File size: 13,078 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
                        Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos, sinc, lucas
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
                            HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import besseli

from sympy.printing.maple import maple_code

x, y, z = symbols('x,y,z')


def test_Integer():
    assert maple_code(Integer(67)) == "67"
    assert maple_code(Integer(-1)) == "-1"


def test_Rational():
    assert maple_code(Rational(3, 7)) == "3/7"
    assert maple_code(Rational(18, 9)) == "2"
    assert maple_code(Rational(3, -7)) == "-3/7"
    assert maple_code(Rational(-3, -7)) == "3/7"
    assert maple_code(x + Rational(3, 7)) == "x + 3/7"
    assert maple_code(Rational(3, 7) * x) == '(3/7)*x'


def test_Relational():
    assert maple_code(Eq(x, y)) == "x = y"
    assert maple_code(Ne(x, y)) == "x <> y"
    assert maple_code(Le(x, y)) == "x <= y"
    assert maple_code(Lt(x, y)) == "x < y"
    assert maple_code(Gt(x, y)) == "x > y"
    assert maple_code(Ge(x, y)) == "x >= y"


def test_Function():
    assert maple_code(sin(x) ** cos(x)) == "sin(x)^cos(x)"
    assert maple_code(abs(x)) == "abs(x)"
    assert maple_code(ceiling(x)) == "ceil(x)"


def test_Pow():
    assert maple_code(x ** 3) == "x^3"
    assert maple_code(x ** (y ** 3)) == "x^(y^3)"

    assert maple_code((x ** 3) ** y) == "(x^3)^y"
    assert maple_code(x ** Rational(2, 3)) == 'x^(2/3)'

    g = implemented_function('g', Lambda(x, 2 * x))
    assert maple_code(1 / (g(x) * 3.5) ** (x - y ** x) / (x ** 2 + y)) == \
           "(3.5*2*x)^(-x + y^x)/(x^2 + y)"
    # For issue 14160
    assert maple_code(Mul(-2, x, Pow(Mul(y, y, evaluate=False), -1, evaluate=False),
                          evaluate=False)) == '-2*x/(y*y)'


def test_basic_ops():
    assert maple_code(x * y) == "x*y"
    assert maple_code(x + y) == "x + y"
    assert maple_code(x - y) == "x - y"
    assert maple_code(-x) == "-x"


def test_1_over_x_and_sqrt():
    # 1.0 and 0.5 would do something different in regular StrPrinter,
    # but these are exact in IEEE floating point so no different here.
    assert maple_code(1 / x) == '1/x'
    assert maple_code(x ** -1) == maple_code(x ** -1.0) == '1/x'
    assert maple_code(1 / sqrt(x)) == '1/sqrt(x)'
    assert maple_code(x ** -S.Half) == maple_code(x ** -0.5) == '1/sqrt(x)'
    assert maple_code(sqrt(x)) == 'sqrt(x)'
    assert maple_code(x ** S.Half) == maple_code(x ** 0.5) == 'sqrt(x)'
    assert maple_code(1 / pi) == '1/Pi'
    assert maple_code(pi ** -1) == maple_code(pi ** -1.0) == '1/Pi'
    assert maple_code(pi ** -0.5) == '1/sqrt(Pi)'


def test_mix_number_mult_symbols():
    assert maple_code(3 * x) == "3*x"
    assert maple_code(pi * x) == "Pi*x"
    assert maple_code(3 / x) == "3/x"
    assert maple_code(pi / x) == "Pi/x"
    assert maple_code(x / 3) == '(1/3)*x'
    assert maple_code(x / pi) == "x/Pi"
    assert maple_code(x * y) == "x*y"
    assert maple_code(3 * x * y) == "3*x*y"
    assert maple_code(3 * pi * x * y) == "3*Pi*x*y"
    assert maple_code(x / y) == "x/y"
    assert maple_code(3 * x / y) == "3*x/y"
    assert maple_code(x * y / z) == "x*y/z"
    assert maple_code(x / y * z) == "x*z/y"
    assert maple_code(1 / x / y) == "1/(x*y)"
    assert maple_code(2 * pi * x / y / z) == "2*Pi*x/(y*z)"
    assert maple_code(3 * pi / x) == "3*Pi/x"
    assert maple_code(S(3) / 5) == "3/5"
    assert maple_code(S(3) / 5 * x) == '(3/5)*x'
    assert maple_code(x / y / z) == "x/(y*z)"
    assert maple_code((x + y) / z) == "(x + y)/z"
    assert maple_code((x + y) / (z + x)) == "(x + y)/(x + z)"
    assert maple_code((x + y) / EulerGamma) == '(x + y)/gamma'
    assert maple_code(x / 3 / pi) == '(1/3)*x/Pi'
    assert maple_code(S(3) / 5 * x * y / pi) == '(3/5)*x*y/Pi'


def test_mix_number_pow_symbols():
    assert maple_code(pi ** 3) == 'Pi^3'
    assert maple_code(x ** 2) == 'x^2'

    assert maple_code(x ** (pi ** 3)) == 'x^(Pi^3)'
    assert maple_code(x ** y) == 'x^y'

    assert maple_code(x ** (y ** z)) == 'x^(y^z)'
    assert maple_code((x ** y) ** z) == '(x^y)^z'


def test_imag():
    I = S('I')
    assert maple_code(I) == "I"
    assert maple_code(5 * I) == "5*I"

    assert maple_code((S(3) / 2) * I) == "(3/2)*I"
    assert maple_code(3 + 4 * I) == "3 + 4*I"


def test_constants():
    assert maple_code(pi) == "Pi"
    assert maple_code(oo) == "infinity"
    assert maple_code(-oo) == "-infinity"
    assert maple_code(S.NegativeInfinity) == "-infinity"
    assert maple_code(S.NaN) == "undefined"
    assert maple_code(S.Exp1) == "exp(1)"
    assert maple_code(exp(1)) == "exp(1)"


def test_constants_other():
    assert maple_code(2 * GoldenRatio) == '2*(1/2 + (1/2)*sqrt(5))'
    assert maple_code(2 * Catalan) == '2*Catalan'
    assert maple_code(2 * EulerGamma) == "2*gamma"


def test_boolean():
    assert maple_code(x & y) == "x and y"
    assert maple_code(x | y) == "x or y"
    assert maple_code(~x) == "not x"
    assert maple_code(x & y & z) == "x and y and z"
    assert maple_code(x | y | z) == "x or y or z"
    assert maple_code((x & y) | z) == "z or x and y"
    assert maple_code((x | y) & z) == "z and (x or y)"


def test_Matrices():
    assert maple_code(Matrix(1, 1, [10])) == \
           'Matrix([[10]], storage = rectangular)'

    A = Matrix([[1, sin(x / 2), abs(x)],
                [0, 1, pi],
                [0, exp(1), ceiling(x)]])
    expected = \
        'Matrix(' \
        '[[1, sin((1/2)*x), abs(x)],' \
        ' [0, 1, Pi],' \
        ' [0, exp(1), ceil(x)]], ' \
        'storage = rectangular)'
    assert maple_code(A) == expected

    # row and columns
    assert maple_code(A[:, 0]) == \
           'Matrix([[1], [0], [0]], storage = rectangular)'
    assert maple_code(A[0, :]) == \
           'Matrix([[1, sin((1/2)*x), abs(x)]], storage = rectangular)'
    assert maple_code(Matrix([[x, x - y, -y]])) == \
           'Matrix([[x, x - y, -y]], storage = rectangular)'

    # empty matrices
    assert maple_code(Matrix(0, 0, [])) == \
           'Matrix([], storage = rectangular)'
    assert maple_code(Matrix(0, 3, [])) == \
           'Matrix([], storage = rectangular)'

def test_SparseMatrices():
    assert maple_code(SparseMatrix(Identity(2))) == 'Matrix([[1, 0], [0, 1]], storage = sparse)'


def test_vector_entries_hadamard():
    # For a row or column, user might to use the other dimension
    A = Matrix([[1, sin(2 / x), 3 * pi / x / 5]])
    assert maple_code(A) == \
           'Matrix([[1, sin(2/x), (3/5)*Pi/x]], storage = rectangular)'
    assert maple_code(A.T) == \
           'Matrix([[1], [sin(2/x)], [(3/5)*Pi/x]], storage = rectangular)'


def test_Matrices_entries_not_hadamard():
    A = Matrix([[1, sin(2 / x), 3 * pi / x / 5], [1, 2, x * y]])
    expected = \
        'Matrix([[1, sin(2/x), (3/5)*Pi/x], [1, 2, x*y]], ' \
        'storage = rectangular)'
    assert maple_code(A) == expected


def test_MatrixSymbol():
    n = Symbol('n', integer=True)
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, n)
    assert maple_code(A * B) == "A.B"
    assert maple_code(B * A) == "B.A"
    assert maple_code(2 * A * B) == "2*A.B"
    assert maple_code(B * 2 * A) == "2*B.A"

    assert maple_code(
        A * (B + 3 * Identity(n))) == "A.(3*Matrix(n, shape = identity) + B)"

    assert maple_code(A ** (x ** 2)) == "MatrixPower(A, x^2)"
    assert maple_code(A ** 3) == "MatrixPower(A, 3)"
    assert maple_code(A ** (S.Half)) == "MatrixPower(A, 1/2)"


def test_special_matrices():
    assert maple_code(6 * Identity(3)) == "6*Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = sparse)"
    assert maple_code(Identity(x)) == 'Matrix(x, shape = identity)'


def test_containers():
    assert maple_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
           "[1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]"

    assert maple_code((1, 2, (3, 4))) == "[1, 2, [3, 4]]"
    assert maple_code([1]) == "[1]"
    assert maple_code((1,)) == "[1]"
    assert maple_code(Tuple(*[1, 2, 3])) == "[1, 2, 3]"
    assert maple_code((1, x * y, (3, x ** 2))) == "[1, x*y, [3, x^2]]"
    # scalar, matrix, empty matrix and empty list

    assert maple_code((1, eye(3), Matrix(0, 0, []), [])) == \
           "[1, Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = rectangular), Matrix([], storage = rectangular), []]"


def test_maple_noninline():
    source = maple_code((x + y)/Catalan, assign_to='me', inline=False)
    expected = "me := (x + y)/Catalan"

    assert source == expected


def test_maple_matrix_assign_to():
    A = Matrix([[1, 2, 3]])
    assert maple_code(A, assign_to='a') == "a := Matrix([[1, 2, 3]], storage = rectangular)"
    A = Matrix([[1, 2], [3, 4]])
    assert maple_code(A, assign_to='A') == "A := Matrix([[1, 2], [3, 4]], storage = rectangular)"


def test_maple_matrix_assign_to_more():
    # assigning to Symbol or MatrixSymbol requires lhs/rhs match
    A = Matrix([[1, 2, 3]])
    B = MatrixSymbol('B', 1, 3)
    C = MatrixSymbol('C', 2, 3)
    assert maple_code(A, assign_to=B) == "B := Matrix([[1, 2, 3]], storage = rectangular)"
    raises(ValueError, lambda: maple_code(A, assign_to=x))
    raises(ValueError, lambda: maple_code(A, assign_to=C))


def test_maple_matrix_1x1():
    A = Matrix([[3]])
    assert maple_code(A, assign_to='B') == "B := Matrix([[3]], storage = rectangular)"


def test_maple_matrix_elements():
    A = Matrix([[x, 2, x * y]])

    assert maple_code(A[0, 0] ** 2 + A[0, 1] + A[0, 2]) == "x^2 + x*y + 2"
    AA = MatrixSymbol('AA', 1, 3)
    assert maple_code(AA) == "AA"

    assert maple_code(AA[0, 0] ** 2 + sin(AA[0, 1]) + AA[0, 2]) == \
           "sin(AA[1, 2]) + AA[1, 1]^2 + AA[1, 3]"
    assert maple_code(sum(AA)) == "AA[1, 1] + AA[1, 2] + AA[1, 3]"


def test_maple_boolean():
    assert maple_code(True) == "true"
    assert maple_code(S.true) == "true"
    assert maple_code(False) == "false"
    assert maple_code(S.false) == "false"


def test_sparse():
    M = SparseMatrix(5, 6, {})
    M[2, 2] = 10
    M[1, 2] = 20
    M[1, 3] = 22
    M[0, 3] = 30
    M[3, 0] = x * y
    assert maple_code(M) == \
           'Matrix([[0, 0, 0, 30, 0, 0],' \
           ' [0, 0, 20, 22, 0, 0],' \
           ' [0, 0, 10, 0, 0, 0],' \
           ' [x*y, 0, 0, 0, 0, 0],' \
           ' [0, 0, 0, 0, 0, 0]], ' \
           'storage = sparse)'

# Not an important point.
def test_maple_not_supported():
    with raises(NotImplementedError):
        maple_code(S.ComplexInfinity)


def test_MatrixElement_printing():
    # test cases for issue #11821
    A = MatrixSymbol("A", 1, 3)
    B = MatrixSymbol("B", 1, 3)

    assert (maple_code(A[0, 0]) == "A[1, 1]")
    assert (maple_code(3 * A[0, 0]) == "3*A[1, 1]")

    F = A-B

    assert (maple_code(F[0,0]) == "A[1, 1] - B[1, 1]")


def test_hadamard():
    A = MatrixSymbol('A', 3, 3)
    B = MatrixSymbol('B', 3, 3)
    v = MatrixSymbol('v', 3, 1)
    h = MatrixSymbol('h', 1, 3)
    C = HadamardProduct(A, B)
    assert maple_code(C) == "A*B"

    assert maple_code(C * v) == "(A*B).v"
    # HadamardProduct is higher than dot product.

    assert maple_code(h * C * v) == "h.(A*B).v"

    assert maple_code(C * A) == "(A*B).A"
    # mixing Hadamard and scalar strange b/c we vectorize scalars

    assert maple_code(C * x * y) == "x*y*(A*B)"


def test_maple_piecewise():
    expr = Piecewise((x, x < 1), (x ** 2, True))

    assert maple_code(expr) == "piecewise(x < 1, x, x^2)"
    assert maple_code(expr, assign_to="r") == (
        "r := piecewise(x < 1, x, x^2)")

    expr = Piecewise((x ** 2, x < 1), (x ** 3, x < 2), (x ** 4, x < 3), (x ** 5, True))
    expected = "piecewise(x < 1, x^2, x < 2, x^3, x < 3, x^4, x^5)"
    assert maple_code(expr) == expected
    assert maple_code(expr, assign_to="r") == "r := " + expected

    # Check that Piecewise without a True (default) condition error
    expr = Piecewise((x, x < 1), (x ** 2, x > 1), (sin(x), x > 0))
    raises(ValueError, lambda: maple_code(expr))


def test_maple_piecewise_times_const():
    pw = Piecewise((x, x < 1), (x ** 2, True))

    assert maple_code(2 * pw) == "2*piecewise(x < 1, x, x^2)"
    assert maple_code(pw / x) == "piecewise(x < 1, x, x^2)/x"
    assert maple_code(pw / (x * y)) == "piecewise(x < 1, x, x^2)/(x*y)"
    assert maple_code(pw / 3) == "(1/3)*piecewise(x < 1, x, x^2)"


def test_maple_derivatives():
    f = Function('f')
    assert maple_code(f(x).diff(x)) == 'diff(f(x), x)'
    assert maple_code(f(x).diff(x, 2)) == 'diff(f(x), x$2)'


def test_automatic_rewrites():
    assert maple_code(lucas(x)) == '(2^(-x)*((1 - sqrt(5))^x + (1 + sqrt(5))^x))'
    assert maple_code(sinc(x)) == '(piecewise(x <> 0, sin(x)/x, 1))'


def test_specfun():
    assert maple_code('asin(x)') == 'arcsin(x)'
    assert maple_code(besseli(x, y)) == 'BesselI(x, y)'