File size: 68,544 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.containers import TupleKind
from sympy.core.function import Lambda
from sympy.core.kind import NumberKind, UndefinedKind
from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.logic.boolalg import (false, true)
from sympy.matrices.kind import MatrixKind
from sympy.matrices.dense import Matrix
from sympy.polys.rootoftools import rootof
from sympy.sets.contains import Contains
from sympy.sets.fancysets import (ImageSet, Range)
from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset, SetKind)
from mpmath import mpi

from sympy.core.expr import unchanged
from sympy.core.relational import Eq, Ne, Le, Lt, LessThan
from sympy.logic import And, Or, Xor
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
from sympy.utilities.iterables import cartes

from sympy.abc import x, y, z, m, n

EmptySet = S.EmptySet

def test_imageset():
    ints = S.Integers
    assert imageset(x, x - 1, S.Naturals) is S.Naturals0
    assert imageset(x, x + 1, S.Naturals0) is S.Naturals
    assert imageset(x, abs(x), S.Naturals0) is S.Naturals0
    assert imageset(x, abs(x), S.Naturals) is S.Naturals
    assert imageset(x, abs(x), S.Integers) is S.Naturals0
    # issue 16878a
    r = symbols('r', real=True)
    assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None
    assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False
    assert (r, r) in imageset(x, (x, x), S.Reals)
    assert 1 + I in imageset(x, x + I, S.Reals)
    assert {1} not in imageset(x, (x,), S.Reals)
    assert (1, 1) not in imageset(x, (x,), S.Reals)
    raises(TypeError, lambda: imageset(x, ints))
    raises(ValueError, lambda: imageset(x, y, z, ints))
    raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y))
    assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints)
    raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints))
    assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints)
    def f(x):
        return cos(x)
    assert imageset(f, ints) == imageset(x, cos(x), ints)
    f = lambda x: cos(x)
    assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints)
    assert imageset(x, 1, ints) == FiniteSet(1)
    assert imageset(x, y, ints) == {y}
    assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)}
    clash = Symbol('x', integer=true)
    assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr)
        in ('x0 + x', 'x + x0'))
    x1, x2 = symbols("x1, x2")
    assert imageset(lambda x, y:
        Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq(
        ImageSet(Lambda((x1, x2), x1 + x2),
        Interval(1, 2), Interval(2, 3)))


def test_is_empty():
    for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
            S.UniversalSet]:
        assert s.is_empty is False

    assert S.EmptySet.is_empty is True


def test_is_finiteset():
    for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals,
            S.UniversalSet]:
        assert s.is_finite_set is False

    assert S.EmptySet.is_finite_set is True

    assert FiniteSet(1, 2).is_finite_set is True
    assert Interval(1, 2).is_finite_set is False
    assert Interval(x, y).is_finite_set is None
    assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True
    assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False
    assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None
    assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False
    assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False
    assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True
    assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None
    assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True
    assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None
    assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True
    assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True
    assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None
    assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False
    assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False
    assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True


def test_deprecated_is_EmptySet():
    with warns_deprecated_sympy():
        S.EmptySet.is_EmptySet

    with warns_deprecated_sympy():
        FiniteSet(1).is_EmptySet


def test_interval_arguments():
    assert Interval(0, oo) == Interval(0, oo, False, True)
    assert Interval(0, oo).right_open is true
    assert Interval(-oo, 0) == Interval(-oo, 0, True, False)
    assert Interval(-oo, 0).left_open is true
    assert Interval(oo, -oo) == S.EmptySet
    assert Interval(oo, oo) == S.EmptySet
    assert Interval(-oo, -oo) == S.EmptySet
    assert Interval(oo, x) == S.EmptySet
    assert Interval(oo, oo) == S.EmptySet
    assert Interval(x, -oo) == S.EmptySet
    assert Interval(x, x) == {x}

    assert isinstance(Interval(1, 1), FiniteSet)
    e = Sum(x, (x, 1, 3))
    assert isinstance(Interval(e, e), FiniteSet)

    assert Interval(1, 0) == S.EmptySet
    assert Interval(1, 1).measure == 0

    assert Interval(1, 1, False, True) == S.EmptySet
    assert Interval(1, 1, True, False) == S.EmptySet
    assert Interval(1, 1, True, True) == S.EmptySet


    assert isinstance(Interval(0, Symbol('a')), Interval)
    assert Interval(Symbol('a', positive=True), 0) == S.EmptySet
    raises(ValueError, lambda: Interval(0, S.ImaginaryUnit))
    raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False)))
    raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit))

    raises(NotImplementedError, lambda: Interval(0, 1, And(x, y)))
    raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y)))
    raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y)))


def test_interval_symbolic_end_points():
    a = Symbol('a', real=True)

    assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3)
    assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a)

    assert Interval(0, a).contains(1) == LessThan(1, a)


def test_interval_is_empty():
    x, y = symbols('x, y')
    r = Symbol('r', real=True)
    p = Symbol('p', positive=True)
    n = Symbol('n', negative=True)
    nn = Symbol('nn', nonnegative=True)
    assert Interval(1, 2).is_empty == False
    assert Interval(3, 3).is_empty == False  # FiniteSet
    assert Interval(r, r).is_empty == False  # FiniteSet
    assert Interval(r, r + nn).is_empty == False
    assert Interval(x, x).is_empty == False
    assert Interval(1, oo).is_empty == False
    assert Interval(-oo, oo).is_empty == False
    assert Interval(-oo, 1).is_empty == False
    assert Interval(x, y).is_empty == None
    assert Interval(r, oo).is_empty == False  # real implies finite
    assert Interval(n, 0).is_empty == False
    assert Interval(n, 0, left_open=True).is_empty == False
    assert Interval(p, 0).is_empty == True  # EmptySet
    assert Interval(nn, 0).is_empty == None
    assert Interval(n, p).is_empty == False
    assert Interval(0, p, left_open=True).is_empty == False
    assert Interval(0, p, right_open=True).is_empty == False
    assert Interval(0, nn, left_open=True).is_empty == None
    assert Interval(0, nn, right_open=True).is_empty == None


def test_union():
    assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3)
    assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3)
    assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4)
    assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3)
    assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3)
    assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \
        Interval(1, 3, False, True)
    assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3)
    assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3)
    assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \
        Interval(1, 3, True)
    assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \
        Interval(1, 3, True, True)
    assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \
        Interval(1, 3, True)
    assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3)
    assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \
        Interval(1, 3)
    assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \
        Interval(1, 3)
    assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2)
    assert Union(S.EmptySet) == S.EmptySet

    assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \
        Interval(0, 1)
    # issue #18241:
    x = Symbol('x')
    assert Union(Interval(0, 1), FiniteSet(1, x)) == Union(
        Interval(0, 1), FiniteSet(x))
    assert unchanged(Union, Interval(0, 1), FiniteSet(2, x))

    assert Interval(1, 2).union(Interval(2, 3)) == \
        Interval(1, 2) + Interval(2, 3)

    assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3)

    assert Union(Set()) == Set()

    assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3)
    assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs')
    assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3)

    assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3)
    assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4)

    assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet
    assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3)

    x = Symbol("x")
    y = Symbol("y")
    z = Symbol("z")
    assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \
        FiniteSet(x, FiniteSet(y, z))

    # Test that Intervals and FiniteSets play nicely
    assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3)
    assert Interval(1, 3, True, True) + FiniteSet(3) == \
        Interval(1, 3, True, False)
    X = Interval(1, 3) + FiniteSet(5)
    Y = Interval(1, 2) + FiniteSet(3)
    XandY = X.intersect(Y)
    assert 2 in X and 3 in X and 3 in XandY
    assert XandY.is_subset(X) and XandY.is_subset(Y)

    raises(TypeError, lambda: Union(1, 2, 3))

    assert X.is_iterable is False

    # issue 7843
    assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \
        FiniteSet(-sqrt(-I), sqrt(-I))

    assert Union(S.Reals, S.Integers) == S.Reals


def test_union_iter():
    # Use Range because it is ordered
    u = Union(Range(3), Range(5), Range(4), evaluate=False)

    # Round robin
    assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4]


def test_union_is_empty():
    assert (Interval(x, y) + FiniteSet(1)).is_empty == False
    assert (Interval(x, y) + Interval(-x, y)).is_empty == None


def test_difference():
    assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True)
    assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True)
    assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True)
    assert Interval(1, 3, True) - Interval(2, 3, True) == \
        Interval(1, 2, True, False)
    assert Interval(0, 2) - FiniteSet(1) == \
        Union(Interval(0, 1, False, True), Interval(1, 2, True, False))

    # issue #18119
    assert S.Reals - FiniteSet(I) == S.Reals
    assert S.Reals - FiniteSet(-I, I) == S.Reals
    assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10)
    assert Interval(0, 10) - FiniteSet(1, I) == Union(
        Interval.Ropen(0, 1), Interval.Lopen(1, 10))
    assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement(
        Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2),
        evaluate=False)

    assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3)
    assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham')
    assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \
        FiniteSet(1, 2)
    assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4)
    assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \
        Union(Interval(0, 1, False, True), FiniteSet(4))

    assert -1 in S.Reals - S.Naturals


def test_Complement():
    A = FiniteSet(1, 3, 4)
    B = FiniteSet(3, 4)
    C = Interval(1, 3)
    D = Interval(1, 2)

    assert Complement(A, B, evaluate=False).is_iterable is True
    assert Complement(A, C, evaluate=False).is_iterable is True
    assert Complement(C, D, evaluate=False).is_iterable is None

    assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1)
    assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4)
    raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False)))

    assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True)
    assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1)
    assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)),
                      Interval(1, 3)) == \
        Union(Interval(0, 1, False, True), FiniteSet(4))

    assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False)
    assert -1 in Complement(S.Reals, S.Naturals, evaluate=False)
    assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False)

    assert Complement(S.Integers, S.UniversalSet) == EmptySet
    assert S.UniversalSet.complement(S.Integers) == EmptySet

    assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0)))

    assert S.EmptySet - S.Integers == S.EmptySet

    assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1)

    assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \
            Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi))
    # issue 12712
    assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \
            Complement(FiniteSet(x, y), Interval(-10, 10))

    A = FiniteSet(*symbols('a:c'))
    B = FiniteSet(*symbols('d:f'))
    assert unchanged(Complement, ProductSet(A, A), B)

    A2 = ProductSet(A, A)
    B3 = ProductSet(B, B, B)
    assert A2 - B3 == A2
    assert B3 - A2 == B3


def test_set_operations_nonsets():
    '''Tests that e.g. FiniteSet(1) * 2 raises TypeError'''
    ops = [
        lambda a, b: a + b,
        lambda a, b: a - b,
        lambda a, b: a * b,
        lambda a, b: a / b,
        lambda a, b: a // b,
        lambda a, b: a | b,
        lambda a, b: a & b,
        lambda a, b: a ^ b,
        # FiniteSet(1) ** 2 gives a ProductSet
        #lambda a, b: a ** b,
    ]
    Sx = FiniteSet(x)
    Sy = FiniteSet(y)
    sets = [
        {1},
        FiniteSet(1),
        Interval(1, 2),
        Union(Sx, Interval(1, 2)),
        Intersection(Sx, Sy),
        Complement(Sx, Sy),
        ProductSet(Sx, Sy),
        S.EmptySet,
    ]
    nums = [0, 1, 2, S(0), S(1), S(2)]

    for si in sets:
        for ni in nums:
            for op in ops:
                raises(TypeError, lambda : op(si, ni))
                raises(TypeError, lambda : op(ni, si))
        raises(TypeError, lambda: si ** object())
        raises(TypeError, lambda: si ** {1})


def test_complement():
    assert Complement({1, 2}, {1}) == {2}
    assert Interval(0, 1).complement(S.Reals) == \
        Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True))
    assert Interval(0, 1, True, False).complement(S.Reals) == \
        Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True))
    assert Interval(0, 1, False, True).complement(S.Reals) == \
        Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True))
    assert Interval(0, 1, True, True).complement(S.Reals) == \
        Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True))

    assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet
    assert S.UniversalSet.complement(S.Reals) == S.EmptySet
    assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet

    assert S.EmptySet.complement(S.Reals) == S.Reals

    assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \
        Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True),
              Interval(3, oo, True, True))

    assert FiniteSet(0).complement(S.Reals) ==  \
        Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True))

    assert (FiniteSet(5) + Interval(S.NegativeInfinity,
                                    0)).complement(S.Reals) == \
        Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True)

    assert FiniteSet(1, 2, 3).complement(S.Reals) == \
        Interval(S.NegativeInfinity, 1, True, True) + \
        Interval(1, 2, True, True) + Interval(2, 3, True, True) +\
        Interval(3, S.Infinity, True, True)

    assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x))

    assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) +
                                                             Interval(0, oo, True, True)
                                                             , FiniteSet(x), evaluate=False)

    square = Interval(0, 1) * Interval(0, 1)
    notsquare = square.complement(S.Reals*S.Reals)

    assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
    assert not any(
        pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)])
    assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)])
    assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)])


def test_intersect1():
    assert all(S.Integers.intersection(i) is i for i in
        (S.Naturals, S.Naturals0))
    assert all(i.intersection(S.Integers) is i for i in
        (S.Naturals, S.Naturals0))
    s =  S.Naturals0
    assert S.Naturals.intersection(s) is S.Naturals
    assert s.intersection(S.Naturals) is S.Naturals
    x = Symbol('x')
    assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2)
    assert Interval(0, 2).intersect(Interval(1, 2, True)) == \
        Interval(1, 2, True)
    assert Interval(0, 2, True).intersect(Interval(1, 2)) == \
        Interval(1, 2, False, False)
    assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \
        Interval(1, 2, False, True)
    assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \
        Union(Interval(0, 1), Interval(2, 2))

    assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2)
    assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x)
    assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \
        FiniteSet('ham')
    assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet

    assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3)
    assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet

    assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \
        Union(Interval(1, 1), Interval(2, 2))
    assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \
        Union(Interval(0, 1), Interval(2, 2))
    assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \
        S.EmptySet
    assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \
        S.EmptySet
    assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \
        Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5)))
    assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \
        Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False)
    assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \
        Intersection({1, 2}, Interval(x, y), evaluate=False)
    assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \
        Intersection({1, 2}, Interval(x, y), evaluate=False)
    # XXX: Is the real=True necessary here?
    # https://github.com/sympy/sympy/issues/17532
    m, n = symbols('m, n', real=True)
    assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \
        FiniteSet(m)

    # issue 8217
    assert Intersection(FiniteSet(x), FiniteSet(y)) == \
        Intersection(FiniteSet(x), FiniteSet(y), evaluate=False)
    assert FiniteSet(x).intersect(S.Reals) == \
        Intersection(S.Reals, FiniteSet(x), evaluate=False)

    # tests for the intersection alias
    assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3)
    assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet

    assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \
        Union(Interval(1, 1), Interval(2, 2))

    # canonical boundary selected
    a = sqrt(2*sqrt(6) + 5)
    b = sqrt(2) + sqrt(3)
    assert Interval(a, 4).intersection(Interval(b, 5)) == Interval(b, 4)
    assert Interval(1, a).intersection(Interval(0, b)) == Interval(1, b)


def test_intersection_interval_float():
    # intersection of Intervals with mixed Rational/Float boundaries should
    # lead to Float boundaries in all cases regardless of which Interval is
    # open or closed.
    typs = [
        (Interval, Interval, Interval),
        (Interval, Interval.open, Interval.open),
        (Interval, Interval.Lopen, Interval.Lopen),
        (Interval, Interval.Ropen, Interval.Ropen),
        (Interval.open, Interval.open, Interval.open),
        (Interval.open, Interval.Lopen, Interval.open),
        (Interval.open, Interval.Ropen, Interval.open),
        (Interval.Lopen, Interval.Lopen, Interval.Lopen),
        (Interval.Lopen, Interval.Ropen, Interval.open),
        (Interval.Ropen, Interval.Ropen, Interval.Ropen),
    ]

    as_float = lambda a1, a2: a2 if isinstance(a2, float) else a1

    for t1, t2, t3 in typs:
        for t1i, t2i in [(t1, t2), (t2, t1)]:
            for a1, a2, b1, b2 in cartes([2, 2.0], [2, 2.0], [3, 3.0], [3, 3.0]):
                I1 = t1(a1, b1)
                I2 = t2(a2, b2)
                I3 = t3(as_float(a1, a2), as_float(b1, b2))
                assert I1.intersect(I2) == I3


def test_intersection():
    # iterable
    i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False)
    assert i.is_iterable
    assert set(i) == {S(2), S(3)}

    # challenging intervals
    x = Symbol('x', real=True)
    i = Intersection(Interval(0, 3), Interval(x, 6))
    assert (5 in i) is False
    raises(TypeError, lambda: 2 in i)

    # Singleton special cases
    assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet
    assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x)

    # Products
    line = Interval(0, 5)
    i = Intersection(line**2, line**3, evaluate=False)
    assert (2, 2) not in i
    assert (2, 2, 2) not in i
    raises(TypeError, lambda: list(i))

    a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False)
    assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals])

    assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet

    # issue 12178
    assert Intersection() == S.UniversalSet

    # issue 16987
    assert Intersection({1}, {1}, {x}) == Intersection({1}, {x})


def test_issue_9623():
    n = Symbol('n')

    a = S.Reals
    b = Interval(0, oo)
    c = FiniteSet(n)

    assert Intersection(a, b, c) == Intersection(b, c)
    assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet


def test_is_disjoint():
    assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False
    assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True


def test_ProductSet__len__():
    A = FiniteSet(1, 2)
    B = FiniteSet(1, 2, 3)
    assert ProductSet(A).__len__() == 2
    assert ProductSet(A).__len__() is not S(2)
    assert ProductSet(A, B).__len__() == 6
    assert ProductSet(A, B).__len__() is not S(6)


def test_ProductSet():
    # ProductSet is always a set of Tuples
    assert ProductSet(S.Reals) == S.Reals ** 1
    assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2
    assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3

    assert ProductSet(S.Reals) != S.Reals
    assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals
    assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals
    assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten()

    assert 1 not in ProductSet(S.Reals)
    assert (1,) in ProductSet(S.Reals)

    assert 1 not in ProductSet(S.Reals, S.Reals)
    assert (1, 2) in ProductSet(S.Reals, S.Reals)
    assert (1, I) not in ProductSet(S.Reals, S.Reals)

    assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals)
    assert (1, 2, 3) in S.Reals ** 3
    assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals
    assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals
    assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals
    assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals)

    assert ProductSet() == FiniteSet(())
    assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet

    # See GH-17458

    for ni in range(5):
        Rn = ProductSet(*(S.Reals,) * ni)
        assert (1,) * ni in Rn
        assert 1 not in Rn

    assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals)

    S1 = S.Reals
    S2 = S.Integers
    x1 = pi
    x2 = 3
    assert x1 in S1
    assert x2 in S2
    assert (x1, x2) in S1 * S2
    S3 = S1 * S2
    x3 = (x1, x2)
    assert x3 in S3
    assert (x3, x3) in S3 * S3
    assert x3 + x3 not in S3 * S3

    raises(ValueError, lambda: S.Reals**-1)
    with warns_deprecated_sympy():
        ProductSet(FiniteSet(s) for s in range(2))
    raises(TypeError, lambda: ProductSet(None))

    S1 = FiniteSet(1, 2)
    S2 = FiniteSet(3, 4)
    S3 = ProductSet(S1, S2)
    assert (S3.as_relational(x, y)
            == And(S1.as_relational(x), S2.as_relational(y))
            == And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4))))
    raises(ValueError, lambda: S3.as_relational(x))
    raises(ValueError, lambda: S3.as_relational(x, 1))
    raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y))

    Z2 = ProductSet(S.Integers, S.Integers)
    assert Z2.contains((1, 2)) is S.true
    assert Z2.contains((1,)) is S.false
    assert Z2.contains(x) == Contains(x, Z2, evaluate=False)
    assert Z2.contains(x).subs(x, 1) is S.false
    assert Z2.contains((x, 1)).subs(x, 2) is S.true
    assert Z2.contains((x, y)) == Contains(x, S.Integers) & Contains(y, S.Integers)
    assert unchanged(Contains, (x, y), Z2)
    assert Contains((1, 2), Z2) is S.true


def test_ProductSet_of_single_arg_is_not_arg():
    assert unchanged(ProductSet, Interval(0, 1))
    assert unchanged(ProductSet, ProductSet(Interval(0, 1)))


def test_ProductSet_is_empty():
    assert ProductSet(S.Integers, S.Reals).is_empty == False
    assert ProductSet(Interval(x, 1), S.Reals).is_empty == None


def test_interval_subs():
    a = Symbol('a', real=True)

    assert Interval(0, a).subs(a, 2) == Interval(0, 2)
    assert Interval(a, 0).subs(a, 2) == S.EmptySet


def test_interval_to_mpi():
    assert Interval(0, 1).to_mpi() == mpi(0, 1)
    assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1)
    assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1))


def test_set_evalf():
    assert Interval(S(11)/64, S.Half).evalf() == Interval(
        Float('0.171875'), Float('0.5'))
    assert Interval(x, S.Half, right_open=True).evalf() == Interval(
        x, Float('0.5'), right_open=True)
    assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5'))
    assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x)


def test_measure():
    a = Symbol('a', real=True)

    assert Interval(1, 3).measure == 2
    assert Interval(0, a).measure == a
    assert Interval(1, a).measure == a - 1

    assert Union(Interval(1, 2), Interval(3, 4)).measure == 2
    assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \
        == 2

    assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0

    assert S.EmptySet.measure == 0

    square = Interval(0, 10) * Interval(0, 10)
    offsetsquare = Interval(5, 15) * Interval(5, 15)
    band = Interval(-oo, oo) * Interval(2, 4)

    assert square.measure == offsetsquare.measure == 100
    assert (square + offsetsquare).measure == 175  # there is some overlap
    assert (square - offsetsquare).measure == 75
    assert (square * FiniteSet(1, 2, 3)).measure == 0
    assert (square.intersect(band)).measure == 20
    assert (square + band).measure is oo
    assert (band * FiniteSet(1, 2, 3)).measure is nan


def test_is_subset():
    assert Interval(0, 1).is_subset(Interval(0, 2)) is True
    assert Interval(0, 3).is_subset(Interval(0, 2)) is False
    assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False

    assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4))
    assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False
    assert FiniteSet(1).is_subset(Interval(0, 2))
    assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False
    assert (Interval(1, 2) + FiniteSet(3)).is_subset(
        Interval(0, 2, False, True) + FiniteSet(2, 3))

    assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True
    assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False

    assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True
    assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True

    assert Interval(0, 1).is_subset(S.EmptySet) is False
    assert S.EmptySet.is_subset(S.EmptySet) is True

    raises(ValueError, lambda: S.EmptySet.is_subset(1))

    # tests for the issubset alias
    assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True
    assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True

    assert S.Naturals.is_subset(S.Integers)
    assert S.Naturals0.is_subset(S.Integers)

    assert FiniteSet(x).is_subset(FiniteSet(y)) is None
    assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True
    assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False

    assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False
    assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False

    n = Symbol('n', integer=True)
    assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False
    assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False
    assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True
    assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False
    assert Range(-oo, 1).is_subset(FiniteSet(1)) is False
    assert Range(3).is_subset(FiniteSet(0, 1, n)) is None
    assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True
    assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False
    #issue 19513
    assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None

def test_is_proper_subset():
    assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True
    assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False
    assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True

    raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0))


def test_is_superset():
    assert Interval(0, 1).is_superset(Interval(0, 2)) == False
    assert Interval(0, 3).is_superset(Interval(0, 2))

    assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False
    assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False
    assert FiniteSet(1).is_superset(Interval(0, 2)) == False
    assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False
    assert (Interval(1, 2) + FiniteSet(3)).is_superset(
        Interval(0, 2, False, True) + FiniteSet(2, 3)) == False

    assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False

    assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False
    assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False

    assert Interval(0, 1).is_superset(S.EmptySet) == True
    assert S.EmptySet.is_superset(S.EmptySet) == True

    raises(ValueError, lambda: S.EmptySet.is_superset(1))

    # tests for the issuperset alias
    assert Interval(0, 1).issuperset(S.EmptySet) == True
    assert S.EmptySet.issuperset(S.EmptySet) == True


def test_is_proper_superset():
    assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False
    assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True
    assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True

    raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0))


def test_contains():
    assert Interval(0, 2).contains(1) is S.true
    assert Interval(0, 2).contains(3) is S.false
    assert Interval(0, 2, True, False).contains(0) is S.false
    assert Interval(0, 2, True, False).contains(2) is S.true
    assert Interval(0, 2, False, True).contains(0) is S.true
    assert Interval(0, 2, False, True).contains(2) is S.false
    assert Interval(0, 2, True, True).contains(0) is S.false
    assert Interval(0, 2, True, True).contains(2) is S.false

    assert (Interval(0, 2) in Interval(0, 2)) is False

    assert FiniteSet(1, 2, 3).contains(2) is S.true
    assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true

    assert FiniteSet(y)._contains(x) == Eq(y, x, evaluate=False)
    raises(TypeError, lambda: x in FiniteSet(y))
    assert FiniteSet({x, y})._contains({x}) == Eq({x, y}, {x}, evaluate=False)
    assert FiniteSet({x, y}).subs(y, x)._contains({x}) is S.true
    assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is S.false

    # issue 8197
    from sympy.abc import a, b
    assert FiniteSet(b).contains(-a) == Eq(b, -a)
    assert FiniteSet(b).contains(a) == Eq(b, a)
    assert FiniteSet(a).contains(1) == Eq(a, 1)
    raises(TypeError, lambda: 1 in FiniteSet(a))

    # issue 8209
    rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3))
    rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3))
    s1 = FiniteSet(rad1)
    s2 = FiniteSet(rad2)
    assert s1 - s2 == S.EmptySet

    items = [1, 2, S.Infinity, S('ham'), -1.1]
    fset = FiniteSet(*items)
    assert all(item in fset for item in items)
    assert all(fset.contains(item) is S.true for item in items)

    assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true
    assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false
    assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false

    assert S.EmptySet.contains(1) is S.false
    assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false

    assert rootof(x**5 + x**3 + 1, 0) in S.Reals
    assert not rootof(x**5 + x**3 + 1, 1) in S.Reals

    # non-bool results
    assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \
        Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4))
    assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \
        And(y <= 3, y <= x, S.One <= y, S(2) <= y)

    assert (S.Complexes).contains(S.ComplexInfinity) == S.false


def test_interval_symbolic():
    x = Symbol('x')
    e = Interval(0, 1)
    assert e.contains(x) == And(S.Zero <= x, x <= 1)
    raises(TypeError, lambda: x in e)
    e = Interval(0, 1, True, True)
    assert e.contains(x) == And(S.Zero < x, x < 1)
    c = Symbol('c', real=False)
    assert Interval(x, x + 1).contains(c) == False
    e = Symbol('e', extended_real=True)
    assert Interval(-oo, oo).contains(e) == And(
        S.NegativeInfinity < e, e < S.Infinity)


def test_union_contains():
    x = Symbol('x')
    i1 = Interval(0, 1)
    i2 = Interval(2, 3)
    i3 = Union(i1, i2)
    assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3))
    raises(TypeError, lambda: x in i3)
    e = i3.contains(x)
    assert e == i3.as_relational(x)
    assert e.subs(x, -0.5) is false
    assert e.subs(x, 0.5) is true
    assert e.subs(x, 1.5) is false
    assert e.subs(x, 2.5) is true
    assert e.subs(x, 3.5) is false

    U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6)
    assert all(el not in U for el in [0, 4, -oo])
    assert all(el in U for el in [2, 5, 10])


def test_is_number():
    assert Interval(0, 1).is_number is False
    assert Set().is_number is False


def test_Interval_is_left_unbounded():
    assert Interval(3, 4).is_left_unbounded is False
    assert Interval(-oo, 3).is_left_unbounded is True
    assert Interval(Float("-inf"), 3).is_left_unbounded is True


def test_Interval_is_right_unbounded():
    assert Interval(3, 4).is_right_unbounded is False
    assert Interval(3, oo).is_right_unbounded is True
    assert Interval(3, Float("+inf")).is_right_unbounded is True


def test_Interval_as_relational():
    x = Symbol('x')

    assert Interval(-1, 2, False, False).as_relational(x) == \
        And(Le(-1, x), Le(x, 2))
    assert Interval(-1, 2, True, False).as_relational(x) == \
        And(Lt(-1, x), Le(x, 2))
    assert Interval(-1, 2, False, True).as_relational(x) == \
        And(Le(-1, x), Lt(x, 2))
    assert Interval(-1, 2, True, True).as_relational(x) == \
        And(Lt(-1, x), Lt(x, 2))

    assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2))
    assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2))

    assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo))
    assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo))

    assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo))
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert Interval(x, y).as_relational(x) == (x <= y)
    assert Interval(y, x).as_relational(x) == (y <= x)


def test_Finite_as_relational():
    x = Symbol('x')
    y = Symbol('y')

    assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2))
    assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5))


def test_Union_as_relational():
    x = Symbol('x')
    assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \
        Or(And(Le(0, x), Le(x, 1)), Eq(x, 2))
    assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \
        And(Lt(0, x), Le(x, 1))
    assert Or(x < 0, x > 0).as_set().as_relational(x) == \
        And((x > -oo), (x < oo), Ne(x, 0))
    assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5)
        ).as_relational(x) == And(Ne(x,3),(x>=1),(x<=5))


def test_Intersection_as_relational():
    x = Symbol('x')
    assert (Intersection(Interval(0, 1), FiniteSet(2),
            evaluate=False).as_relational(x)
            == And(And(Le(0, x), Le(x, 1)), Eq(x, 2)))


def test_Complement_as_relational():
    x = Symbol('x')
    expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
    assert expr.as_relational(x) == \
        And(Le(0, x), Le(x, 1), Ne(x, 2))


@XFAIL
def test_Complement_as_relational_fail():
    x = Symbol('x')
    expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False)
    # XXX This example fails because 0 <= x changes to x >= 0
    # during the evaluation.
    assert expr.as_relational(x) == \
            (0 <= x) & (x <= 1) & Ne(x, 2)


def test_SymmetricDifference_as_relational():
    x = Symbol('x')
    expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False)
    assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1))


def test_EmptySet():
    assert S.EmptySet.as_relational(Symbol('x')) is S.false
    assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet
    assert S.EmptySet.boundary == S.EmptySet


def test_finite_basic():
    x = Symbol('x')
    A = FiniteSet(1, 2, 3)
    B = FiniteSet(3, 4, 5)
    AorB = Union(A, B)
    AandB = A.intersect(B)
    assert A.is_subset(AorB) and B.is_subset(AorB)
    assert AandB.is_subset(A)
    assert AandB == FiniteSet(3)

    assert A.inf == 1 and A.sup == 3
    assert AorB.inf == 1 and AorB.sup == 5
    assert FiniteSet(x, 1, 5).sup == Max(x, 5)
    assert FiniteSet(x, 1, 5).inf == Min(x, 1)

    # issue 7335
    assert FiniteSet(S.EmptySet) != S.EmptySet
    assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3)
    assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3)

    # Ensure a variety of types can exist in a FiniteSet
    assert FiniteSet((1, 2), A, -5, x, 'eggs', x**2)

    assert (A > B) is False
    assert (A >= B) is False
    assert (A < B) is False
    assert (A <= B) is False
    assert AorB > A and AorB > B
    assert AorB >= A and AorB >= B
    assert A >= A and A <= A
    assert A >= AandB and B >= AandB
    assert A > AandB and B > AandB


def test_product_basic():
    H, T = 'H', 'T'
    unit_line = Interval(0, 1)
    d6 = FiniteSet(1, 2, 3, 4, 5, 6)
    d4 = FiniteSet(1, 2, 3, 4)
    coin = FiniteSet(H, T)

    square = unit_line * unit_line

    assert (0, 0) in square
    assert 0 not in square
    assert (H, T) in coin ** 2
    assert (.5, .5, .5) in (square * unit_line).flatten()
    assert ((.5, .5), .5) in square * unit_line
    assert (H, 3, 3) in (coin * d6 * d6).flatten()
    assert ((H, 3), 3) in coin * d6 * d6
    HH, TT = sympify(H), sympify(T)
    assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)}

    assert (d4*d4).is_subset(d6*d6)

    assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union(
        (Interval(-oo, 0, True, True) +
         Interval(1, oo, True, True))*Interval(-oo, oo),
         Interval(-oo, oo)*(Interval(-oo, 0, True, True) +
                  Interval(1, oo, True, True)))

    assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3)
    assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3)
    assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3)

    assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square)  # segment in square

    assert len(coin*coin*coin) == 8
    assert len(S.EmptySet*S.EmptySet) == 0
    assert len(S.EmptySet*coin) == 0
    raises(TypeError, lambda: len(coin*Interval(0, 2)))


def test_real():
    x = Symbol('x', real=True)

    I = Interval(0, 5)
    J = Interval(10, 20)
    A = FiniteSet(1, 2, 30, x, S.Pi)
    B = FiniteSet(-4, 0)
    C = FiniteSet(100)
    D = FiniteSet('Ham', 'Eggs')

    assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C])
    assert not D.is_subset(S.Reals)
    assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C])
    assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D])

    assert not (I + A + D).is_subset(S.Reals)


def test_supinf():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)

    assert (Interval(0, 1) + FiniteSet(2)).sup == 2
    assert (Interval(0, 1) + FiniteSet(2)).inf == 0
    assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x)
    assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x)
    assert FiniteSet(5, 1, x).sup == Max(5, x)
    assert FiniteSet(5, 1, x).inf == Min(1, x)
    assert FiniteSet(5, 1, x, y).sup == Max(5, x, y)
    assert FiniteSet(5, 1, x, y).inf == Min(1, x, y)
    assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \
        S.Infinity
    assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \
        S.NegativeInfinity
    assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs')


def test_universalset():
    U = S.UniversalSet
    x = Symbol('x')
    assert U.as_relational(x) is S.true
    assert U.union(Interval(2, 4)) == U

    assert U.intersect(Interval(2, 4)) == Interval(2, 4)
    assert U.measure is S.Infinity
    assert U.boundary == S.EmptySet
    assert U.contains(0) is S.true


def test_Union_of_ProductSets_shares():
    line = Interval(0, 2)
    points = FiniteSet(0, 1, 2)
    assert Union(line * line, line * points) == line * line


def test_Interval_free_symbols():
    # issue 6211
    assert Interval(0, 1).free_symbols == set()
    x = Symbol('x', real=True)
    assert Interval(0, x).free_symbols == {x}


def test_image_interval():
    x = Symbol('x', real=True)
    a = Symbol('a', real=True)
    assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
    assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
        Interval(-4, 2, True, False)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
        Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4)
    assert imageset(x, x**2, Interval(-2, 1, True, False)) == \
        Interval(0, 4, False, True)
    assert imageset(x, x**2, Interval(-2, 1, True, True)) == \
        Interval(0, 4, False, True)
    assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1)
    assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \
        Interval(-35, 0)  # Multiple Maxima
    assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \
        + Interval(2, oo)  # Single Infinite discontinuity
    assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \
        Interval(Rational(3, 2), oo, False)  # Multiple Infinite discontinuities

    # Test for Python lambda
    assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2)

    assert imageset(Lambda(x, a*x), Interval(0, 1)) == \
            ImageSet(Lambda(x, a*x), Interval(0, 1))

    assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \
            ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1))


def test_image_piecewise():
    f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True))
    f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True))
    assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo))
    assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1)


@XFAIL  # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826
def test_image_Intersection():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \
           Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2)))


def test_image_FiniteSet():
    x = Symbol('x', real=True)
    assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6)


def test_image_Union():
    x = Symbol('x', real=True)
    assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \
            (Interval(0, 4) + FiniteSet(9))


def test_image_EmptySet():
    x = Symbol('x', real=True)
    assert imageset(x, 2*x, S.EmptySet) == S.EmptySet


def test_issue_5724_7680():
    assert I not in S.Reals  # issue 7680
    assert Interval(-oo, oo).contains(I) is S.false


def test_boundary():
    assert FiniteSet(1).boundary == FiniteSet(1)
    assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1)
            for left_open in (true, false) for right_open in (true, false))


def test_boundary_Union():
    assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3)
    assert ((Interval(0, 1, False, True)
           + Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2))

    assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2)
    assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \
            == FiniteSet(0, 15)

    assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \
            == FiniteSet(0, 10)
    assert Union(Interval(0, 10, True, True),
                 Interval(10, 15, True, True), evaluate=False).boundary \
            == FiniteSet(0, 10, 15)


@XFAIL
def test_union_boundary_of_joining_sets():
    """ Testing the boundary of unions is a hard problem """
    assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \
            == FiniteSet(0, 15)


def test_boundary_ProductSet():
    open_square = Interval(0, 1, True, True) ** 2
    assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1)
                                  + Interval(0, 1) * FiniteSet(0, 1))

    second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True)
    assert (open_square + second_square).boundary == (
                FiniteSet(0, 1) * Interval(0, 1)
              + FiniteSet(1, 2) * Interval(0, 1)
              + Interval(0, 1) * FiniteSet(0, 1)
              + Interval(1, 2) * FiniteSet(0, 1))


def test_boundary_ProductSet_line():
    line_in_r2 = Interval(0, 1) * FiniteSet(0)
    assert line_in_r2.boundary == line_in_r2


def test_is_open():
    assert Interval(0, 1, False, False).is_open is False
    assert Interval(0, 1, True, False).is_open is False
    assert Interval(0, 1, True, True).is_open is True
    assert FiniteSet(1, 2, 3).is_open is False


def test_is_closed():
    assert Interval(0, 1, False, False).is_closed is True
    assert Interval(0, 1, True, False).is_closed is False
    assert FiniteSet(1, 2, 3).is_closed is True


def test_closure():
    assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False)


def test_interior():
    assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True)


def test_issue_7841():
    raises(TypeError, lambda: x in S.Reals)


def test_Eq():
    assert Eq(Interval(0, 1), Interval(0, 1))
    assert Eq(Interval(0, 1), Interval(0, 2)) == False

    s1 = FiniteSet(0, 1)
    s2 = FiniteSet(1, 2)

    assert Eq(s1, s1)
    assert Eq(s1, s2) == False

    assert Eq(s1*s2, s1*s2)
    assert Eq(s1*s2, s2*s1) == False

    assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x}))
    assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true
    assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true
    assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false
    assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false

    assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false
    assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false

    assert Eq(FiniteSet(()), FiniteSet(1)) is S.false
    assert Eq(ProductSet(), FiniteSet(1)) is S.false

    i1 = Interval(0, 1)
    i2 = Interval(x, y)
    assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2))


def test_SymmetricDifference():
    A = FiniteSet(0, 1, 2, 3, 4, 5)
    B = FiniteSet(2, 4, 6, 8, 10)
    C = Interval(8, 10)

    assert SymmetricDifference(A, B, evaluate=False).is_iterable is True
    assert SymmetricDifference(A, C, evaluate=False).is_iterable is None
    assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \
        FiniteSet(0, 1, 3, 5, 6, 8, 10)
    raises(TypeError,
        lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False)))

    assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \
            FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10)
    assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \
            == FiniteSet(5)
    assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \
            FiniteSet(3, 4, 6)
    assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \
            Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3)))
    assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \
            Interval(2, 5), Interval(2, 5) - Interval(0, 4))


def test_issue_9536():
    from sympy.functions.elementary.exponential import log
    a = Symbol('a', real=True)
    assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a)))


def test_issue_9637():
    n = Symbol('n')
    a = FiniteSet(n)
    b = FiniteSet(2, n)
    assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False)
    assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False)
    assert Complement(Interval(1, 3), b) == \
        Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a)
    assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False)
    assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False)


def test_issue_9808():
    # See https://github.com/sympy/sympy/issues/16342
    assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False)
    assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \
        Complement(FiniteSet(1), FiniteSet(y), evaluate=False)


def test_issue_9956():
    assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo)
    assert Interval(-oo, oo).contains(1) is S.true


def test_issue_Symbol_inter():
    i = Interval(0, oo)
    r = S.Reals
    mat = Matrix([0, 0, 0])
    assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \
        Intersection(i, FiniteSet(m))
    assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \
        Intersection(i, FiniteSet(m, n))
    assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \
        Intersection(Intersection({m, z}, {m, n, x}), r)
    assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \
        Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False)
    assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \
        Intersection(FiniteSet(3, m, n), r)
    assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \
        Intersection(r, FiniteSet(n))
    assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \
        Intersection(r, FiniteSet(sin(x), cos(x)))
    assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \
        Intersection(r, FiniteSet(x**2, sin(x)))


def test_issue_11827():
    assert S.Naturals0**4


def test_issue_10113():
    f = x**2/(x**2 - 4)
    assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True))
    assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0)
    assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo))


def test_issue_10248():
    raises(
        TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x)))
    )
    A = Symbol('A', real=True)
    assert list(Intersection(S.Reals, FiniteSet(A))) == [A]


def test_issue_9447():
    a = Interval(0, 1) + Interval(2, 3)
    assert Complement(S.UniversalSet, a) == Complement(
            S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)
    assert Complement(S.Naturals, a) == Complement(
            S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False)


def test_issue_10337():
    assert (FiniteSet(2) == 3) is False
    assert (FiniteSet(2) != 3) is True
    raises(TypeError, lambda: FiniteSet(2) < 3)
    raises(TypeError, lambda: FiniteSet(2) <= 3)
    raises(TypeError, lambda: FiniteSet(2) > 3)
    raises(TypeError, lambda: FiniteSet(2) >= 3)


def test_issue_10326():
    bad = [
        EmptySet,
        FiniteSet(1),
        Interval(1, 2),
        S.ComplexInfinity,
        S.ImaginaryUnit,
        S.Infinity,
        S.NaN,
        S.NegativeInfinity,
        ]
    interval = Interval(0, 5)
    for i in bad:
        assert i not in interval

    x = Symbol('x', real=True)
    nr = Symbol('nr', extended_real=False)
    assert x + 1 in Interval(x, x + 4)
    assert nr not in Interval(x, x + 4)
    assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2))
    assert Interval(-oo, oo).contains(oo) is S.false
    assert Interval(-oo, oo).contains(-oo) is S.false


def test_issue_2799():
    U = S.UniversalSet
    a = Symbol('a', real=True)
    inf_interval = Interval(a, oo)
    R = S.Reals

    assert U + inf_interval == inf_interval + U
    assert U + R == R + U
    assert R + inf_interval == inf_interval + R


def test_issue_9706():
    assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False)
    assert Interval(0, oo).closure == Interval(0, oo, False, True)
    assert Interval(-oo, oo).closure == Interval(-oo, oo)


def test_issue_8257():
    reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo))
    reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo))
    assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity
    assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity
    assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity
    assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity


def test_issue_10931():
    assert S.Integers - S.Integers == EmptySet
    assert S.Integers - S.Reals == EmptySet


def test_issue_11174():
    soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False)
    assert Intersection(FiniteSet(-x), S.Reals) == soln

    soln = Intersection(S.Reals, FiniteSet(x), evaluate=False)
    assert Intersection(FiniteSet(x), S.Reals) == soln


def test_issue_18505():
    assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \
            Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers))


def test_finite_set_intersection():
    # The following should not produce recursion errors
    # Note: some of these are not completely correct. See
    # https://github.com/sympy/sympy/issues/16342.
    assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x)
    assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x)

    assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x)
    assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \
        Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \
        Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \
        Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y))

    assert FiniteSet(1+x-y) & FiniteSet(1) == \
        FiniteSet(1) & FiniteSet(1+x-y) == \
        Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False)

    assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \
        Intersection(FiniteSet(1), FiniteSet(x), evaluate=False)

    assert FiniteSet({x}) & FiniteSet({x, y}) == \
        Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False)


def test_union_intersection_constructor():
    # The actual exception does not matter here, so long as these fail
    sets = [FiniteSet(1), FiniteSet(2)]
    raises(Exception, lambda: Union(sets))
    raises(Exception, lambda: Intersection(sets))
    raises(Exception, lambda: Union(tuple(sets)))
    raises(Exception, lambda: Intersection(tuple(sets)))
    raises(Exception, lambda: Union(i for i in sets))
    raises(Exception, lambda: Intersection(i for i in sets))

    # Python sets are treated the same as FiniteSet
    # The union of a single set (of sets) is the set (of sets) itself
    assert Union(set(sets)) == FiniteSet(*sets)
    assert Intersection(set(sets)) == FiniteSet(*sets)

    assert Union({1}, {2}) == FiniteSet(1, 2)
    assert Intersection({1, 2}, {2, 3}) == FiniteSet(2)


def test_Union_contains():
    assert zoo not in Union(
        Interval.open(-oo, 0), Interval.open(0, oo))


@XFAIL
def test_issue_16878b():
    # in intersection_sets for (ImageSet, Set) there is no code
    # that handles the base_set of S.Reals like there is
    # for Integers
    assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True

def test_DisjointUnion():
    assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2))
    assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1))
    assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1))
    assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
    assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0)
    assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1)
    assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0)
    assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet
    assert DisjointUnion().rewrite(Union) == S.EmptySet
    raises(TypeError, lambda: DisjointUnion(Symbol('n')))

    x = Symbol("x")
    y = Symbol("y")
    z = Symbol("z")
    assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1))

def test_DisjointUnion_is_empty():
    assert DisjointUnion(S.EmptySet).is_empty is True
    assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True
    assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False

def test_DisjointUnion_is_iterable():
    assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True
    assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False
    assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True
    assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False

def test_DisjointUnion_contains():
    assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5))
    assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2))
    assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
    assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
    assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
    assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y))
    assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2))
    assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))
    assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2))
    assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2))

def test_DisjointUnion_iter():
    D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))
    it = iter(D)
    L1 = [(x, 1), (y, 1), (z, 1)]
    L2 = [(3, 0), (5, 0), (7, 0), (9, 0)]
    nxt = next(it)
    assert nxt in L2
    L2.remove(nxt)
    nxt = next(it)
    assert nxt in L1
    L1.remove(nxt)
    nxt = next(it)
    assert nxt in L2
    L2.remove(nxt)
    nxt = next(it)
    assert nxt in L1
    L1.remove(nxt)
    nxt = next(it)
    assert nxt in L2
    L2.remove(nxt)
    nxt = next(it)
    assert nxt in L1
    L1.remove(nxt)
    nxt = next(it)
    assert nxt in L2
    L2.remove(nxt)
    raises(StopIteration, lambda: next(it))

    raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet)))

def test_DisjointUnion_len():
    assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7
    assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3
    raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet)))

def test_SetKind_ProductSet():
    p = ProductSet(FiniteSet(Matrix([1, 2])), FiniteSet(Matrix([1, 2])))
    mk = MatrixKind(NumberKind)
    k = SetKind(TupleKind(mk, mk))
    assert p.kind is k
    assert ProductSet(Interval(1, 2), FiniteSet(Matrix([1, 2]))).kind is SetKind(TupleKind(NumberKind, mk))

def test_SetKind_Interval():
    assert Interval(1, 2).kind is SetKind(NumberKind)

def test_SetKind_EmptySet_UniversalSet():
    assert S.UniversalSet.kind is SetKind(UndefinedKind)
    assert EmptySet.kind is SetKind()

def test_SetKind_FiniteSet():
    assert FiniteSet(1, Matrix([1, 2])).kind is SetKind(UndefinedKind)
    assert FiniteSet(1, 2).kind is SetKind(NumberKind)

def test_SetKind_Unions():
    assert Union(FiniteSet(Matrix([1, 2])), Interval(1, 2)).kind is SetKind(UndefinedKind)
    assert Union(Interval(1, 2), Interval(1, 7)).kind is SetKind(NumberKind)

def test_SetKind_DisjointUnion():
    A = FiniteSet(1, 2, 3)
    B = Interval(0, 5)
    assert DisjointUnion(A, B).kind is SetKind(NumberKind)

def test_SetKind_evaluate_False():
    U = lambda *args: Union(*args, evaluate=False)
    assert U({1}, EmptySet).kind is SetKind(NumberKind)
    assert U(Interval(1, 2), EmptySet).kind is SetKind(NumberKind)
    assert U({1}, S.UniversalSet).kind is SetKind(UndefinedKind)
    assert U(Interval(1, 2), Interval(4, 5),
            FiniteSet(1)).kind is SetKind(NumberKind)
    I = lambda *args: Intersection(*args, evaluate=False)
    assert I({1}, S.UniversalSet).kind is SetKind(NumberKind)
    assert I({1}, EmptySet).kind is SetKind()
    C = lambda *args: Complement(*args, evaluate=False)
    assert C(S.UniversalSet, {1, 2, 4, 5}).kind is SetKind(UndefinedKind)
    assert C({1, 2, 3, 4, 5}, EmptySet).kind is SetKind(NumberKind)
    assert C(EmptySet, {1, 2, 3, 4, 5}).kind is SetKind()

def test_SetKind_ImageSet_Special():
    f = ImageSet(Lambda(n, n ** 2), Interval(1, 4))
    assert (f - FiniteSet(3)).kind is SetKind(NumberKind)
    assert (f + Interval(16, 17)).kind is SetKind(NumberKind)
    assert (f + FiniteSet(17)).kind is SetKind(NumberKind)

def test_issue_20089():
    B = FiniteSet(FiniteSet(1, 2), FiniteSet(1))
    assert 1 not in B
    assert 1.0 not in B
    assert not Eq(1, FiniteSet(1, 2))
    assert FiniteSet(1) in B
    A = FiniteSet(1, 2)
    assert A in B
    assert B.issubset(B)
    assert not A.issubset(B)
    assert 1 in A
    C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2)
    assert A.issubset(C)
    assert B.issubset(C)

def test_issue_19378():
    a = FiniteSet(1, 2)
    b = ProductSet(a, a)
    c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2))
    assert b.is_subset(c) is True
    d = FiniteSet(1)
    assert b.is_subset(d) is False
    assert Eq(c, b).simplify() is S.true
    assert Eq(a, c).simplify() is S.false
    assert Eq({1}, {x}).simplify() == Eq({1}, {x})

def test_intersection_symbolic():
    n = Symbol('n')
    # These should not throw an error
    assert isinstance(Intersection(Range(n), Range(100)), Intersection)
    assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection)
    assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection)


@XFAIL
def test_intersection_symbolic_failing():
    n = Symbol('n', integer=True, positive=True)
    assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection(
        Range(14, n), Range(14, 500, 5))
    assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection(
        Interval(14, n), Range(14, 500, 5))


def test_issue_20379():
    #https://github.com/sympy/sympy/issues/20379
    x = pi - 3.14159265358979
    assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2))

def test_finiteset_simplify():
    S = FiniteSet(1, cos(1)**2 + sin(1)**2)
    assert S.simplify() == {1}

def test_issue_14336():
    #https://github.com/sympy/sympy/issues/14336
    U = S.Complexes
    x = Symbol("x")
    U -= U.intersect(Ne(x, 1).as_set())
    U -= U.intersect(S.true.as_set())

def test_issue_9855():
    #https://github.com/sympy/sympy/issues/9855
    x, y, z = symbols('x, y, z', real=True)
    s1 = Interval(1, x) & Interval(y, 2)
    s2 = Interval(1, 2)
    assert s1.is_subset(s2) == None