Spaces:
Sleeping
Sleeping
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, | |
Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge) | |
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow | |
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos, sinc, lucas | |
from sympy.testing.pytest import raises | |
from sympy.utilities.lambdify import implemented_function | |
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity, | |
HadamardProduct, SparseMatrix) | |
from sympy.functions.special.bessel import besseli | |
from sympy.printing.maple import maple_code | |
x, y, z = symbols('x,y,z') | |
def test_Integer(): | |
assert maple_code(Integer(67)) == "67" | |
assert maple_code(Integer(-1)) == "-1" | |
def test_Rational(): | |
assert maple_code(Rational(3, 7)) == "3/7" | |
assert maple_code(Rational(18, 9)) == "2" | |
assert maple_code(Rational(3, -7)) == "-3/7" | |
assert maple_code(Rational(-3, -7)) == "3/7" | |
assert maple_code(x + Rational(3, 7)) == "x + 3/7" | |
assert maple_code(Rational(3, 7) * x) == '(3/7)*x' | |
def test_Relational(): | |
assert maple_code(Eq(x, y)) == "x = y" | |
assert maple_code(Ne(x, y)) == "x <> y" | |
assert maple_code(Le(x, y)) == "x <= y" | |
assert maple_code(Lt(x, y)) == "x < y" | |
assert maple_code(Gt(x, y)) == "x > y" | |
assert maple_code(Ge(x, y)) == "x >= y" | |
def test_Function(): | |
assert maple_code(sin(x) ** cos(x)) == "sin(x)^cos(x)" | |
assert maple_code(abs(x)) == "abs(x)" | |
assert maple_code(ceiling(x)) == "ceil(x)" | |
def test_Pow(): | |
assert maple_code(x ** 3) == "x^3" | |
assert maple_code(x ** (y ** 3)) == "x^(y^3)" | |
assert maple_code((x ** 3) ** y) == "(x^3)^y" | |
assert maple_code(x ** Rational(2, 3)) == 'x^(2/3)' | |
g = implemented_function('g', Lambda(x, 2 * x)) | |
assert maple_code(1 / (g(x) * 3.5) ** (x - y ** x) / (x ** 2 + y)) == \ | |
"(3.5*2*x)^(-x + y^x)/(x^2 + y)" | |
# For issue 14160 | |
assert maple_code(Mul(-2, x, Pow(Mul(y, y, evaluate=False), -1, evaluate=False), | |
evaluate=False)) == '-2*x/(y*y)' | |
def test_basic_ops(): | |
assert maple_code(x * y) == "x*y" | |
assert maple_code(x + y) == "x + y" | |
assert maple_code(x - y) == "x - y" | |
assert maple_code(-x) == "-x" | |
def test_1_over_x_and_sqrt(): | |
# 1.0 and 0.5 would do something different in regular StrPrinter, | |
# but these are exact in IEEE floating point so no different here. | |
assert maple_code(1 / x) == '1/x' | |
assert maple_code(x ** -1) == maple_code(x ** -1.0) == '1/x' | |
assert maple_code(1 / sqrt(x)) == '1/sqrt(x)' | |
assert maple_code(x ** -S.Half) == maple_code(x ** -0.5) == '1/sqrt(x)' | |
assert maple_code(sqrt(x)) == 'sqrt(x)' | |
assert maple_code(x ** S.Half) == maple_code(x ** 0.5) == 'sqrt(x)' | |
assert maple_code(1 / pi) == '1/Pi' | |
assert maple_code(pi ** -1) == maple_code(pi ** -1.0) == '1/Pi' | |
assert maple_code(pi ** -0.5) == '1/sqrt(Pi)' | |
def test_mix_number_mult_symbols(): | |
assert maple_code(3 * x) == "3*x" | |
assert maple_code(pi * x) == "Pi*x" | |
assert maple_code(3 / x) == "3/x" | |
assert maple_code(pi / x) == "Pi/x" | |
assert maple_code(x / 3) == '(1/3)*x' | |
assert maple_code(x / pi) == "x/Pi" | |
assert maple_code(x * y) == "x*y" | |
assert maple_code(3 * x * y) == "3*x*y" | |
assert maple_code(3 * pi * x * y) == "3*Pi*x*y" | |
assert maple_code(x / y) == "x/y" | |
assert maple_code(3 * x / y) == "3*x/y" | |
assert maple_code(x * y / z) == "x*y/z" | |
assert maple_code(x / y * z) == "x*z/y" | |
assert maple_code(1 / x / y) == "1/(x*y)" | |
assert maple_code(2 * pi * x / y / z) == "2*Pi*x/(y*z)" | |
assert maple_code(3 * pi / x) == "3*Pi/x" | |
assert maple_code(S(3) / 5) == "3/5" | |
assert maple_code(S(3) / 5 * x) == '(3/5)*x' | |
assert maple_code(x / y / z) == "x/(y*z)" | |
assert maple_code((x + y) / z) == "(x + y)/z" | |
assert maple_code((x + y) / (z + x)) == "(x + y)/(x + z)" | |
assert maple_code((x + y) / EulerGamma) == '(x + y)/gamma' | |
assert maple_code(x / 3 / pi) == '(1/3)*x/Pi' | |
assert maple_code(S(3) / 5 * x * y / pi) == '(3/5)*x*y/Pi' | |
def test_mix_number_pow_symbols(): | |
assert maple_code(pi ** 3) == 'Pi^3' | |
assert maple_code(x ** 2) == 'x^2' | |
assert maple_code(x ** (pi ** 3)) == 'x^(Pi^3)' | |
assert maple_code(x ** y) == 'x^y' | |
assert maple_code(x ** (y ** z)) == 'x^(y^z)' | |
assert maple_code((x ** y) ** z) == '(x^y)^z' | |
def test_imag(): | |
I = S('I') | |
assert maple_code(I) == "I" | |
assert maple_code(5 * I) == "5*I" | |
assert maple_code((S(3) / 2) * I) == "(3/2)*I" | |
assert maple_code(3 + 4 * I) == "3 + 4*I" | |
def test_constants(): | |
assert maple_code(pi) == "Pi" | |
assert maple_code(oo) == "infinity" | |
assert maple_code(-oo) == "-infinity" | |
assert maple_code(S.NegativeInfinity) == "-infinity" | |
assert maple_code(S.NaN) == "undefined" | |
assert maple_code(S.Exp1) == "exp(1)" | |
assert maple_code(exp(1)) == "exp(1)" | |
def test_constants_other(): | |
assert maple_code(2 * GoldenRatio) == '2*(1/2 + (1/2)*sqrt(5))' | |
assert maple_code(2 * Catalan) == '2*Catalan' | |
assert maple_code(2 * EulerGamma) == "2*gamma" | |
def test_boolean(): | |
assert maple_code(x & y) == "x and y" | |
assert maple_code(x | y) == "x or y" | |
assert maple_code(~x) == "not x" | |
assert maple_code(x & y & z) == "x and y and z" | |
assert maple_code(x | y | z) == "x or y or z" | |
assert maple_code((x & y) | z) == "z or x and y" | |
assert maple_code((x | y) & z) == "z and (x or y)" | |
def test_Matrices(): | |
assert maple_code(Matrix(1, 1, [10])) == \ | |
'Matrix([[10]], storage = rectangular)' | |
A = Matrix([[1, sin(x / 2), abs(x)], | |
[0, 1, pi], | |
[0, exp(1), ceiling(x)]]) | |
expected = \ | |
'Matrix(' \ | |
'[[1, sin((1/2)*x), abs(x)],' \ | |
' [0, 1, Pi],' \ | |
' [0, exp(1), ceil(x)]], ' \ | |
'storage = rectangular)' | |
assert maple_code(A) == expected | |
# row and columns | |
assert maple_code(A[:, 0]) == \ | |
'Matrix([[1], [0], [0]], storage = rectangular)' | |
assert maple_code(A[0, :]) == \ | |
'Matrix([[1, sin((1/2)*x), abs(x)]], storage = rectangular)' | |
assert maple_code(Matrix([[x, x - y, -y]])) == \ | |
'Matrix([[x, x - y, -y]], storage = rectangular)' | |
# empty matrices | |
assert maple_code(Matrix(0, 0, [])) == \ | |
'Matrix([], storage = rectangular)' | |
assert maple_code(Matrix(0, 3, [])) == \ | |
'Matrix([], storage = rectangular)' | |
def test_SparseMatrices(): | |
assert maple_code(SparseMatrix(Identity(2))) == 'Matrix([[1, 0], [0, 1]], storage = sparse)' | |
def test_vector_entries_hadamard(): | |
# For a row or column, user might to use the other dimension | |
A = Matrix([[1, sin(2 / x), 3 * pi / x / 5]]) | |
assert maple_code(A) == \ | |
'Matrix([[1, sin(2/x), (3/5)*Pi/x]], storage = rectangular)' | |
assert maple_code(A.T) == \ | |
'Matrix([[1], [sin(2/x)], [(3/5)*Pi/x]], storage = rectangular)' | |
def test_Matrices_entries_not_hadamard(): | |
A = Matrix([[1, sin(2 / x), 3 * pi / x / 5], [1, 2, x * y]]) | |
expected = \ | |
'Matrix([[1, sin(2/x), (3/5)*Pi/x], [1, 2, x*y]], ' \ | |
'storage = rectangular)' | |
assert maple_code(A) == expected | |
def test_MatrixSymbol(): | |
n = Symbol('n', integer=True) | |
A = MatrixSymbol('A', n, n) | |
B = MatrixSymbol('B', n, n) | |
assert maple_code(A * B) == "A.B" | |
assert maple_code(B * A) == "B.A" | |
assert maple_code(2 * A * B) == "2*A.B" | |
assert maple_code(B * 2 * A) == "2*B.A" | |
assert maple_code( | |
A * (B + 3 * Identity(n))) == "A.(3*Matrix(n, shape = identity) + B)" | |
assert maple_code(A ** (x ** 2)) == "MatrixPower(A, x^2)" | |
assert maple_code(A ** 3) == "MatrixPower(A, 3)" | |
assert maple_code(A ** (S.Half)) == "MatrixPower(A, 1/2)" | |
def test_special_matrices(): | |
assert maple_code(6 * Identity(3)) == "6*Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = sparse)" | |
assert maple_code(Identity(x)) == 'Matrix(x, shape = identity)' | |
def test_containers(): | |
assert maple_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ | |
"[1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]" | |
assert maple_code((1, 2, (3, 4))) == "[1, 2, [3, 4]]" | |
assert maple_code([1]) == "[1]" | |
assert maple_code((1,)) == "[1]" | |
assert maple_code(Tuple(*[1, 2, 3])) == "[1, 2, 3]" | |
assert maple_code((1, x * y, (3, x ** 2))) == "[1, x*y, [3, x^2]]" | |
# scalar, matrix, empty matrix and empty list | |
assert maple_code((1, eye(3), Matrix(0, 0, []), [])) == \ | |
"[1, Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = rectangular), Matrix([], storage = rectangular), []]" | |
def test_maple_noninline(): | |
source = maple_code((x + y)/Catalan, assign_to='me', inline=False) | |
expected = "me := (x + y)/Catalan" | |
assert source == expected | |
def test_maple_matrix_assign_to(): | |
A = Matrix([[1, 2, 3]]) | |
assert maple_code(A, assign_to='a') == "a := Matrix([[1, 2, 3]], storage = rectangular)" | |
A = Matrix([[1, 2], [3, 4]]) | |
assert maple_code(A, assign_to='A') == "A := Matrix([[1, 2], [3, 4]], storage = rectangular)" | |
def test_maple_matrix_assign_to_more(): | |
# assigning to Symbol or MatrixSymbol requires lhs/rhs match | |
A = Matrix([[1, 2, 3]]) | |
B = MatrixSymbol('B', 1, 3) | |
C = MatrixSymbol('C', 2, 3) | |
assert maple_code(A, assign_to=B) == "B := Matrix([[1, 2, 3]], storage = rectangular)" | |
raises(ValueError, lambda: maple_code(A, assign_to=x)) | |
raises(ValueError, lambda: maple_code(A, assign_to=C)) | |
def test_maple_matrix_1x1(): | |
A = Matrix([[3]]) | |
assert maple_code(A, assign_to='B') == "B := Matrix([[3]], storage = rectangular)" | |
def test_maple_matrix_elements(): | |
A = Matrix([[x, 2, x * y]]) | |
assert maple_code(A[0, 0] ** 2 + A[0, 1] + A[0, 2]) == "x^2 + x*y + 2" | |
AA = MatrixSymbol('AA', 1, 3) | |
assert maple_code(AA) == "AA" | |
assert maple_code(AA[0, 0] ** 2 + sin(AA[0, 1]) + AA[0, 2]) == \ | |
"sin(AA[1, 2]) + AA[1, 1]^2 + AA[1, 3]" | |
assert maple_code(sum(AA)) == "AA[1, 1] + AA[1, 2] + AA[1, 3]" | |
def test_maple_boolean(): | |
assert maple_code(True) == "true" | |
assert maple_code(S.true) == "true" | |
assert maple_code(False) == "false" | |
assert maple_code(S.false) == "false" | |
def test_sparse(): | |
M = SparseMatrix(5, 6, {}) | |
M[2, 2] = 10 | |
M[1, 2] = 20 | |
M[1, 3] = 22 | |
M[0, 3] = 30 | |
M[3, 0] = x * y | |
assert maple_code(M) == \ | |
'Matrix([[0, 0, 0, 30, 0, 0],' \ | |
' [0, 0, 20, 22, 0, 0],' \ | |
' [0, 0, 10, 0, 0, 0],' \ | |
' [x*y, 0, 0, 0, 0, 0],' \ | |
' [0, 0, 0, 0, 0, 0]], ' \ | |
'storage = sparse)' | |
# Not an important point. | |
def test_maple_not_supported(): | |
with raises(NotImplementedError): | |
maple_code(S.ComplexInfinity) | |
def test_MatrixElement_printing(): | |
# test cases for issue #11821 | |
A = MatrixSymbol("A", 1, 3) | |
B = MatrixSymbol("B", 1, 3) | |
assert (maple_code(A[0, 0]) == "A[1, 1]") | |
assert (maple_code(3 * A[0, 0]) == "3*A[1, 1]") | |
F = A-B | |
assert (maple_code(F[0,0]) == "A[1, 1] - B[1, 1]") | |
def test_hadamard(): | |
A = MatrixSymbol('A', 3, 3) | |
B = MatrixSymbol('B', 3, 3) | |
v = MatrixSymbol('v', 3, 1) | |
h = MatrixSymbol('h', 1, 3) | |
C = HadamardProduct(A, B) | |
assert maple_code(C) == "A*B" | |
assert maple_code(C * v) == "(A*B).v" | |
# HadamardProduct is higher than dot product. | |
assert maple_code(h * C * v) == "h.(A*B).v" | |
assert maple_code(C * A) == "(A*B).A" | |
# mixing Hadamard and scalar strange b/c we vectorize scalars | |
assert maple_code(C * x * y) == "x*y*(A*B)" | |
def test_maple_piecewise(): | |
expr = Piecewise((x, x < 1), (x ** 2, True)) | |
assert maple_code(expr) == "piecewise(x < 1, x, x^2)" | |
assert maple_code(expr, assign_to="r") == ( | |
"r := piecewise(x < 1, x, x^2)") | |
expr = Piecewise((x ** 2, x < 1), (x ** 3, x < 2), (x ** 4, x < 3), (x ** 5, True)) | |
expected = "piecewise(x < 1, x^2, x < 2, x^3, x < 3, x^4, x^5)" | |
assert maple_code(expr) == expected | |
assert maple_code(expr, assign_to="r") == "r := " + expected | |
# Check that Piecewise without a True (default) condition error | |
expr = Piecewise((x, x < 1), (x ** 2, x > 1), (sin(x), x > 0)) | |
raises(ValueError, lambda: maple_code(expr)) | |
def test_maple_piecewise_times_const(): | |
pw = Piecewise((x, x < 1), (x ** 2, True)) | |
assert maple_code(2 * pw) == "2*piecewise(x < 1, x, x^2)" | |
assert maple_code(pw / x) == "piecewise(x < 1, x, x^2)/x" | |
assert maple_code(pw / (x * y)) == "piecewise(x < 1, x, x^2)/(x*y)" | |
assert maple_code(pw / 3) == "(1/3)*piecewise(x < 1, x, x^2)" | |
def test_maple_derivatives(): | |
f = Function('f') | |
assert maple_code(f(x).diff(x)) == 'diff(f(x), x)' | |
assert maple_code(f(x).diff(x, 2)) == 'diff(f(x), x$2)' | |
def test_automatic_rewrites(): | |
assert maple_code(lucas(x)) == '(2^(-x)*((1 - sqrt(5))^x + (1 + sqrt(5))^x))' | |
assert maple_code(sinc(x)) == '(piecewise(x <> 0, sin(x)/x, 1))' | |
def test_specfun(): | |
assert maple_code('asin(x)') == 'arcsin(x)' | |
assert maple_code(besseli(x, y)) == 'BesselI(x, y)' | |