
assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True | |
assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True | |
raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0)) | |
def test_contains(): | |
assert Interval(0, 2).contains(1) is S.true | |
assert Interval(0, 2).contains(3) is S.false | |
assert Interval(0, 2, True, False).contains(0) is S.false | |
assert Interval(0, 2, True, False).contains(2) is S.true | |
assert Interval(0, 2, False, True).contains(0) is S.true | |
assert Interval(0, 2, False, True).contains(2) is S.false | |
assert Interval(0, 2, True, True).contains(0) is S.false | |
assert Interval(0, 2, True, True).contains(2) is S.false | |
assert (Interval(0, 2) in Interval(0, 2)) is False | |
assert FiniteSet(1, 2, 3).contains(2) is S.true | |
assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true | |
assert FiniteSet(y)._contains(x) == Eq(y, x, evaluate=False) | |
raises(TypeError, lambda: x in FiniteSet(y)) | |
assert FiniteSet({x, y})._contains({x}) == Eq({x, y}, {x}, evaluate=False) | |
assert FiniteSet({x, y}).subs(y, x)._contains({x}) is S.true | |
assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is S.false | |
# issue 8197 | |
from sympy.abc import a, b | |
assert FiniteSet(b).contains(-a) == Eq(b, -a) | |
assert FiniteSet(b).contains(a) == Eq(b, a) | |
assert FiniteSet(a).contains(1) == Eq(a, 1) | |
raises(TypeError, lambda: 1 in FiniteSet(a)) | |
# issue 8209 | |
rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3)) | |
rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3)) | |
s1 = FiniteSet(rad1) | |
s2 = FiniteSet(rad2) | |
assert s1 - s2 == S.EmptySet | |
items = [1, 2, S.Infinity, S('ham'), -1.1] | |
fset = FiniteSet(*items) | |
assert all(item in fset for item in items) | |
assert all(fset.contains(item) is S.true for item in items) | |
assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true | |
assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false | |
assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false | |
assert S.EmptySet.contains(1) is S.false | |
assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false | |
assert rootof(x**5 + x**3 + 1, 0) in S.Reals | |
assert not rootof(x**5 + x**3 + 1, 1) in S.Reals | |
# non-bool results | |
assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \ | |
Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4)) | |
assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \ | |
And(y <= 3, y <= x, S.One <= y, S(2) <= y) | |
assert (S.Complexes).contains(S.ComplexInfinity) == S.false | |
def test_interval_symbolic(): | |
x = Symbol('x') | |
e = Interval(0, 1) | |
assert e.contains(x) == And(S.Zero <= x, x <= 1) | |
raises(TypeError, lambda: x in e) | |
e = Interval(0, 1, True, True) | |
assert e.contains(x) == And(S.Zero < x, x < 1) | |
c = Symbol('c', real=False) | |
assert Interval(x, x + 1).contains(c) == False | |
e = Symbol('e', extended_real=True) | |
assert Interval(-oo, oo).contains(e) == And( | |
S.NegativeInfinity < e, e < S.Infinity) | |
def test_union_contains(): | |
x = Symbol('x') | |
i1 = Interval(0, 1) | |
i2 = Interval(2, 3) | |
i3 = Union(i1, i2) | |
assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3)) | |
raises(TypeError, lambda: x in i3) | |
e = i3.contains(x) | |
assert e == i3.as_relational(x) | |
assert e.subs(x, -0.5) is false | |
assert e.subs(x, 0.5) is true | |
assert e.subs(x, 1.5) is false | |
assert e.subs(x, 2.5) is true | |
assert e.subs(x, 3.5) is false | |
U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6) | |
assert all(el not in U for el in [0, 4, -oo]) | |
assert all(el in U for el in [2, 5, 10]) | |
def test_is_number(): | |
assert Interval(0, 1).is_number is False | |
assert Set().is_number is False | |
def test_Interval_is_left_unbounded(): | |
assert Interval(3, 4).is_left_unbounded is False | |
assert Interval(-oo, 3).is_left_unbounded is True | |
assert Interval(Float("-inf"), 3).is_left_unbounded is True | |
def test_Interval_is_right_unbounded(): | |
assert Interval(3, 4).is_right_unbounded is False | |
assert Interval(3, oo).is_right_unbounded is True | |
assert Interval(3, Float("+inf")).is_right_unbounded is True | |
def test_Interval_as_relational(): | |
x = Symbol('x') | |
assert Interval(-1, 2, False, False).as_relational(x) == \ | |
And(Le(-1, x), Le(x, 2)) | |
assert Interval(-1, 2, True, False).as_relational(x) == \ | |
And(Lt(-1, x), Le(x, 2)) | |
assert Interval(-1, 2, False, True).as_relational(x) == \ | |
And(Le(-1, x), Lt(x, 2)) | |
assert Interval(-1, 2, True, True).as_relational(x) == \ | |
And(Lt(-1, x), Lt(x, 2)) | |
assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2)) | |
assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2)) | |
assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo)) | |
assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo)) | |
assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo)) | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
assert Interval(x, y).as_relational(x) == (x <= y) | |
assert Interval(y, x).as_relational(x) == (y <= x) | |
def test_Finite_as_relational(): | |
x = Symbol('x') | |
y = Symbol('y') | |
assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2)) | |
assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5)) | |
def test_Union_as_relational(): | |
x = Symbol('x') | |
assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \ | |
Or(And(Le(0, x), Le(x, 1)), Eq(x, 2)) | |
assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \ | |
And(Lt(0, x), Le(x, 1)) | |
assert Or(x < 0, x > 0).as_set().as_relational(x) == \ | |
And((x > -oo), (x < oo), Ne(x, 0)) | |
assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5) | |
).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5)) | |
def test_Intersection_as_relational(): | |
x = Symbol('x') | |
assert (Intersection(Interval(0, 1), FiniteSet(2), | |
evaluate=False).as_relational(x) | |
== And(And(Le(0, x), Le(x, 1)), Eq(x, 2))) | |
def test_Complement_as_relational(): | |
x = Symbol('x') | |
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) | |
assert expr.as_relational(x) == \ | |
And(Le(0, x), Le(x, 1), Ne(x, 2)) | |
def test_Complement_as_relational_fail(): | |
x = Symbol('x') | |
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) | |
# XXX This example fails because 0 <= x changes to x >= 0 | |
# during the evaluation. | |
assert expr.as_relational(x) == \ | |
(0 <= x) & (x <= 1) & Ne(x, 2) | |
def test_SymmetricDifference_as_relational(): | |
x = Symbol('x') | |
expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False) | |
assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1)) | |
def test_EmptySet(): | |
assert S.EmptySet.as_relational(Symbol('x')) is S.false | |
assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet | |
assert S.EmptySet.boundary == S.EmptySet | |
def test_finite_basic(): | |
x = Symbol('x') | |
A = FiniteSet(1, 2, 3) | |
B = FiniteSet(3, 4, 5) | |
AorB = Union(A, B) | |
AandB = A.intersect(B) | |
assert A.is_subset(AorB) and B.is_subset(AorB) | |
assert AandB.is_subset(A) | |
assert AandB == FiniteSet(3) | |
assert A.inf == 1 and A.sup == 3 | |
assert AorB.inf == 1 and AorB.sup == 5 | |
assert FiniteSet(x, 1, 5).sup == Max(x, 5) | |
assert FiniteSet(x, 1, 5).inf == Min(x, 1) | |
# issue 7335 | |
assert FiniteSet(S.EmptySet) != S.EmptySet | |
assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3) | |
assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3) | |
# Ensure a variety of types can exist in a FiniteSet | |
assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2) | |
assert (A > B) is False | |
assert (A >= B) is False | |
assert (A < B) is False | |
assert (A <= B) is False | |
assert AorB > A and AorB > B | |
assert AorB >= A and AorB >= B | |
assert A >= A and A <= A | |
assert A >= AandB and B >= AandB | |
assert A > AandB and B > AandB | |
def test_product_basic(): | |
H, T = 'H', 'T' | |
unit_line = Interval(0, 1) | |
d6 = FiniteSet(1, 2, 3, 4, 5, 6) | |
d4 = FiniteSet(1, 2, 3, 4) | |
coin = FiniteSet(H, T) | |
square = unit_line * unit_line | |
assert (0, 0) in square | |
assert 0 not in square | |
assert (H, T) in coin ** 2 | |
assert (.5, .5, .5) in (square * unit_line).flatten() | |
assert ((.5, .5), .5) in square * unit_line | |
assert (H, 3, 3) in (coin * d6 * d6).flatten() | |
assert ((H, 3), 3) in coin * d6 * d6 | |
HH, TT = sympify(H), sympify(T) | |
assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)} | |
assert (d4*d4).is_subset(d6*d6) | |
assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union( | |
(Interval(-oo, 0, True, True) + | |
Interval(1, oo, True, True))*Interval(-oo, oo), | |
Interval(-oo, oo)*(Interval(-oo, 0, True, True) + | |
Interval(1, oo, True, True))) | |
assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3) | |
assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3) | |
assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3) | |
assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square | |
assert len(coin*coin*coin) == 8 | |
assert len(S.EmptySet*S.EmptySet) == 0 | |
assert len(S.EmptySet*coin) == 0 | |
raises(TypeError, lambda: len(coin*Interval(0, 2))) | |
def test_real(): | |
x = Symbol('x', real=True) | |
I = Interval(0, 5) | |
J = Interval(10, 20) | |
A = FiniteSet(1, 2, 30, x, S.Pi) | |
B = FiniteSet(-4, 0) | |
C = FiniteSet(100) | |
D = FiniteSet('Ham', 'Eggs') | |
assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C]) | |
assert not D.is_subset(S.Reals) | |
assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C]) | |
assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D]) | |
assert not (I + A + D).is_subset(S.Reals) | |
def test_supinf(): | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
assert (Interval(0, 1) + FiniteSet(2)).sup == 2 | |
assert (Interval(0, 1) + FiniteSet(2)).inf == 0 | |
assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x) | |
assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x) | |
assert FiniteSet(5, 1, x).sup == Max(5, x) | |
assert FiniteSet(5, 1, x).inf == Min(1, x) | |
assert FiniteSet(5, 1, x, y).sup == Max(5, x, y) | |
assert FiniteSet(5, 1, x, y).inf == Min(1, x, y) | |
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \ | |
S.Infinity | |
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \ | |
S.NegativeInfinity | |
assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs') | |
def test_universalset(): | |
U = S.UniversalSet | |
x = Symbol('x') | |
assert U.as_relational(x) is S.true | |
assert U.union(Interval(2, 4)) == U | |
assert U.intersect(Interval(2, 4)) == Interval(2, 4) | |
assert U.measure is S.Infinity | |
assert U.boundary == S.EmptySet | |
assert U.contains(0) is S.true | |
def test_Union_of_ProductSets_shares(): | |
line = Interval(0, 2) | |
points = FiniteSet(0, 1, 2) | |
assert Union(line * line, line * points) == line * line | |
def test_Interval_free_symbols(): | |
# issue 6211 | |
assert Interval(0, 1).free_symbols == set() | |
x = Symbol('x', real=True) | |
assert Interval(0, x).free_symbols == {x} | |
def test_image_interval(): | |
x = Symbol('x', real=True) | |
a = Symbol('a', real=True) | |
assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2) | |
assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \ | |
Interval(-4, 2, True, False) | |
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ | |
Interval(0, 4, False, True) | |
assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4) | |
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ | |
Interval(0, 4, False, True) | |
assert imageset(x, x**2, Interval(-2, 1, True, True)) == \ | |
Interval(0, 4, False, True) | |
assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1) | |
assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \ | |
Interval(-35, 0) # Multiple Maxima | |
assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \ | |
+ Interval(2, oo) # Single Infinite discontinuity | |
assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \ | |
Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities | |
# Test for Python lambda | |
assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2) | |
assert imageset(Lambda(x, a*x), Interval(0, 1)) == \ | |
ImageSet(Lambda(x, a*x), Interval(0, 1)) | |
assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \ | |
ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1)) | |
def test_image_piecewise(): | |
f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True)) | |
f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True)) | |
assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo)) | |
assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1) | |
# See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826 | |
def test_image_Intersection(): | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \ | |
Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2))) | |
def test_image_FiniteSet(): | |
x = Symbol('x', real=True) | |
assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6) | |
def test_image_Union(): | |
x = Symbol('x', real=True) | |
assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \ | |
(Interval(0, 4) + FiniteSet(9)) | |
def test_image_EmptySet(): | |
x = Symbol('x', real=True) | |
assert imageset(x, 2*x, S.EmptySet) == S.EmptySet | |
def test_issue_5724_7680(): | |
assert I not in S.Reals # issue 7680 | |
assert Interval(-oo, oo).contains(I) is S.false | |
def test_boundary(): | |
assert FiniteSet(1).boundary == FiniteSet(1) | |
assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1) | |
for left_open in (true, false) for right_open in (true, false)) | |
def test_boundary_Union(): | |
assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3) | |
assert ((Interval(0, 1, False, True) | |
+ Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2)) | |
assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2) | |
assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \ | |
== FiniteSet(0, 15) | |
assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \ | |
== FiniteSet(0, 10) | |
assert Union(Interval(0, 10, True, True), | |
Interval(10, 15, True, True), evaluate=False).boundary \ | |
== FiniteSet(0, 10, 15) | |
def test_union_boundary_of_joining_sets(): | |
""" Testing the boundary of unions is a hard problem """ | |
assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \ | |
== FiniteSet(0, 15) | |
def test_boundary_ProductSet(): | |
open_square = Interval(0, 1, True, True) ** 2 | |
assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1) | |
+ Interval(0, 1) * FiniteSet(0, 1)) | |
second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True) | |
assert (open_square + second_square).boundary == ( | |
FiniteSet(0, 1) * Interval(0, 1) | |
+ FiniteSet(1, 2) * Interval(0, 1) | |
+ Interval(0, 1) * FiniteSet(0, 1) | |
+ Interval(1, 2) * FiniteSet(0, 1)) | |
def test_boundary_ProductSet_line(): | |
line_in_r2 = Interval(0, 1) * FiniteSet(0) | |
assert line_in_r2.boundary == line_in_r2 | |
def test_is_open(): | |
assert Interval(0, 1, False, False).is_open is False | |
assert Interval(0, 1, True, False).is_open is False | |
assert Interval(0, 1, True, True).is_open is True | |
assert FiniteSet(1, 2, 3).is_open is False | |
def test_is_closed(): | |
assert Interval(0, 1, False, False).is_closed is True | |
assert Interval(0, 1, True, False).is_closed is False | |
assert FiniteSet(1, 2, 3).is_closed is True | |
def test_closure(): | |
assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False) | |
def test_interior(): | |
assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True) | |
def test_issue_7841(): | |
raises(TypeError, lambda: x in S.Reals) | |
def test_Eq(): | |
assert Eq(Interval(0, 1), Interval(0, 1)) | |
assert Eq(Interval(0, 1), Interval(0, 2)) == False | |
s1 = FiniteSet(0, 1) | |
s2 = FiniteSet(1, 2) | |
assert Eq(s1, s1) | |
assert Eq(s1, s2) == False | |
assert Eq(s1*s2, s1*s2) | |
assert Eq(s1*s2, s2*s1) == False | |
assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x})) | |
assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true | |
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true | |
assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false | |
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false | |
assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false | |
assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false | |
assert Eq(FiniteSet(()), FiniteSet(1)) is S.false | |
assert Eq(ProductSet(), FiniteSet(1)) is S.false | |
i1 = Interval(0, 1) | |
i2 = Interval(x, y) | |
assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2)) | |
def test_SymmetricDifference(): | |
A = FiniteSet(0, 1, 2, 3, 4, 5) | |
B = FiniteSet(2, 4, 6, 8, 10) | |
C = Interval(8, 10) | |
assert SymmetricDifference(A, B, evaluate=False).is_iterable is True | |
assert SymmetricDifference(A, C, evaluate=False).is_iterable is None | |
assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \ | |
FiniteSet(0, 1, 3, 5, 6, 8, 10) | |
raises(TypeError, | |
lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False))) | |
assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \ | |
FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10) | |
assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \ | |
== FiniteSet(5) | |
assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \ | |
FiniteSet(3, 4, 6) | |
assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \ | |
Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3))) | |
assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \ | |
Interval(2, 5), Interval(2, 5) - Interval(0, 4)) | |
def test_issue_9536(): | |
from sympy.functions.elementary.exponential import log | |
a = Symbol('a', real=True) | |
assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a))) | |
def test_issue_9637(): | |
n = Symbol('n') | |
a = FiniteSet(n) | |
b = FiniteSet(2, n) | |
assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False) | |
assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False) | |
assert Complement(Interval(1, 3), b) == \ | |
Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a) | |
assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False) | |
assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False) | |
def test_issue_9808(): | |
# See https://github.com/sympy/sympy/issues/16342 | |
assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False) | |
assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \ | |
Complement(FiniteSet(1), FiniteSet(y), evaluate=False) | |
def test_issue_9956(): | |
assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo) | |
assert Interval(-oo, oo).contains(1) is S.true | |
def test_issue_Symbol_inter(): | |
i = Interval(0, oo) | |
r = S.Reals | |
mat = Matrix([0, 0, 0]) | |
assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \ | |
Intersection(i, FiniteSet(m)) | |
assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \ | |
Intersection(i, FiniteSet(m, n)) | |
assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \ | |
Intersection(Intersection({m, z}, {m, n, x}), r) | |
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \ | |
Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False) | |
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \ | |
Intersection(FiniteSet(3, m, n), r) | |
assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \ | |
Intersection(r, FiniteSet(n)) | |
assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \ | |
Intersection(r, FiniteSet(sin(x), cos(x))) | |
assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \ | |
Intersection(r, FiniteSet(x**2, sin(x))) | |
def test_issue_11827(): | |
assert S.Naturals0**4 | |
def test_issue_10113(): | |
f = x**2/(x**2 - 4) | |
assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True)) | |
assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0) | |
assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo)) | |
def test_issue_10248(): | |
raises( | |
TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x))) | |
) | |
A = Symbol('A', real=True) | |
assert list(Intersection(S.Reals, FiniteSet(A))) == [A] | |
def test_issue_9447(): | |
a = Interval(0, 1) + Interval(2, 3) | |
assert Complement(S.UniversalSet, a) == Complement( | |
S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) | |
assert Complement(S.Naturals, a) == Complement( | |
S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) | |
def test_issue_10337(): | |
assert (FiniteSet(2) == 3) is False | |
assert (FiniteSet(2) != 3) is True | |
raises(TypeError, lambda: FiniteSet(2) < 3) | |
raises(TypeError, lambda: FiniteSet(2) <= 3) | |
raises(TypeError, lambda: FiniteSet(2) > 3) | |
raises(TypeError, lambda: FiniteSet(2) >= 3) | |
def test_issue_10326(): | |
bad = [ | |
EmptySet, | |
FiniteSet(1), | |
Interval(1, 2), | |
S.ComplexInfinity, | |
S.ImaginaryUnit, | |
S.Infinity, | |
S.NaN, | |
S.NegativeInfinity, | |
] | |
interval = Interval(0, 5) | |
for i in bad: | |
assert i not in interval | |
x = Symbol('x', real=True) | |
nr = Symbol('nr', extended_real=False) | |
assert x + 1 in Interval(x, x + 4) | |
assert nr not in Interval(x, x + 4) | |
assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2)) | |
assert Interval(-oo, oo).contains(oo) is S.false | |
assert Interval(-oo, oo).contains(-oo) is S.false | |
def test_issue_2799(): | |
U = S.UniversalSet | |
a = Symbol('a', real=True) | |
inf_interval = Interval(a, oo) | |
R = S.Reals | |
assert U + inf_interval == inf_interval + U | |
assert U + R == R + U | |
assert R + inf_interval == inf_interval + R | |
def test_issue_9706(): | |
assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False) | |
assert Interval(0, oo).closure == Interval(0, oo, False, True) | |
assert Interval(-oo, oo).closure == Interval(-oo, oo) | |
def test_issue_8257(): | |
reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo)) | |
reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo)) | |
assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity | |
assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity | |
assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity | |
assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity | |
def test_issue_10931(): | |
assert S.Integers - S.Integers == EmptySet | |
assert S.Integers - S.Reals == EmptySet | |
def test_issue_11174(): | |
soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False) | |
assert Intersection(FiniteSet(-x), S.Reals) == soln | |
soln = Intersection(S.Reals, FiniteSet(x), evaluate=False) | |
assert Intersection(FiniteSet(x), S.Reals) == soln | |
def test_issue_18505(): | |
assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \ | |
Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers)) | |
def test_finite_set_intersection(): | |
# The following should not produce recursion errors | |
# Note: some of these are not completely correct. See | |
# https://github.com/sympy/sympy/issues/16342. | |
assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x) | |
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x) | |
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x) | |
assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \ | |
Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \ | |
Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \ | |
Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y)) | |
assert FiniteSet(1+x-y) & FiniteSet(1) == \ | |
FiniteSet(1) & FiniteSet(1+x-y) == \ | |
Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False) | |
assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \ | |
Intersection(FiniteSet(1), FiniteSet(x), evaluate=False) | |
assert FiniteSet({x}) & FiniteSet({x, y}) == \ | |
Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False) | |
def test_union_intersection_constructor(): | |
# The actual exception does not matter here, so long as these fail | |
sets = [FiniteSet(1), FiniteSet(2)] | |
raises(Exception, lambda: Union(sets)) | |
raises(Exception, lambda: Intersection(sets)) | |
raises(Exception, lambda: Union(tuple(sets))) | |
raises(Exception, lambda: Intersection(tuple(sets))) | |
raises(Exception, lambda: Union(i for i in sets)) | |
raises(Exception, lambda: Intersection(i for i in sets)) | |
# Python sets are treated the same as FiniteSet | |
# The union of a single set (of sets) is the set (of sets) itself | |
assert Union(set(sets)) == FiniteSet(*sets) | |
assert Intersection(set(sets)) == FiniteSet(*sets) | |
assert Union({1}, {2}) == FiniteSet(1, 2) | |
assert Intersection({1, 2}, {2, 3}) == FiniteSet(2) | |
def test_Union_contains(): | |
assert zoo not in Union( | |
Interval.open(-oo, 0), Interval.open(0, oo)) | |
def test_issue_16878b(): | |
# in intersection_sets for (ImageSet, Set) there is no code | |
# that handles the base_set of S.Reals like there is | |
# for Integers | |
assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True | |
def test_DisjointUnion(): | |
assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2)) | |
assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1)) | |
assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1)) | |
assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) | |
assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) | |
assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1) | |
assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0) | |
assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet | |
assert DisjointUnion().rewrite(Union) == S.EmptySet | |
raises(TypeError, lambda: DisjointUnion(Symbol('n'))) | |
x = Symbol("x") | |
y = Symbol("y") | |
z = Symbol("z") | |
assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1)) | |
def test_DisjointUnion_is_empty(): | |
assert DisjointUnion(S.EmptySet).is_empty is True | |
assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True | |
assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False | |
def test_DisjointUnion_is_iterable(): | |
assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True | |
assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False | |
assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True | |
assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False | |
def test_DisjointUnion_contains(): | |
assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5)) | |
assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) | |
assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) | |
assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) | |
assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) | |
assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) | |
assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2)) | |
assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) | |
assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2)) | |
assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) | |
def test_DisjointUnion_iter(): | |
D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z)) | |
it = iter(D) | |
L1 = [(x, 1), (y, 1), (z, 1)] | |
L2 = [(3, 0), (5, 0), (7, 0), (9, 0)] | |
nxt = next(it) | |
assert nxt in L2 | |
L2.remove(nxt) | |
nxt = next(it) | |
assert nxt in L1 | |
L1.remove(nxt) | |
nxt = next(it) | |
assert nxt in L2 | |
L2.remove(nxt) | |
nxt = next(it) | |
assert nxt in L1 | |
L1.remove(nxt) | |
nxt = next(it) | |
assert nxt in L2 | |
L2.remove(nxt) | |
nxt = next(it) | |
assert nxt in L1 | |
L1.remove(nxt) | |
nxt = next(it) | |
assert nxt in L2 | |
L2.remove(nxt) | |
raises(StopIteration, lambda: next(it)) | |
raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet))) | |
def test_DisjointUnion_len(): | |
assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7 | |
assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3 | |
raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet))) | |
def test_SetKind_ProductSet(): | |
p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2]))) | |
mk = MatrixKind(NumberKind) | |
k = SetKind(TupleKind(mk, mk)) | |
assert p.kind is k | |
assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk)) | |
def test_SetKind_Interval(): | |
assert Interval(1, 2).kind is SetKind(NumberKind) | |
def test_SetKind_EmptySet_UniversalSet(): | |
assert S.UniversalSet.kind is SetKind(UndefinedKind) | |
assert EmptySet.kind is SetKind() | |
def test_SetKind_FiniteSet(): | |
assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind) | |
assert FiniteSet(1, 2).kind is SetKind(NumberKind) | |
def test_SetKind_Unions(): | |
assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind) | |
assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind) | |
def test_SetKind_DisjointUnion(): | |
A = FiniteSet(1, 2, 3) | |
B = Interval(0, 5) | |
assert DisjointUnion(A, B).kind is SetKind(NumberKind) | |
def test_SetKind_evaluate_False(): | |
U = lambda *args: Union(*args, evaluate=False) | |
assert U({1}, EmptySet).kind is SetKind(NumberKind) | |
assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind) | |
assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind) | |
assert U(Interval(1, 2), Interval(4, 5), | |
FiniteSet(1)).kind is SetKind(NumberKind) | |
I = lambda *args: Intersection(*args, evaluate=False) | |
assert I({1}, S.UniversalSet).kind is SetKind(NumberKind) | |
assert I({1}, EmptySet).kind is SetKind() | |
C = lambda *args: Complement(*args, evaluate=False) | |
assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind) | |
assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind) | |
assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind() | |
def test_SetKind_ImageSet_Special(): | |
f = ImageSet(Lambda(n, n ** 2), Interval(1, 4)) | |
assert (f - FiniteSet(3)).kind is SetKind(NumberKind) | |
assert (f + Interval(16, 17)).kind is SetKind(NumberKind) | |
assert (f + FiniteSet(17)).kind is SetKind(NumberKind) | |
def test_issue_20089(): | |
B = FiniteSet(FiniteSet(1, 2), FiniteSet(1)) | |
assert 1 not in B | |
assert 1.0 not in B | |
assert not Eq(1, FiniteSet(1, 2)) | |
assert FiniteSet(1) in B | |
A = FiniteSet(1, 2) | |
assert A in B | |
assert B.issubset(B) | |
assert not A.issubset(B) | |
assert 1 in A | |
C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2) | |
assert A.issubset(C) | |
assert B.issubset(C) | |
def test_issue_19378(): | |
a = FiniteSet(1, 2) | |
b = ProductSet(a, a) | |
c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2)) | |
assert b.is_subset(c) is True | |
d = FiniteSet(1) | |
assert b.is_subset(d) is False | |
assert Eq(c, b).simplify() is S.true | |
assert Eq(a, c).simplify() is S.false | |
assert Eq({1}, {x}).simplify() == Eq({1}, {x}) | |
def test_intersection_symbolic(): | |
n = Symbol('n') | |
# These should not throw an error | |
assert isinstance(Intersection(Range(n), Range(100)), Intersection) | |
assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection) | |
assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection) | |
def test_intersection_symbolic_failing(): | |
n = Symbol('n', integer=True, positive=True) | |
assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection( | |
Range(14, n), Range(14, 500, 5)) | |
assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection( | |
Interval(14, n), Range(14, 500, 5)) | |
def test_issue_20379(): | |
#https://github.com/sympy/sympy/issues/20379 | |
x = pi - 3.14159265358979 | |
assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2)) | |
def test_finiteset_simplify(): | |
S = FiniteSet(1, cos(1)**2 + sin(1)**2) | |
assert S.simplify() == {1} | |
def test_issue_14336(): | |
#https://github.com/sympy/sympy/issues/14336 | |
U = S.Complexes | |
x = Symbol("x") | |
U -= U.intersect(Ne(x, 1).as_set()) | |
U -= U.intersect(S.true.as_set()) | |
def test_issue_9855(): | |
#https://github.com/sympy/sympy/issues/9855 | |
x, y, z = symbols('x, y, z', real=True) | |
s1 = Interval(1, x) & Interval(y, 2) | |
s2 = Interval(1, 2) | |
assert s1.is_subset(s2) == None | |