Spaces:
Sleeping
Sleeping
File size: 10,954 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple,
Derivative, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.integrals import Integral
from sympy.concrete import Sum
from sympy.functions import (exp, sin, cos, fresnelc, fresnels, conjugate, Max,
Min, gamma, polygamma, loggamma, erf, erfi, erfc,
erf2, expint, erfinv, erfcinv, Ei, Si, Ci, li,
Shi, Chi, uppergamma, beta, subfactorial, erf2inv,
factorial, factorial2, catalan, RisingFactorial,
FallingFactorial, harmonic, atan2, sec, acsc,
hermite, laguerre, assoc_laguerre, jacobi,
gegenbauer, chebyshevt, chebyshevu, legendre,
assoc_legendre, Li, LambertW)
from sympy.printing.mathematica import mathematica_code as mcode
x, y, z, w = symbols('x,y,z,w')
f = Function('f')
def test_Integer():
assert mcode(Integer(67)) == "67"
assert mcode(Integer(-1)) == "-1"
def test_Rational():
assert mcode(Rational(3, 7)) == "3/7"
assert mcode(Rational(18, 9)) == "2"
assert mcode(Rational(3, -7)) == "-3/7"
assert mcode(Rational(-3, -7)) == "3/7"
assert mcode(x + Rational(3, 7)) == "x + 3/7"
assert mcode(Rational(3, 7)*x) == "(3/7)*x"
def test_Relational():
assert mcode(Eq(x, y)) == "x == y"
assert mcode(Ne(x, y)) == "x != y"
assert mcode(Le(x, y)) == "x <= y"
assert mcode(Lt(x, y)) == "x < y"
assert mcode(Gt(x, y)) == "x > y"
assert mcode(Ge(x, y)) == "x >= y"
def test_Function():
assert mcode(f(x, y, z)) == "f[x, y, z]"
assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]"
assert mcode(atan2(x, y)) == "ArcTan[x, y]"
assert mcode(conjugate(x)) == "Conjugate[x]"
assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]"
assert mcode(fresnelc(x)) == "FresnelC[x]"
assert mcode(fresnels(x)) == "FresnelS[x]"
assert mcode(gamma(x)) == "Gamma[x]"
assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
assert mcode(loggamma(x)) == "LogGamma[x]"
assert mcode(erf(x)) == "Erf[x]"
assert mcode(erfc(x)) == "Erfc[x]"
assert mcode(erfi(x)) == "Erfi[x]"
assert mcode(erf2(x, y)) == "Erf[x, y]"
assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
assert mcode(erfcinv(x)) == "InverseErfc[x]"
assert mcode(erfinv(x)) == "InverseErf[x]"
assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
assert mcode(Ei(x)) == "ExpIntegralEi[x]"
assert mcode(Ci(x)) == "CosIntegral[x]"
assert mcode(li(x)) == "LogIntegral[x]"
assert mcode(Si(x)) == "SinIntegral[x]"
assert mcode(Shi(x)) == "SinhIntegral[x]"
assert mcode(Chi(x)) == "CoshIntegral[x]"
assert mcode(beta(x, y)) == "Beta[x, y]"
assert mcode(factorial(x)) == "Factorial[x]"
assert mcode(factorial2(x)) == "Factorial2[x]"
assert mcode(subfactorial(x)) == "Subfactorial[x]"
assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
assert mcode(catalan(x)) == "CatalanNumber[x]"
assert mcode(harmonic(x)) == "HarmonicNumber[x]"
assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]"
assert mcode(LambertW(x)) == "ProductLog[x]"
assert mcode(LambertW(x, -1)) == "ProductLog[-1, x]"
assert mcode(LambertW(x, y)) == "ProductLog[y, x]"
def test_special_polynomials():
assert mcode(hermite(x, y)) == "HermiteH[x, y]"
assert mcode(laguerre(x, y)) == "LaguerreL[x, y]"
assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]"
assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]"
assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]"
assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]"
assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]"
assert mcode(legendre(x, y)) == "LegendreP[x, y]"
assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]"
def test_Pow():
assert mcode(x**3) == "x^3"
assert mcode(x**(y**3)) == "x^(y^3)"
assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*f[x])^(-x + y^x)/(x^2 + y)"
assert mcode(x**-1.0) == 'x^(-1.0)'
assert mcode(x**Rational(2, 3)) == 'x^(2/3)'
def test_Mul():
A, B, C, D = symbols('A B C D', commutative=False)
assert mcode(x*y*z) == "x*y*z"
assert mcode(x*y*A) == "x*y*A"
assert mcode(x*y*A*B) == "x*y*A**B"
assert mcode(x*y*A*B*C) == "x*y*A**B**C"
assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A"
def test_constants():
assert mcode(S.Zero) == "0"
assert mcode(S.One) == "1"
assert mcode(S.NegativeOne) == "-1"
assert mcode(S.Half) == "1/2"
assert mcode(S.ImaginaryUnit) == "I"
assert mcode(oo) == "Infinity"
assert mcode(S.NegativeInfinity) == "-Infinity"
assert mcode(S.ComplexInfinity) == "ComplexInfinity"
assert mcode(S.NaN) == "Indeterminate"
assert mcode(S.Exp1) == "E"
assert mcode(pi) == "Pi"
assert mcode(S.GoldenRatio) == "GoldenRatio"
assert mcode(S.TribonacciConstant) == \
"(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
"(1/3)*(3*33^(1/2) + 19)^(1/3))"
assert mcode(2*S.TribonacciConstant) == \
"2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \
"(1/3)*(3*33^(1/2) + 19)^(1/3))"
assert mcode(S.EulerGamma) == "EulerGamma"
assert mcode(S.Catalan) == "Catalan"
def test_containers():
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
assert mcode([1]) == "{1}"
assert mcode((1,)) == "{1}"
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
def test_matrices():
from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \
ImmutableDenseMatrix, ImmutableSparseMatrix
A = MutableDenseMatrix(
[[1, -1, 0, 0],
[0, 1, -1, 0],
[0, 0, 1, -1],
[0, 0, 0, 1]]
)
B = MutableSparseMatrix(A)
C = ImmutableDenseMatrix(A)
D = ImmutableSparseMatrix(A)
assert mcode(C) == mcode(A) == \
"{{1, -1, 0, 0}, " \
"{0, 1, -1, 0}, " \
"{0, 0, 1, -1}, " \
"{0, 0, 0, 1}}"
assert mcode(D) == mcode(B) == \
"SparseArray[{" \
"{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \
"{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \
"}, {4, 4}]"
# Trivial cases of matrices
assert mcode(MutableDenseMatrix(0, 0, [])) == '{}'
assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]'
assert mcode(MutableDenseMatrix(0, 3, [])) == '{}'
assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]'
assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}'
assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]'
def test_NDArray():
from sympy.tensor.array import (
MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray)
example = MutableDenseNDimArray(
[[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]]]
)
assert mcode(example) == \
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
example = ImmutableDenseNDimArray(example)
assert mcode(example) == \
"{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \
"{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}"
example = MutableSparseNDimArray(example)
assert mcode(example) == \
"SparseArray[{" \
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
"}, {2, 3, 4}]"
example = ImmutableSparseNDimArray(example)
assert mcode(example) == \
"SparseArray[{" \
"{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \
"{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \
"{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \
"{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \
"{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \
"{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \
"{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \
"{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \
"}, {2, 3, 4}]"
def test_Integral():
assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]"
assert mcode(Integral(exp(-x**2 - y**2),
(x, -oo, oo),
(y, -oo, oo))) == \
"Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
"{y, -Infinity, Infinity}]]"
def test_Derivative():
assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]"
assert mcode(Derivative(x, x)) == "Hold[D[x, x]]"
assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]"
assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]"
assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]"
def test_Sum():
assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]"
assert mcode(Sum(exp(-x**2 - y**2),
(x, -oo, oo),
(y, -oo, oo))) == \
"Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \
"{y, -Infinity, Infinity}]]"
def test_comment():
from sympy.printing.mathematica import MCodePrinter
assert MCodePrinter()._get_comment("Hello World") == \
"(* Hello World *)"
def test_userfuncs():
# Dictionary mutation test
some_function = symbols("some_function", cls=Function)
my_user_functions = {"some_function": "SomeFunction"}
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeFunction[z]'
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeFunction[z]'
# List argument test
my_user_functions = \
{"some_function": [(lambda x: True, "SomeOtherFunction")]}
assert mcode(
some_function(z),
user_functions=my_user_functions) == \
'SomeOtherFunction[z]'
|