Spaces:
Sleeping
Sleeping
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, | |
Derivative, Eq, Ne, Le, Lt, Gt, Ge) | |
from sympy.integrals import Integral | |
from sympy.concrete import Sum | |
from sympy.functions import (exp, sin, cos, fresnelc, fresnels, conjugate, Max, | |
Min, gamma, polygamma, loggamma, erf, erfi, erfc, | |
erf2, expint, erfinv, erfcinv, Ei, Si, Ci, li, | |
Shi, Chi, uppergamma, beta, subfactorial, erf2inv, | |
factorial, factorial2, catalan, RisingFactorial, | |
FallingFactorial, harmonic, atan2, sec, acsc, | |
hermite, laguerre, assoc_laguerre, jacobi, | |
gegenbauer, chebyshevt, chebyshevu, legendre, | |
assoc_legendre, Li, LambertW) | |
from sympy.printing.mathematica import mathematica_code as mcode | |
x, y, z, w = symbols('x,y,z,w') | |
f = Function('f') | |
def test_Integer(): | |
assert mcode(Integer(67)) == "67" | |
assert mcode(Integer(-1)) == "-1" | |
def test_Rational(): | |
assert mcode(Rational(3, 7)) == "3/7" | |
assert mcode(Rational(18, 9)) == "2" | |
assert mcode(Rational(3, -7)) == "-3/7" | |
assert mcode(Rational(-3, -7)) == "3/7" | |
assert mcode(x + Rational(3, 7)) == "x + 3/7" | |
assert mcode(Rational(3, 7)*x) == "(3/7)*x" | |
def test_Relational(): | |
assert mcode(Eq(x, y)) == "x == y" | |
assert mcode(Ne(x, y)) == "x != y" | |
assert mcode(Le(x, y)) == "x <= y" | |
assert mcode(Lt(x, y)) == "x < y" | |
assert mcode(Gt(x, y)) == "x > y" | |
assert mcode(Ge(x, y)) == "x >= y" | |
def test_Function(): | |
assert mcode(f(x, y, z)) == "f[x, y, z]" | |
assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]" | |
assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]" | |
assert mcode(atan2(x, y)) == "ArcTan[x, y]" | |
assert mcode(conjugate(x)) == "Conjugate[x]" | |
assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]" | |
assert mcode(fresnelc(x)) == "FresnelC[x]" | |
assert mcode(fresnels(x)) == "FresnelS[x]" | |
assert mcode(gamma(x)) == "Gamma[x]" | |
assert mcode(uppergamma(x, y)) == "Gamma[x, y]" | |
assert mcode(polygamma(x, y)) == "PolyGamma[x, y]" | |
assert mcode(loggamma(x)) == "LogGamma[x]" | |
assert mcode(erf(x)) == "Erf[x]" | |
assert mcode(erfc(x)) == "Erfc[x]" | |
assert mcode(erfi(x)) == "Erfi[x]" | |
assert mcode(erf2(x, y)) == "Erf[x, y]" | |
assert mcode(expint(x, y)) == "ExpIntegralE[x, y]" | |
assert mcode(erfcinv(x)) == "InverseErfc[x]" | |
assert mcode(erfinv(x)) == "InverseErf[x]" | |
assert mcode(erf2inv(x, y)) == "InverseErf[x, y]" | |
assert mcode(Ei(x)) == "ExpIntegralEi[x]" | |
assert mcode(Ci(x)) == "CosIntegral[x]" | |
assert mcode(li(x)) == "LogIntegral[x]" | |
assert mcode(Si(x)) == "SinIntegral[x]" | |
assert mcode(Shi(x)) == "SinhIntegral[x]" | |
assert mcode(Chi(x)) == "CoshIntegral[x]" | |
assert mcode(beta(x, y)) == "Beta[x, y]" | |
assert mcode(factorial(x)) == "Factorial[x]" | |
assert mcode(factorial2(x)) == "Factorial2[x]" | |
assert mcode(subfactorial(x)) == "Subfactorial[x]" | |
assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]" | |
assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]" | |
assert mcode(catalan(x)) == "CatalanNumber[x]" | |
assert mcode(harmonic(x)) == "HarmonicNumber[x]" | |
assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]" | |
assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]" | |
assert mcode(LambertW(x)) == "ProductLog[x]" | |
assert mcode(LambertW(x, -1)) == "ProductLog[-1, x]" | |
assert mcode(LambertW(x, y)) == "ProductLog[y, x]" | |
def test_special_polynomials(): | |
assert mcode(hermite(x, y)) == "HermiteH[x, y]" | |
assert mcode(laguerre(x, y)) == "LaguerreL[x, y]" | |
assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]" | |
assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]" | |
assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]" | |
assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]" | |
assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]" | |
assert mcode(legendre(x, y)) == "LegendreP[x, y]" | |
assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]" | |
def test_Pow(): | |
assert mcode(x**3) == "x^3" | |
assert mcode(x**(y**3)) == "x^(y^3)" | |
assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \ | |
"(3.5*f[x])^(-x + y^x)/(x^2 + y)" | |
assert mcode(x**-1.0) == 'x^(-1.0)' | |
assert mcode(x**Rational(2, 3)) == 'x^(2/3)' | |
def test_Mul(): | |
A, B, C, D = symbols('A B C D', commutative=False) | |
assert mcode(x*y*z) == "x*y*z" | |
assert mcode(x*y*A) == "x*y*A" | |
assert mcode(x*y*A*B) == "x*y*A**B" | |
assert mcode(x*y*A*B*C) == "x*y*A**B**C" | |
assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A" | |
def test_constants(): | |
assert mcode(S.Zero) == "0" | |
assert mcode(S.One) == "1" | |
assert mcode(S.NegativeOne) == "-1" | |
assert mcode(S.Half) == "1/2" | |
assert mcode(S.ImaginaryUnit) == "I" | |
assert mcode(oo) == "Infinity" | |
assert mcode(S.NegativeInfinity) == "-Infinity" | |
assert mcode(S.ComplexInfinity) == "ComplexInfinity" | |
assert mcode(S.NaN) == "Indeterminate" | |
assert mcode(S.Exp1) == "E" | |
assert mcode(pi) == "Pi" | |
assert mcode(S.GoldenRatio) == "GoldenRatio" | |
assert mcode(S.TribonacciConstant) == \ | |
"(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \ | |
"(1/3)*(3*33^(1/2) + 19)^(1/3))" | |
assert mcode(2*S.TribonacciConstant) == \ | |
"2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \ | |
"(1/3)*(3*33^(1/2) + 19)^(1/3))" | |
assert mcode(S.EulerGamma) == "EulerGamma" | |
assert mcode(S.Catalan) == "Catalan" | |
def test_containers(): | |
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ | |
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}" | |
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}" | |
assert mcode([1]) == "{1}" | |
assert mcode((1,)) == "{1}" | |
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}" | |
def test_matrices(): | |
from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \ | |
ImmutableDenseMatrix, ImmutableSparseMatrix | |
A = MutableDenseMatrix( | |
[[1, -1, 0, 0], | |
[0, 1, -1, 0], | |
[0, 0, 1, -1], | |
[0, 0, 0, 1]] | |
) | |
B = MutableSparseMatrix(A) | |
C = ImmutableDenseMatrix(A) | |
D = ImmutableSparseMatrix(A) | |
assert mcode(C) == mcode(A) == \ | |
"{{1, -1, 0, 0}, " \ | |
"{0, 1, -1, 0}, " \ | |
"{0, 0, 1, -1}, " \ | |
"{0, 0, 0, 1}}" | |
assert mcode(D) == mcode(B) == \ | |
"SparseArray[{" \ | |
"{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \ | |
"{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \ | |
"}, {4, 4}]" | |
# Trivial cases of matrices | |
assert mcode(MutableDenseMatrix(0, 0, [])) == '{}' | |
assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]' | |
assert mcode(MutableDenseMatrix(0, 3, [])) == '{}' | |
assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]' | |
assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}' | |
assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]' | |
def test_NDArray(): | |
from sympy.tensor.array import ( | |
MutableDenseNDimArray, ImmutableDenseNDimArray, | |
MutableSparseNDimArray, ImmutableSparseNDimArray) | |
example = MutableDenseNDimArray( | |
[[[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12]], | |
[[13, 14, 15, 16], | |
[17, 18, 19, 20], | |
[21, 22, 23, 24]]] | |
) | |
assert mcode(example) == \ | |
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \ | |
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}" | |
example = ImmutableDenseNDimArray(example) | |
assert mcode(example) == \ | |
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \ | |
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}" | |
example = MutableSparseNDimArray(example) | |
assert mcode(example) == \ | |
"SparseArray[{" \ | |
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \ | |
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \ | |
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \ | |
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \ | |
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \ | |
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \ | |
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \ | |
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \ | |
"}, {2, 3, 4}]" | |
example = ImmutableSparseNDimArray(example) | |
assert mcode(example) == \ | |
"SparseArray[{" \ | |
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \ | |
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \ | |
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \ | |
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \ | |
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \ | |
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \ | |
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \ | |
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \ | |
"}, {2, 3, 4}]" | |
def test_Integral(): | |
assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]" | |
assert mcode(Integral(exp(-x**2 - y**2), | |
(x, -oo, oo), | |
(y, -oo, oo))) == \ | |
"Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ | |
"{y, -Infinity, Infinity}]]" | |
def test_Derivative(): | |
assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]" | |
assert mcode(Derivative(x, x)) == "Hold[D[x, x]]" | |
assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]" | |
assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]" | |
assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]" | |
def test_Sum(): | |
assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]" | |
assert mcode(Sum(exp(-x**2 - y**2), | |
(x, -oo, oo), | |
(y, -oo, oo))) == \ | |
"Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ | |
"{y, -Infinity, Infinity}]]" | |
def test_comment(): | |
from sympy.printing.mathematica import MCodePrinter | |
assert MCodePrinter()._get_comment("Hello World") == \ | |
"(* Hello World *)" | |
def test_userfuncs(): | |
# Dictionary mutation test | |
some_function = symbols("some_function", cls=Function) | |
my_user_functions = {"some_function": "SomeFunction"} | |
assert mcode( | |
some_function(z), | |
user_functions=my_user_functions) == \ | |
'SomeFunction[z]' | |
assert mcode( | |
some_function(z), | |
user_functions=my_user_functions) == \ | |
'SomeFunction[z]' | |
# List argument test | |
my_user_functions = \ | |
{"some_function": [(lambda x: True, "SomeOtherFunction")]} | |
assert mcode( | |
some_function(z), | |
user_functions=my_user_functions) == \ | |
'SomeOtherFunction[z]' | |