Spaces:
Sleeping
Sleeping
""" | |
R code printer | |
The RCodePrinter converts single SymPy expressions into single R expressions, | |
using the functions defined in math.h where possible. | |
""" | |
from __future__ import annotations | |
from typing import Any | |
from sympy.core.numbers import equal_valued | |
from sympy.printing.codeprinter import CodePrinter | |
from sympy.printing.precedence import precedence, PRECEDENCE | |
from sympy.sets.fancysets import Range | |
# dictionary mapping SymPy function to (argument_conditions, C_function). | |
# Used in RCodePrinter._print_Function(self) | |
known_functions = { | |
#"Abs": [(lambda x: not x.is_integer, "fabs")], | |
"Abs": "abs", | |
"sin": "sin", | |
"cos": "cos", | |
"tan": "tan", | |
"asin": "asin", | |
"acos": "acos", | |
"atan": "atan", | |
"atan2": "atan2", | |
"exp": "exp", | |
"log": "log", | |
"erf": "erf", | |
"sinh": "sinh", | |
"cosh": "cosh", | |
"tanh": "tanh", | |
"asinh": "asinh", | |
"acosh": "acosh", | |
"atanh": "atanh", | |
"floor": "floor", | |
"ceiling": "ceiling", | |
"sign": "sign", | |
"Max": "max", | |
"Min": "min", | |
"factorial": "factorial", | |
"gamma": "gamma", | |
"digamma": "digamma", | |
"trigamma": "trigamma", | |
"beta": "beta", | |
"sqrt": "sqrt", # To enable automatic rewrite | |
} | |
# These are the core reserved words in the R language. Taken from: | |
# https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words | |
reserved_words = ['if', | |
'else', | |
'repeat', | |
'while', | |
'function', | |
'for', | |
'in', | |
'next', | |
'break', | |
'TRUE', | |
'FALSE', | |
'NULL', | |
'Inf', | |
'NaN', | |
'NA', | |
'NA_integer_', | |
'NA_real_', | |
'NA_complex_', | |
'NA_character_', | |
'volatile'] | |
class RCodePrinter(CodePrinter): | |
"""A printer to convert SymPy expressions to strings of R code""" | |
printmethod = "_rcode" | |
language = "R" | |
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ | |
'precision': 15, | |
'user_functions': {}, | |
'contract': True, | |
'dereference': set(), | |
}) | |
_operators = { | |
'and': '&', | |
'or': '|', | |
'not': '!', | |
} | |
_relationals: dict[str, str] = {} | |
def __init__(self, settings={}): | |
CodePrinter.__init__(self, settings) | |
self.known_functions = dict(known_functions) | |
userfuncs = settings.get('user_functions', {}) | |
self.known_functions.update(userfuncs) | |
self._dereference = set(settings.get('dereference', [])) | |
self.reserved_words = set(reserved_words) | |
def _rate_index_position(self, p): | |
return p*5 | |
def _get_statement(self, codestring): | |
return "%s;" % codestring | |
def _get_comment(self, text): | |
return "// {}".format(text) | |
def _declare_number_const(self, name, value): | |
return "{} = {};".format(name, value) | |
def _format_code(self, lines): | |
return self.indent_code(lines) | |
def _traverse_matrix_indices(self, mat): | |
rows, cols = mat.shape | |
return ((i, j) for i in range(rows) for j in range(cols)) | |
def _get_loop_opening_ending(self, indices): | |
"""Returns a tuple (open_lines, close_lines) containing lists of codelines | |
""" | |
open_lines = [] | |
close_lines = [] | |
loopstart = "for (%(var)s in %(start)s:%(end)s){" | |
for i in indices: | |
# R arrays start at 1 and end at dimension | |
open_lines.append(loopstart % { | |
'var': self._print(i.label), | |
'start': self._print(i.lower+1), | |
'end': self._print(i.upper + 1)}) | |
close_lines.append("}") | |
return open_lines, close_lines | |
def _print_Pow(self, expr): | |
if "Pow" in self.known_functions: | |
return self._print_Function(expr) | |
PREC = precedence(expr) | |
if equal_valued(expr.exp, -1): | |
return '1.0/%s' % (self.parenthesize(expr.base, PREC)) | |
elif equal_valued(expr.exp, 0.5): | |
return 'sqrt(%s)' % self._print(expr.base) | |
else: | |
return '%s^%s' % (self.parenthesize(expr.base, PREC), | |
self.parenthesize(expr.exp, PREC)) | |
def _print_Rational(self, expr): | |
p, q = int(expr.p), int(expr.q) | |
return '%d.0/%d.0' % (p, q) | |
def _print_Indexed(self, expr): | |
inds = [ self._print(i) for i in expr.indices ] | |
return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds)) | |
def _print_Idx(self, expr): | |
return self._print(expr.label) | |
def _print_Exp1(self, expr): | |
return "exp(1)" | |
def _print_Pi(self, expr): | |
return 'pi' | |
def _print_Infinity(self, expr): | |
return 'Inf' | |
def _print_NegativeInfinity(self, expr): | |
return '-Inf' | |
def _print_Assignment(self, expr): | |
from sympy.codegen.ast import Assignment | |
from sympy.matrices.expressions.matexpr import MatrixSymbol | |
from sympy.tensor.indexed import IndexedBase | |
lhs = expr.lhs | |
rhs = expr.rhs | |
# We special case assignments that take multiple lines | |
#if isinstance(expr.rhs, Piecewise): | |
# from sympy.functions.elementary.piecewise import Piecewise | |
# # Here we modify Piecewise so each expression is now | |
# # an Assignment, and then continue on the print. | |
# expressions = [] | |
# conditions = [] | |
# for (e, c) in rhs.args: | |
# expressions.append(Assignment(lhs, e)) | |
# conditions.append(c) | |
# temp = Piecewise(*zip(expressions, conditions)) | |
# return self._print(temp) | |
#elif isinstance(lhs, MatrixSymbol): | |
if isinstance(lhs, MatrixSymbol): | |
# Here we form an Assignment for each element in the array, | |
# printing each one. | |
lines = [] | |
for (i, j) in self._traverse_matrix_indices(lhs): | |
temp = Assignment(lhs[i, j], rhs[i, j]) | |
code0 = self._print(temp) | |
lines.append(code0) | |
return "\n".join(lines) | |
elif self._settings["contract"] and (lhs.has(IndexedBase) or | |
rhs.has(IndexedBase)): | |
# Here we check if there is looping to be done, and if so | |
# print the required loops. | |
return self._doprint_loops(rhs, lhs) | |
else: | |
lhs_code = self._print(lhs) | |
rhs_code = self._print(rhs) | |
return self._get_statement("%s = %s" % (lhs_code, rhs_code)) | |
def _print_Piecewise(self, expr): | |
# This method is called only for inline if constructs | |
# Top level piecewise is handled in doprint() | |
if expr.args[-1].cond == True: | |
last_line = "%s" % self._print(expr.args[-1].expr) | |
else: | |
last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr)) | |
code=last_line | |
for e, c in reversed(expr.args[:-1]): | |
code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")" | |
return(code) | |
def _print_ITE(self, expr): | |
from sympy.functions import Piecewise | |
return self._print(expr.rewrite(Piecewise)) | |
def _print_MatrixElement(self, expr): | |
return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], | |
strict=True), expr.j + expr.i*expr.parent.shape[1]) | |
def _print_Symbol(self, expr): | |
name = super()._print_Symbol(expr) | |
if expr in self._dereference: | |
return '(*{})'.format(name) | |
else: | |
return name | |
def _print_Relational(self, expr): | |
lhs_code = self._print(expr.lhs) | |
rhs_code = self._print(expr.rhs) | |
op = expr.rel_op | |
return "{} {} {}".format(lhs_code, op, rhs_code) | |
def _print_AugmentedAssignment(self, expr): | |
lhs_code = self._print(expr.lhs) | |
op = expr.op | |
rhs_code = self._print(expr.rhs) | |
return "{} {} {};".format(lhs_code, op, rhs_code) | |
def _print_For(self, expr): | |
target = self._print(expr.target) | |
if isinstance(expr.iterable, Range): | |
start, stop, step = expr.iterable.args | |
else: | |
raise NotImplementedError("Only iterable currently supported is Range") | |
body = self._print(expr.body) | |
return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start, | |
stop=stop-1, step=step, body=body) | |
def indent_code(self, code): | |
"""Accepts a string of code or a list of code lines""" | |
if isinstance(code, str): | |
code_lines = self.indent_code(code.splitlines(True)) | |
return ''.join(code_lines) | |
tab = " " | |
inc_token = ('{', '(', '{\n', '(\n') | |
dec_token = ('}', ')') | |
code = [ line.lstrip(' \t') for line in code ] | |
increase = [ int(any(map(line.endswith, inc_token))) for line in code ] | |
decrease = [ int(any(map(line.startswith, dec_token))) | |
for line in code ] | |
pretty = [] | |
level = 0 | |
for n, line in enumerate(code): | |
if line in ('', '\n'): | |
pretty.append(line) | |
continue | |
level -= decrease[n] | |
pretty.append("%s%s" % (tab*level, line)) | |
level += increase[n] | |
return pretty | |
def rcode(expr, assign_to=None, **settings): | |
"""Converts an expr to a string of r code | |
Parameters | |
========== | |
expr : Expr | |
A SymPy expression to be converted. | |
assign_to : optional | |
When given, the argument is used as the name of the variable to which | |
the expression is assigned. Can be a string, ``Symbol``, | |
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of | |
line-wrapping, or for expressions that generate multi-line statements. | |
precision : integer, optional | |
The precision for numbers such as pi [default=15]. | |
user_functions : dict, optional | |
A dictionary where the keys are string representations of either | |
``FunctionClass`` or ``UndefinedFunction`` instances and the values | |
are their desired R string representations. Alternatively, the | |
dictionary value can be a list of tuples i.e. [(argument_test, | |
rfunction_string)] or [(argument_test, rfunction_formater)]. See below | |
for examples. | |
human : bool, optional | |
If True, the result is a single string that may contain some constant | |
declarations for the number symbols. If False, the same information is | |
returned in a tuple of (symbols_to_declare, not_supported_functions, | |
code_text). [default=True]. | |
contract: bool, optional | |
If True, ``Indexed`` instances are assumed to obey tensor contraction | |
rules and the corresponding nested loops over indices are generated. | |
Setting contract=False will not generate loops, instead the user is | |
responsible to provide values for the indices in the code. | |
[default=True]. | |
Examples | |
======== | |
>>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function | |
>>> x, tau = symbols("x, tau") | |
>>> rcode((2*tau)**Rational(7, 2)) | |
'8*sqrt(2)*tau^(7.0/2.0)' | |
>>> rcode(sin(x), assign_to="s") | |
's = sin(x);' | |
Simple custom printing can be defined for certain types by passing a | |
dictionary of {"type" : "function"} to the ``user_functions`` kwarg. | |
Alternatively, the dictionary value can be a list of tuples i.e. | |
[(argument_test, cfunction_string)]. | |
>>> custom_functions = { | |
... "ceiling": "CEIL", | |
... "Abs": [(lambda x: not x.is_integer, "fabs"), | |
... (lambda x: x.is_integer, "ABS")], | |
... "func": "f" | |
... } | |
>>> func = Function('func') | |
>>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions) | |
'f(fabs(x) + CEIL(x))' | |
or if the R-function takes a subset of the original arguments: | |
>>> rcode(2**x + 3**x, user_functions={'Pow': [ | |
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), | |
... (lambda b, e: b != 2, 'pow')]}) | |
'exp2(x) + pow(3, x)' | |
``Piecewise`` expressions are converted into conditionals. If an | |
``assign_to`` variable is provided an if statement is created, otherwise | |
the ternary operator is used. Note that if the ``Piecewise`` lacks a | |
default term, represented by ``(expr, True)`` then an error will be thrown. | |
This is to prevent generating an expression that may not evaluate to | |
anything. | |
>>> from sympy import Piecewise | |
>>> expr = Piecewise((x + 1, x > 0), (x, True)) | |
>>> print(rcode(expr, assign_to=tau)) | |
tau = ifelse(x > 0,x + 1,x); | |
Support for loops is provided through ``Indexed`` types. With | |
``contract=True`` these expressions will be turned into loops, whereas | |
``contract=False`` will just print the assignment expression that should be | |
looped over: | |
>>> from sympy import Eq, IndexedBase, Idx | |
>>> len_y = 5 | |
>>> y = IndexedBase('y', shape=(len_y,)) | |
>>> t = IndexedBase('t', shape=(len_y,)) | |
>>> Dy = IndexedBase('Dy', shape=(len_y-1,)) | |
>>> i = Idx('i', len_y-1) | |
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) | |
>>> rcode(e.rhs, assign_to=e.lhs, contract=False) | |
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' | |
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions | |
must be provided to ``assign_to``. Note that any expression that can be | |
generated normally can also exist inside a Matrix: | |
>>> from sympy import Matrix, MatrixSymbol | |
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) | |
>>> A = MatrixSymbol('A', 3, 1) | |
>>> print(rcode(mat, A)) | |
A[0] = x^2; | |
A[1] = ifelse(x > 0,x + 1,x); | |
A[2] = sin(x); | |
""" | |
return RCodePrinter(settings).doprint(expr, assign_to) | |
def print_rcode(expr, **settings): | |
"""Prints R representation of the given expression.""" | |
print(rcode(expr, **settings)) | |