Spaces:
Sleeping
Sleeping
File size: 68,544 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 |
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.containers import TupleKind
from sympy.core.function import Lambda
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.logic.boolalg import (false, true)
from sympy.matrices.kind import MatrixKind
from sympy.matrices.dense import Matrix
from sympy.polys.rootoftools import rootof
from sympy.sets.contains import Contains
from sympy.sets.fancysets import (ImageSet, Range)
from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind)
from mpmath import mpi
from sympy.core.expr import unchanged
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
from sympy.logic import And, Or, Xor
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
from sympy.utilities.iterables import cartes
from sympy.abc import x, y, z, m, n
EmptySet = S.EmptySet
def test_imageset():
ints = S.Integers
assert imageset(x, x - 1, S.Naturals) is S.Naturals0
assert imageset(x, x + 1, S.Naturals0) is S.Naturals
assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
assert imageset(x, abs(x), S.Naturals) is S.Naturals
assert imageset(x, abs(x), S.Integers) is S.Naturals0
# issue 16878a
r = symbols('r', real=True)
assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
assert (r, r) in imageset(x, (x, x), S.Reals)
assert 1 + I in imageset(x, x + I, S.Reals)
assert {1} not in imageset(x, (x,), S.Reals)
assert (1, 1) not in imageset(x, (x,), S.Reals)
raises(TypeError, lambda: imageset(x, ints))
raises(ValueError, lambda: imageset(x, y, z, ints))
raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
def f(x):
return cos(x)
assert imageset(f, ints) == imageset(x, cos(x), ints)
f = lambda x: cos(x)
assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
assert imageset(x, 1, ints) == FiniteSet(1)
assert imageset(x, y, ints) == {y}
assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
clash = Symbol('x', integer=true)
assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
in ('x0 + x', 'x + x0'))
x1, x2 = symbols("x1, x2")
assert imageset(lambda x, y:
Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq(
ImageSet(Lambda((x1, x2), x1 + x2),
Interval(1, 2), Interval(2, 3)))
def test_is_empty():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_empty is False
assert S.EmptySet.is_empty is True
def test_is_finiteset():
for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
S.UniversalSet]:
assert s.is_finite_set is False
assert S.EmptySet.is_finite_set is True
assert FiniteSet(1, 2).is_finite_set is True
assert Interval(1, 2).is_finite_set is False
assert Interval(x, y).is_finite_set is None
assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False
assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True
def test_deprecated_is_EmptySet():
with warns_deprecated_sympy():
S.EmptySet.is_EmptySet
with warns_deprecated_sympy():
FiniteSet(1).is_EmptySet
def test_interval_arguments():
assert Interval(0, oo) == Interval(0, oo, False, True)
assert Interval(0, oo).right_open is true
assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
assert Interval(-oo, 0).left_open is true
assert Interval(oo, -oo) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(-oo, -oo) == S.EmptySet
assert Interval(oo, x) == S.EmptySet
assert Interval(oo, oo) == S.EmptySet
assert Interval(x, -oo) == S.EmptySet
assert Interval(x, x) == {x}
assert isinstance(Interval(1, 1), FiniteSet)
e = Sum(x, (x, 1, 3))
assert isinstance(Interval(e, e), FiniteSet)
assert Interval(1, 0) == S.EmptySet
assert Interval(1, 1).measure == 0
assert Interval(1, 1, False, True) == S.EmptySet
assert Interval(1, 1, True, False) == S.EmptySet
assert Interval(1, 1, True, True) == S.EmptySet
assert isinstance(Interval(0, Symbol('a')), Interval)
assert Interval(Symbol('a', positive=True), 0) == S.EmptySet
raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit))
raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))
def test_interval_symbolic_end_points():
a = Symbol('a', real=True)
assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)
assert Interval(0, a).contains(1) == LessThan(1, a)
def test_interval_is_empty():
x, y = symbols('x, y')
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
nn = Symbol('nn', nonnegative=True)
assert Interval(1, 2).is_empty == False
assert Interval(3, 3).is_empty == False # FiniteSet
assert Interval(r, r).is_empty == False # FiniteSet
assert Interval(r, r + nn).is_empty == False
assert Interval(x, x).is_empty == False
assert Interval(1, oo).is_empty == False
assert Interval(-oo, oo).is_empty == False
assert Interval(-oo, 1).is_empty == False
assert Interval(x, y).is_empty == None
assert Interval(r, oo).is_empty == False # real implies finite
assert Interval(n, 0).is_empty == False
assert Interval(n, 0, left_open=True).is_empty == False
assert Interval(p, 0).is_empty == True # EmptySet
assert Interval(nn, 0).is_empty == None
assert Interval(n, p).is_empty == False
assert Interval(0, p, left_open=True).is_empty == False
assert Interval(0, p, right_open=True).is_empty == False
assert Interval(0, nn, left_open=True).is_empty == None
assert Interval(0, nn, right_open=True).is_empty == None
def test_union():
assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
Interval(1, 3, False, True)
assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
Interval(1, 3, True, True)
assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
Interval(1, 3, True)
assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
Interval(1, 3)
assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
Interval(1, 3)
assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
assert Union(S.EmptySet) == S.EmptySet
assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
Interval(0, 1)
# issue #18241:
x = Symbol('x')
assert Union(Interval(0, 1), FiniteSet(1, x)) == Union(
Interval(0, 1), FiniteSet(x))
assert unchanged(Union, Interval(0, 1), FiniteSet(2, x))
assert Interval(1, 2).union(Interval(2, 3)) == \
Interval(1, 2) + Interval(2, 3)
assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)
assert Union(Set()) == Set()
assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)
assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)
assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet
assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3)
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
FiniteSet(x, FiniteSet(y, z))
# Test that Intervals and FiniteSets play nicely
assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
assert Interval(1, 3, True, True) + FiniteSet(3) == \
Interval(1, 3, True, False)
X = Interval(1, 3) + FiniteSet(5)
Y = Interval(1, 2) + FiniteSet(3)
XandY = X.intersect(Y)
assert 2 in X and 3 in X and 3 in XandY
assert XandY.is_subset(X) and XandY.is_subset(Y)
raises(TypeError, lambda: Union(1, 2, 3))
assert X.is_iterable is False
# issue 7843
assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
FiniteSet(-sqrt(-I), sqrt(-I))
assert Union(S.Reals, S.Integers) == S.Reals
def test_union_iter():
# Use Range because it is ordered
u = Union(Range(3), Range(5), Range(4), evaluate=False)
# Round robin
assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]
def test_union_is_empty():
assert (Interval(x, y) + FiniteSet(1)).is_empty == False
assert (Interval(x, y) + Interval(-x, y)).is_empty == None
def test_difference():
assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
assert Interval(1, 3, True) - Interval(2, 3, True) == \
Interval(1, 2, True, False)
assert Interval(0, 2) - FiniteSet(1) == \
Union(Interval(0, 1, False, True), Interval(1, 2, True, False))
# issue #18119
assert S.Reals - FiniteSet(I) == S.Reals
assert S.Reals - FiniteSet(-I, I) == S.Reals
assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
assert Interval(0, 10) - FiniteSet(1, I) == Union(
Interval.Ropen(0, 1), Interval.Lopen(1, 10))
assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
evaluate=False)
assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
FiniteSet(1, 2)
assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert -1 in S.Reals - S.Naturals
def test_Complement():
A = FiniteSet(1, 3, 4)
B = FiniteSet(3, 4)
C = Interval(1, 3)
D = Interval(1, 2)
assert Complement(A, B, evaluate=False).is_iterable is True
assert Complement(A, C, evaluate=False).is_iterable is True
assert Complement(C, D, evaluate=False).is_iterable is None
assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))
assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
Interval(1, 3)) == \
Union(Interval(0, 1, False, True), FiniteSet(4))
assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False)
assert Complement(S.Integers, S.UniversalSet) == EmptySet
assert S.UniversalSet.complement(S.Integers) == EmptySet
assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0)))
assert S.EmptySet - S.Integers == S.EmptySet
assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)
assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
# issue 12712
assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
Complement(FiniteSet(x, y), Interval(-10, 10))
A = FiniteSet(*symbols('a:c'))
B = FiniteSet(*symbols('d:f'))
assert unchanged(Complement, ProductSet(A, A), B)
A2 = ProductSet(A, A)
B3 = ProductSet(B, B, B)
assert A2 - B3 == A2
assert B3 - A2 == B3
def test_set_operations_nonsets():
'''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
ops = [
lambda a, b: a + b,
lambda a, b: a - b,
lambda a, b: a * b,
lambda a, b: a / b,
lambda a, b: a // b,
lambda a, b: a | b,
lambda a, b: a & b,
lambda a, b: a ^ b,
# FiniteSet(1) ** 2 gives a ProductSet
#lambda a, b: a ** b,
]
Sx = FiniteSet(x)
Sy = FiniteSet(y)
sets = [
{1},
FiniteSet(1),
Interval(1, 2),
Union(Sx, Interval(1, 2)),
Intersection(Sx, Sy),
Complement(Sx, Sy),
ProductSet(Sx, Sy),
S.EmptySet,
]
nums = [0, 1, 2, S(0), S(1), S(2)]
for si in sets:
for ni in nums:
for op in ops:
raises(TypeError, lambda : op(si, ni))
raises(TypeError, lambda : op(ni, si))
raises(TypeError, lambda: si ** object())
raises(TypeError, lambda: si ** {1})
def test_complement():
assert Complement({1, 2}, {1}) == {2}
assert Interval(0, 1).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
assert Interval(0, 1, True, False).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
assert Interval(0, 1, False, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
assert Interval(0, 1, True, True).complement(S.Reals) == \
Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))
assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
assert S.UniversalSet.complement(S.Reals) == S.EmptySet
assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet
assert S.EmptySet.complement(S.Reals) == S.Reals
assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
Interval(3, oo, True, True))
assert FiniteSet(0).complement(S.Reals) == \
Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))
assert (FiniteSet(5) + Interval(S.NegativeInfinity,
0)).complement(S.Reals) == \
Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)
assert FiniteSet(1, 2, 3).complement(S.Reals) == \
Interval(S.NegativeInfinity, 1, True, True) + \
Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
Interval(3, S.Infinity, True, True)
assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))
assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
Interval(0, oo, True, True)
, FiniteSet(x), evaluate=False)
square = Interval(0, 1) * Interval(0, 1)
notsquare = square.complement(S.Reals*S.Reals)
assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(
pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])
def test_intersect1():
assert all(S.Integers.intersection(i) is i for i in
(S.Naturals, S.Naturals0))
assert all(i.intersection(S.Integers) is i for i in
(S.Naturals, S.Naturals0))
s = S.Naturals0
assert S.Naturals.intersection(s) is S.Naturals
assert s.intersection(S.Naturals) is S.Naturals
x = Symbol('x')
assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
Interval(1, 2, True)
assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, False)
assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
Interval(1, 2, False, True)
assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
Union(Interval(0, 1), Interval(2, 2))
assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
FiniteSet('ham')
assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet
assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
Union(Interval(0, 1), Interval(2, 2))
assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
S.EmptySet
assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
Intersection({1, 2}, Interval(x, y), evaluate=False)
# XXX: Is the real=True necessary here?
# https://github.com/sympy/sympy/issues/17532
m, n = symbols('m, n', real=True)
assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
FiniteSet(m)
# issue 8217
assert Intersection(FiniteSet(x), FiniteSet(y)) == \
Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
assert FiniteSet(x).intersect(S.Reals) == \
Intersection(S.Reals, FiniteSet(x), evaluate=False)
# tests for the intersection alias
assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet
assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
Union(Interval(1, 1), Interval(2, 2))
# canonical boundary selected
a = sqrt(2*sqrt(6) + 5)
b = sqrt(2) + sqrt(3)
assert Interval(a, 4).intersection(Interval(b, 5)) == Interval(b, 4)
assert Interval(1, a).intersection(Interval(0, b)) == Interval(1, b)
def test_intersection_interval_float():
# intersection of Intervals with mixed Rational/Float boundaries should
# lead to Float boundaries in all cases regardless of which Interval is
# open or closed.
typs = [
(Interval, Interval, Interval),
(Interval, Interval.open, Interval.open),
(Interval, Interval.Lopen, Interval.Lopen),
(Interval, Interval.Ropen, Interval.Ropen),
(Interval.open, Interval.open, Interval.open),
(Interval.open, Interval.Lopen, Interval.open),
(Interval.open, Interval.Ropen, Interval.open),
(Interval.Lopen, Interval.Lopen, Interval.Lopen),
(Interval.Lopen, Interval.Ropen, Interval.open),
(Interval.Ropen, Interval.Ropen, Interval.Ropen),
]
as_float = lambda a1, a2: a2 if isinstance(a2, float) else a1
for t1, t2, t3 in typs:
for t1i, t2i in [(t1, t2), (t2, t1)]:
for a1, a2, b1, b2 in cartes([2, 2.0], [2, 2.0], [3, 3.0], [3, 3.0]):
I1 = t1(a1, b1)
I2 = t2(a2, b2)
I3 = t3(as_float(a1, a2), as_float(b1, b2))
assert I1.intersect(I2) == I3
def test_intersection():
# iterable
i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
assert i.is_iterable
assert set(i) == {S(2), S(3)}
# challenging intervals
x = Symbol('x', real=True)
i = Intersection(Interval(0, 3), Interval(x, 6))
assert (5 in i) is False
raises(TypeError, lambda: 2 in i)
# Singleton special cases
assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)
# Products
line = Interval(0, 5)
i = Intersection(line**2, line**3, evaluate=False)
assert (2, 2) not in i
assert (2, 2, 2) not in i
raises(TypeError, lambda: list(i))
a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])
assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet
# issue 12178
assert Intersection() == S.UniversalSet
# issue 16987
assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})
def test_issue_9623():
n = Symbol('n')
a = S.Reals
b = Interval(0, oo)
c = FiniteSet(n)
assert Intersection(a, b, c) == Intersection(b, c)
assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet
def test_is_disjoint():
assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True
def test_ProductSet__len__():
A = FiniteSet(1, 2)
B = FiniteSet(1, 2, 3)
assert ProductSet(A).__len__() == 2
assert ProductSet(A).__len__() is not S(2)
assert ProductSet(A, B).__len__() == 6
assert ProductSet(A, B).__len__() is not S(6)
def test_ProductSet():
# ProductSet is always a set of Tuples
assert ProductSet(S.Reals) == S.Reals ** 1
assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3
assert ProductSet(S.Reals) != S.Reals
assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()
assert 1 not in ProductSet(S.Reals)
assert (1,) in ProductSet(S.Reals)
assert 1 not in ProductSet(S.Reals, S.Reals)
assert (1, 2) in ProductSet(S.Reals, S.Reals)
assert (1, I) not in ProductSet(S.Reals, S.Reals)
assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
assert (1, 2, 3) in S.Reals ** 3
assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)
assert ProductSet() == FiniteSet(())
assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet
# See GH-17458
for ni in range(5):
Rn = ProductSet(*(S.Reals,) * ni)
assert (1,) * ni in Rn
assert 1 not in Rn
assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)
S1 = S.Reals
S2 = S.Integers
x1 = pi
x2 = 3
assert x1 in S1
assert x2 in S2
assert (x1, x2) in S1 * S2
S3 = S1 * S2
x3 = (x1, x2)
assert x3 in S3
assert (x3, x3) in S3 * S3
assert x3 + x3 not in S3 * S3
raises(ValueError, lambda: S.Reals**-1)
with warns_deprecated_sympy():
ProductSet(FiniteSet(s) for s in range(2))
raises(TypeError, lambda: ProductSet(None))
S1 = FiniteSet(1, 2)
S2 = FiniteSet(3, 4)
S3 = ProductSet(S1, S2)
assert (S3.as_relational(x, y)
== And(S1.as_relational(x), S2.as_relational(y))
== And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
raises(ValueError, lambda: S3.as_relational(x))
raises(ValueError, lambda: S3.as_relational(x, 1))
raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))
Z2 = ProductSet(S.Integers, S.Integers)
assert Z2.contains((1, 2)) is S.true
assert Z2.contains((1,)) is S.false
assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
assert Z2.contains(x).subs(x, 1) is S.false
assert Z2.contains((x, 1)).subs(x, 2) is S.true
assert Z2.contains((x, y)) == Contains(x, S.Integers) & Contains(y, S.Integers)
assert unchanged(Contains, (x, y), Z2)
assert Contains((1, 2), Z2) is S.true
def test_ProductSet_of_single_arg_is_not_arg():
assert unchanged(ProductSet, Interval(0, 1))
assert unchanged(ProductSet, ProductSet(Interval(0, 1)))
def test_ProductSet_is_empty():
assert ProductSet(S.Integers, S.Reals).is_empty == False
assert ProductSet(Interval(x, 1), S.Reals).is_empty == None
def test_interval_subs():
a = Symbol('a', real=True)
assert Interval(0, a).subs(a, 2) == Interval(0, 2)
assert Interval(a, 0).subs(a, 2) == S.EmptySet
def test_interval_to_mpi():
assert Interval(0, 1).to_mpi() == mpi(0, 1)
assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))
def test_set_evalf():
assert Interval(S(11)/64, S.Half).evalf() == Interval(
Float('0.171875'), Float('0.5'))
assert Interval(x, S.Half, right_open=True).evalf() == Interval(
x, Float('0.5'), right_open=True)
assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5'))
assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x)
def test_measure():
a = Symbol('a', real=True)
assert Interval(1, 3).measure == 2
assert Interval(0, a).measure == a
assert Interval(1, a).measure == a - 1
assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
== 2
assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0
assert S.EmptySet.measure == 0
square = Interval(0, 10) * Interval(0, 10)
offsetsquare = Interval(5, 15) * Interval(5, 15)
band = Interval(-oo, oo) * Interval(2, 4)
assert square.measure == offsetsquare.measure == 100
assert (square + offsetsquare).measure == 175 # there is some overlap
assert (square - offsetsquare).measure == 75
assert (square * FiniteSet(1, 2, 3)).measure == 0
assert (square.intersect(band)).measure == 20
assert (square + band).measure is oo
assert (band * FiniteSet(1, 2, 3)).measure is nan
def test_is_subset():
assert Interval(0, 1).is_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_subset(Interval(0, 2)) is False
assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False
assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
assert FiniteSet(1).is_subset(Interval(0, 2))
assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
assert (Interval(1, 2) + FiniteSet(3)).is_subset(
Interval(0, 2, False, True) + FiniteSet(2, 3))
assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False
assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True
assert Interval(0, 1).is_subset(S.EmptySet) is False
assert S.EmptySet.is_subset(S.EmptySet) is True
raises(ValueError, lambda: S.EmptySet.is_subset(1))
# tests for the issubset alias
assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True
assert S.Naturals.is_subset(S.Integers)
assert S.Naturals0.is_subset(S.Integers)
assert FiniteSet(x).is_subset(FiniteSet(y)) is None
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False
assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False
n = Symbol('n', integer=True)
assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
#issue 19513
assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None
def test_is_proper_subset():
assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))
def test_is_superset():
assert Interval(0, 1).is_superset(Interval(0, 2)) == False
assert Interval(0, 3).is_superset(Interval(0, 2))
assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
assert FiniteSet(1).is_superset(Interval(0, 2)) == False
assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
assert (Interval(1, 2) + FiniteSet(3)).is_superset(
Interval(0, 2, False, True) + FiniteSet(2, 3)) == False
assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False
assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False
assert Interval(0, 1).is_superset(S.EmptySet) == True
assert S.EmptySet.is_superset(S.EmptySet) == True
raises(ValueError, lambda: S.EmptySet.is_superset(1))
# tests for the issuperset alias
assert Interval(0, 1).issuperset(S.EmptySet) == True
assert S.EmptySet.issuperset(S.EmptySet) == True
def test_is_proper_superset():
assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True
raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))
def test_contains():
assert Interval(0, 2).contains(1) is S.true
assert Interval(0, 2).contains(3) is S.false
assert Interval(0, 2, True, False).contains(0) is S.false
assert Interval(0, 2, True, False).contains(2) is S.true
assert Interval(0, 2, False, True).contains(0) is S.true
assert Interval(0, 2, False, True).contains(2) is S.false
assert Interval(0, 2, True, True).contains(0) is S.false
assert Interval(0, 2, True, True).contains(2) is S.false
assert (Interval(0, 2) in Interval(0, 2)) is False
assert FiniteSet(1, 2, 3).contains(2) is S.true
assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true
assert FiniteSet(y)._contains(x) == Eq(y, x, evaluate=False)
raises(TypeError, lambda: x in FiniteSet(y))
assert FiniteSet({x, y})._contains({x}) == Eq({x, y}, {x}, evaluate=False)
assert FiniteSet({x, y}).subs(y, x)._contains({x}) is S.true
assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is S.false
# issue 8197
from sympy.abc import a, b
assert FiniteSet(b).contains(-a) == Eq(b, -a)
assert FiniteSet(b).contains(a) == Eq(b, a)
assert FiniteSet(a).contains(1) == Eq(a, 1)
raises(TypeError, lambda: 1 in FiniteSet(a))
# issue 8209
rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
s1 = FiniteSet(rad1)
s2 = FiniteSet(rad2)
assert s1 - s2 == S.EmptySet
items = [1, 2, S.Infinity, S('ham'), -1.1]
fset = FiniteSet(*items)
assert all(item in fset for item in items)
assert all(fset.contains(item) is S.true for item in items)
assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false
assert S.EmptySet.contains(1) is S.false
assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false
assert rootof(x**5 + x**3 + 1, 0) in S.Reals
assert not rootof(x**5 + x**3 + 1, 1) in S.Reals
# non-bool results
assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
And(y <= 3, y <= x, S.One <= y, S(2) <= y)
assert (S.Complexes).contains(S.ComplexInfinity) == S.false
def test_interval_symbolic():
x = Symbol('x')
e = Interval(0, 1)
assert e.contains(x) == And(S.Zero <= x, x <= 1)
raises(TypeError, lambda: x in e)
e = Interval(0, 1, True, True)
assert e.contains(x) == And(S.Zero < x, x < 1)
c = Symbol('c', real=False)
assert Interval(x, x + 1).contains(c) == False
e = Symbol('e', extended_real=True)
assert Interval(-oo, oo).contains(e) == And(
S.NegativeInfinity < e, e < S.Infinity)
def test_union_contains():
x = Symbol('x')
i1 = Interval(0, 1)
i2 = Interval(2, 3)
i3 = Union(i1, i2)
assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
raises(TypeError, lambda: x in i3)
e = i3.contains(x)
assert e == i3.as_relational(x)
assert e.subs(x, -0.5) is false
assert e.subs(x, 0.5) is true
assert e.subs(x, 1.5) is false
assert e.subs(x, 2.5) is true
assert e.subs(x, 3.5) is false
U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
assert all(el not in U for el in [0, 4, -oo])
assert all(el in U for el in [2, 5, 10])
def test_is_number():
assert Interval(0, 1).is_number is False
assert Set().is_number is False
def test_Interval_is_left_unbounded():
assert Interval(3, 4).is_left_unbounded is False
assert Interval(-oo, 3).is_left_unbounded is True
assert Interval(Float("-inf"), 3).is_left_unbounded is True
def test_Interval_is_right_unbounded():
assert Interval(3, 4).is_right_unbounded is False
assert Interval(3, oo).is_right_unbounded is True
assert Interval(3, Float("+inf")).is_right_unbounded is True
def test_Interval_as_relational():
x = Symbol('x')
assert Interval(-1, 2, False, False).as_relational(x) == \
And(Le(-1, x), Le(x, 2))
assert Interval(-1, 2, True, False).as_relational(x) == \
And(Lt(-1, x), Le(x, 2))
assert Interval(-1, 2, False, True).as_relational(x) == \
And(Le(-1, x), Lt(x, 2))
assert Interval(-1, 2, True, True).as_relational(x) == \
And(Lt(-1, x), Lt(x, 2))
assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))
assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))
assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert Interval(x, y).as_relational(x) == (x <= y)
assert Interval(y, x).as_relational(x) == (y <= x)
def test_Finite_as_relational():
x = Symbol('x')
y = Symbol('y')
assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))
def test_Union_as_relational():
x = Symbol('x')
assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
And(Lt(0, x), Le(x, 1))
assert Or(x < 0, x > 0).as_set().as_relational(x) == \
And((x > -oo), (x < oo), Ne(x, 0))
assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5)
).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5))
def test_Intersection_as_relational():
x = Symbol('x')
assert (Intersection(Interval(0, 1), FiniteSet(2),
evaluate=False).as_relational(x)
== And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))
def test_Complement_as_relational():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == \
And(Le(0, x), Le(x, 1), Ne(x, 2))
@XFAIL
def test_Complement_as_relational_fail():
x = Symbol('x')
expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
# XXX This example fails because 0 <= x changes to x >= 0
# during the evaluation.
assert expr.as_relational(x) == \
(0 <= x) & (x <= 1) & Ne(x, 2)
def test_SymmetricDifference_as_relational():
x = Symbol('x')
expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))
def test_EmptySet():
assert S.EmptySet.as_relational(Symbol('x')) is S.false
assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
assert S.EmptySet.boundary == S.EmptySet
def test_finite_basic():
x = Symbol('x')
A = FiniteSet(1, 2, 3)
B = FiniteSet(3, 4, 5)
AorB = Union(A, B)
AandB = A.intersect(B)
assert A.is_subset(AorB) and B.is_subset(AorB)
assert AandB.is_subset(A)
assert AandB == FiniteSet(3)
assert A.inf == 1 and A.sup == 3
assert AorB.inf == 1 and AorB.sup == 5
assert FiniteSet(x, 1, 5).sup == Max(x, 5)
assert FiniteSet(x, 1, 5).inf == Min(x, 1)
# issue 7335
assert FiniteSet(S.EmptySet) != S.EmptySet
assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)
# Ensure a variety of types can exist in a FiniteSet
assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2)
assert (A > B) is False
assert (A >= B) is False
assert (A < B) is False
assert (A <= B) is False
assert AorB > A and AorB > B
assert AorB >= A and AorB >= B
assert A >= A and A <= A
assert A >= AandB and B >= AandB
assert A > AandB and B > AandB
def test_product_basic():
H, T = 'H', 'T'
unit_line = Interval(0, 1)
d6 = FiniteSet(1, 2, 3, 4, 5, 6)
d4 = FiniteSet(1, 2, 3, 4)
coin = FiniteSet(H, T)
square = unit_line * unit_line
assert (0, 0) in square
assert 0 not in square
assert (H, T) in coin ** 2
assert (.5, .5, .5) in (square * unit_line).flatten()
assert ((.5, .5), .5) in square * unit_line
assert (H, 3, 3) in (coin * d6 * d6).flatten()
assert ((H, 3), 3) in coin * d6 * d6
HH, TT = sympify(H), sympify(T)
assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)}
assert (d4*d4).is_subset(d6*d6)
assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True))*Interval(-oo, oo),
Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
Interval(1, oo, True, True)))
assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)
assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square
assert len(coin*coin*coin) == 8
assert len(S.EmptySet*S.EmptySet) == 0
assert len(S.EmptySet*coin) == 0
raises(TypeError, lambda: len(coin*Interval(0, 2)))
def test_real():
x = Symbol('x', real=True)
I = Interval(0, 5)
J = Interval(10, 20)
A = FiniteSet(1, 2, 30, x, S.Pi)
B = FiniteSet(-4, 0)
C = FiniteSet(100)
D = FiniteSet('Ham', 'Eggs')
assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
assert not D.is_subset(S.Reals)
assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])
assert not (I + A + D).is_subset(S.Reals)
def test_supinf():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert (Interval(0, 1) + FiniteSet(2)).sup == 2
assert (Interval(0, 1) + FiniteSet(2)).inf == 0
assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
assert FiniteSet(5, 1, x).sup == Max(5, x)
assert FiniteSet(5, 1, x).inf == Min(1, x)
assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
S.Infinity
assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
S.NegativeInfinity
assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')
def test_universalset():
U = S.UniversalSet
x = Symbol('x')
assert U.as_relational(x) is S.true
assert U.union(Interval(2, 4)) == U
assert U.intersect(Interval(2, 4)) == Interval(2, 4)
assert U.measure is S.Infinity
assert U.boundary == S.EmptySet
assert U.contains(0) is S.true
def test_Union_of_ProductSets_shares():
line = Interval(0, 2)
points = FiniteSet(0, 1, 2)
assert Union(line * line, line * points) == line * line
def test_Interval_free_symbols():
# issue 6211
assert Interval(0, 1).free_symbols == set()
x = Symbol('x', real=True)
assert Interval(0, x).free_symbols == {x}
def test_image_interval():
x = Symbol('x', real=True)
a = Symbol('a', real=True)
assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
Interval(-4, 2, True, False)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
Interval(0, 4, False, True)
assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
Interval(0, 4, False, True)
assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
Interval(-35, 0) # Multiple Maxima
assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
+ Interval(2, oo) # Single Infinite discontinuity
assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities
# Test for Python lambda
assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)
assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
ImageSet(Lambda(x, a*x), Interval(0, 1))
assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))
def test_image_piecewise():
f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)
@XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
def test_image_Intersection():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))
def test_image_FiniteSet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)
def test_image_Union():
x = Symbol('x', real=True)
assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
(Interval(0, 4) + FiniteSet(9))
def test_image_EmptySet():
x = Symbol('x', real=True)
assert imageset(x, 2*x, S.EmptySet) == S.EmptySet
def test_issue_5724_7680():
assert I not in S.Reals # issue 7680
assert Interval(-oo, oo).contains(I) is S.false
def test_boundary():
assert FiniteSet(1).boundary == FiniteSet(1)
assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
for left_open in (true, false) for right_open in (true, false))
def test_boundary_Union():
assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
assert ((Interval(0, 1, False, True)
+ Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))
assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
== FiniteSet(0, 10)
assert Union(Interval(0, 10, True, True),
Interval(10, 15, True, True), evaluate=False).boundary \
== FiniteSet(0, 10, 15)
@XFAIL
def test_union_boundary_of_joining_sets():
""" Testing the boundary of unions is a hard problem """
assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
== FiniteSet(0, 15)
def test_boundary_ProductSet():
open_square = Interval(0, 1, True, True) ** 2
assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1))
second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
assert (open_square + second_square).boundary == (
FiniteSet(0, 1) * Interval(0, 1)
+ FiniteSet(1, 2) * Interval(0, 1)
+ Interval(0, 1) * FiniteSet(0, 1)
+ Interval(1, 2) * FiniteSet(0, 1))
def test_boundary_ProductSet_line():
line_in_r2 = Interval(0, 1) * FiniteSet(0)
assert line_in_r2.boundary == line_in_r2
def test_is_open():
assert Interval(0, 1, False, False).is_open is False
assert Interval(0, 1, True, False).is_open is False
assert Interval(0, 1, True, True).is_open is True
assert FiniteSet(1, 2, 3).is_open is False
def test_is_closed():
assert Interval(0, 1, False, False).is_closed is True
assert Interval(0, 1, True, False).is_closed is False
assert FiniteSet(1, 2, 3).is_closed is True
def test_closure():
assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)
def test_interior():
assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)
def test_issue_7841():
raises(TypeError, lambda: x in S.Reals)
def test_Eq():
assert Eq(Interval(0, 1), Interval(0, 1))
assert Eq(Interval(0, 1), Interval(0, 2)) == False
s1 = FiniteSet(0, 1)
s2 = FiniteSet(1, 2)
assert Eq(s1, s1)
assert Eq(s1, s2) == False
assert Eq(s1*s2, s1*s2)
assert Eq(s1*s2, s2*s1) == False
assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false
assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false
assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false
assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
assert Eq(ProductSet(), FiniteSet(1)) is S.false
i1 = Interval(0, 1)
i2 = Interval(x, y)
assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))
def test_SymmetricDifference():
A = FiniteSet(0, 1, 2, 3, 4, 5)
B = FiniteSet(2, 4, 6, 8, 10)
C = Interval(8, 10)
assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
FiniteSet(0, 1, 3, 5, 6, 8, 10)
raises(TypeError,
lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))
assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \
== FiniteSet(5)
assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
FiniteSet(3, 4, 6)
assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \
Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3)))
assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
Interval(2, 5), Interval(2, 5) - Interval(0, 4))
def test_issue_9536():
from sympy.functions.elementary.exponential import log
a = Symbol('a', real=True)
assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))
def test_issue_9637():
n = Symbol('n')
a = FiniteSet(n)
b = FiniteSet(2, n)
assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
assert Complement(Interval(1, 3), b) == \
Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)
def test_issue_9808():
# See https://github.com/sympy/sympy/issues/16342
assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
Complement(FiniteSet(1), FiniteSet(y), evaluate=False)
def test_issue_9956():
assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
assert Interval(-oo, oo).contains(1) is S.true
def test_issue_Symbol_inter():
i = Interval(0, oo)
r = S.Reals
mat = Matrix([0, 0, 0])
assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
Intersection(i, FiniteSet(m))
assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
Intersection(i, FiniteSet(m, n))
assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
Intersection(Intersection({m, z}, {m, n, x}), r)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
Intersection(FiniteSet(3, m, n), r)
assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
Intersection(r, FiniteSet(n))
assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
Intersection(r, FiniteSet(sin(x), cos(x)))
assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
Intersection(r, FiniteSet(x**2, sin(x)))
def test_issue_11827():
assert S.Naturals0**4
def test_issue_10113():
f = x**2/(x**2 - 4)
assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))
def test_issue_10248():
raises(
TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
)
A = Symbol('A', real=True)
assert list(Intersection(S.Reals, FiniteSet(A))) == [A]
def test_issue_9447():
a = Interval(0, 1) + Interval(2, 3)
assert Complement(S.UniversalSet, a) == Complement(
S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
assert Complement(S.Naturals, a) == Complement(
S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
def test_issue_10337():
assert (FiniteSet(2) == 3) is False
assert (FiniteSet(2) != 3) is True
raises(TypeError, lambda: FiniteSet(2) < 3)
raises(TypeError, lambda: FiniteSet(2) <= 3)
raises(TypeError, lambda: FiniteSet(2) > 3)
raises(TypeError, lambda: FiniteSet(2) >= 3)
def test_issue_10326():
bad = [
EmptySet,
FiniteSet(1),
Interval(1, 2),
S.ComplexInfinity,
S.ImaginaryUnit,
S.Infinity,
S.NaN,
S.NegativeInfinity,
]
interval = Interval(0, 5)
for i in bad:
assert i not in interval
x = Symbol('x', real=True)
nr = Symbol('nr', extended_real=False)
assert x + 1 in Interval(x, x + 4)
assert nr not in Interval(x, x + 4)
assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
assert Interval(-oo, oo).contains(oo) is S.false
assert Interval(-oo, oo).contains(-oo) is S.false
def test_issue_2799():
U = S.UniversalSet
a = Symbol('a', real=True)
inf_interval = Interval(a, oo)
R = S.Reals
assert U + inf_interval == inf_interval + U
assert U + R == R + U
assert R + inf_interval == inf_interval + R
def test_issue_9706():
assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
assert Interval(0, oo).closure == Interval(0, oo, False, True)
assert Interval(-oo, oo).closure == Interval(-oo, oo)
def test_issue_8257():
reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity
def test_issue_10931():
assert S.Integers - S.Integers == EmptySet
assert S.Integers - S.Reals == EmptySet
def test_issue_11174():
soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
assert Intersection(FiniteSet(-x), S.Reals) == soln
soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
assert Intersection(FiniteSet(x), S.Reals) == soln
def test_issue_18505():
assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \
Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers))
def test_finite_set_intersection():
# The following should not produce recursion errors
# Note: some of these are not completely correct. See
# https://github.com/sympy/sympy/issues/16342.
assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))
assert FiniteSet(1+x-y) & FiniteSet(1) == \
FiniteSet(1) & FiniteSet(1+x-y) == \
Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)
assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)
assert FiniteSet({x}) & FiniteSet({x, y}) == \
Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)
def test_union_intersection_constructor():
# The actual exception does not matter here, so long as these fail
sets = [FiniteSet(1), FiniteSet(2)]
raises(Exception, lambda: Union(sets))
raises(Exception, lambda: Intersection(sets))
raises(Exception, lambda: Union(tuple(sets)))
raises(Exception, lambda: Intersection(tuple(sets)))
raises(Exception, lambda: Union(i for i in sets))
raises(Exception, lambda: Intersection(i for i in sets))
# Python sets are treated the same as FiniteSet
# The union of a single set (of sets) is the set (of sets) itself
assert Union(set(sets)) == FiniteSet(*sets)
assert Intersection(set(sets)) == FiniteSet(*sets)
assert Union({1}, {2}) == FiniteSet(1, 2)
assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)
def test_Union_contains():
assert zoo not in Union(
Interval.open(-oo, 0), Interval.open(0, oo))
@XFAIL
def test_issue_16878b():
# in intersection_sets for (ImageSet, Set) there is no code
# that handles the base_set of S.Reals like there is
# for Integers
assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True
def test_DisjointUnion():
assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2))
assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1))
assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1))
assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1)
assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0)
assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet
assert DisjointUnion().rewrite(Union) == S.EmptySet
raises(TypeError, lambda: DisjointUnion(Symbol('n')))
x = Symbol("x")
y = Symbol("y")
z = Symbol("z")
assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1))
def test_DisjointUnion_is_empty():
assert DisjointUnion(S.EmptySet).is_empty is True
assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True
assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False
def test_DisjointUnion_is_iterable():
assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True
assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False
assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True
assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False
def test_DisjointUnion_contains():
assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5))
assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2))
assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
def test_DisjointUnion_iter():
D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))
it = iter(D)
L1 = [(x, 1), (y, 1), (z, 1)]
L2 = [(3, 0), (5, 0), (7, 0), (9, 0)]
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
nxt = next(it)
assert nxt in L1
L1.remove(nxt)
nxt = next(it)
assert nxt in L2
L2.remove(nxt)
raises(StopIteration, lambda: next(it))
raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet)))
def test_DisjointUnion_len():
assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7
assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3
raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet)))
def test_SetKind_ProductSet():
p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2])))
mk = MatrixKind(NumberKind)
k = SetKind(TupleKind(mk, mk))
assert p.kind is k
assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk))
def test_SetKind_Interval():
assert Interval(1, 2).kind is SetKind(NumberKind)
def test_SetKind_EmptySet_UniversalSet():
assert S.UniversalSet.kind is SetKind(UndefinedKind)
assert EmptySet.kind is SetKind()
def test_SetKind_FiniteSet():
assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind)
assert FiniteSet(1, 2).kind is SetKind(NumberKind)
def test_SetKind_Unions():
assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind)
assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind)
def test_SetKind_DisjointUnion():
A = FiniteSet(1, 2, 3)
B = Interval(0, 5)
assert DisjointUnion(A, B).kind is SetKind(NumberKind)
def test_SetKind_evaluate_False():
U = lambda *args: Union(*args, evaluate=False)
assert U({1}, EmptySet).kind is SetKind(NumberKind)
assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind)
assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind)
assert U(Interval(1, 2), Interval(4, 5),
FiniteSet(1)).kind is SetKind(NumberKind)
I = lambda *args: Intersection(*args, evaluate=False)
assert I({1}, S.UniversalSet).kind is SetKind(NumberKind)
assert I({1}, EmptySet).kind is SetKind()
C = lambda *args: Complement(*args, evaluate=False)
assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind)
assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind)
assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind()
def test_SetKind_ImageSet_Special():
f = ImageSet(Lambda(n, n ** 2), Interval(1, 4))
assert (f - FiniteSet(3)).kind is SetKind(NumberKind)
assert (f + Interval(16, 17)).kind is SetKind(NumberKind)
assert (f + FiniteSet(17)).kind is SetKind(NumberKind)
def test_issue_20089():
B = FiniteSet(FiniteSet(1, 2), FiniteSet(1))
assert 1 not in B
assert 1.0 not in B
assert not Eq(1, FiniteSet(1, 2))
assert FiniteSet(1) in B
A = FiniteSet(1, 2)
assert A in B
assert B.issubset(B)
assert not A.issubset(B)
assert 1 in A
C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2)
assert A.issubset(C)
assert B.issubset(C)
def test_issue_19378():
a = FiniteSet(1, 2)
b = ProductSet(a, a)
c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2))
assert b.is_subset(c) is True
d = FiniteSet(1)
assert b.is_subset(d) is False
assert Eq(c, b).simplify() is S.true
assert Eq(a, c).simplify() is S.false
assert Eq({1}, {x}).simplify() == Eq({1}, {x})
def test_intersection_symbolic():
n = Symbol('n')
# These should not throw an error
assert isinstance(Intersection(Range(n), Range(100)), Intersection)
assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection)
assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection)
@XFAIL
def test_intersection_symbolic_failing():
n = Symbol('n', integer=True, positive=True)
assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection(
Range(14, n), Range(14, 500, 5))
assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection(
Interval(14, n), Range(14, 500, 5))
def test_issue_20379():
#https://github.com/sympy/sympy/issues/20379
x = pi - 3.14159265358979
assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2))
def test_finiteset_simplify():
S = FiniteSet(1, cos(1)**2 + sin(1)**2)
assert S.simplify() == {1}
def test_issue_14336():
#https://github.com/sympy/sympy/issues/14336
U = S.Complexes
x = Symbol("x")
U -= U.intersect(Ne(x, 1).as_set())
U -= U.intersect(S.true.as_set())
def test_issue_9855():
#https://github.com/sympy/sympy/issues/9855
x, y, z = symbols('x, y, z', real=True)
s1 = Interval(1, x) & Interval(y, 2)
s2 = Interval(1, 2)
assert s1.is_subset(s2) == None
|