File size: 14,173 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
"""
R code printer

The RCodePrinter converts single SymPy expressions into single R expressions,
using the functions defined in math.h where possible.



"""

from __future__ import annotations
from typing import Any

from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE
from sympy.sets.fancysets import Range

# dictionary mapping SymPy function to (argument_conditions, C_function).
# Used in RCodePrinter._print_Function(self)
known_functions = {
    #"Abs": [(lambda x: not x.is_integer, "fabs")],
    "Abs": "abs",
    "sin": "sin",
    "cos": "cos",
    "tan": "tan",
    "asin": "asin",
    "acos": "acos",
    "atan": "atan",
    "atan2": "atan2",
    "exp": "exp",
    "log": "log",
    "erf": "erf",
    "sinh": "sinh",
    "cosh": "cosh",
    "tanh": "tanh",
    "asinh": "asinh",
    "acosh": "acosh",
    "atanh": "atanh",
    "floor": "floor",
    "ceiling": "ceiling",
    "sign": "sign",
    "Max": "max",
    "Min": "min",
    "factorial": "factorial",
    "gamma": "gamma",
    "digamma": "digamma",
    "trigamma": "trigamma",
    "beta": "beta",
    "sqrt": "sqrt",  # To enable automatic rewrite
}

# These are the core reserved words in the R language. Taken from:
# https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words

reserved_words = ['if',
                  'else',
                  'repeat',
                  'while',
                  'function',
                  'for',
                  'in',
                  'next',
                  'break',
                  'TRUE',
                  'FALSE',
                  'NULL',
                  'Inf',
                  'NaN',
                  'NA',
                  'NA_integer_',
                  'NA_real_',
                  'NA_complex_',
                  'NA_character_',
                  'volatile']


class RCodePrinter(CodePrinter):
    """A printer to convert SymPy expressions to strings of R code"""
    printmethod = "_rcode"
    language = "R"

    _default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{
        'precision': 15,
        'user_functions': {},
        'contract': True,
        'dereference': set(),
    })
    _operators = {
       'and': '&',
        'or': '|',
       'not': '!',
    }

    _relationals: dict[str, str] = {}

    def __init__(self, settings={}):
        CodePrinter.__init__(self, settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)
        self._dereference = set(settings.get('dereference', []))
        self.reserved_words = set(reserved_words)

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// {}".format(text)

    def _declare_number_const(self, name, value):
        return "{} = {};".format(name, value)

    def _format_code(self, lines):
        return self.indent_code(lines)

    def _traverse_matrix_indices(self, mat):
        rows, cols = mat.shape
        return ((i, j) for i in range(rows) for j in range(cols))

    def _get_loop_opening_ending(self, indices):
        """Returns a tuple (open_lines, close_lines) containing lists of codelines
        """
        open_lines = []
        close_lines = []
        loopstart = "for (%(var)s in %(start)s:%(end)s){"
        for i in indices:
            # R arrays start at 1 and end at dimension
            open_lines.append(loopstart % {
                'var': self._print(i.label),
                'start': self._print(i.lower+1),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines

    def _print_Pow(self, expr):
        if "Pow" in self.known_functions:
            return self._print_Function(expr)
        PREC = precedence(expr)
        if equal_valued(expr.exp, -1):
            return '1.0/%s' % (self.parenthesize(expr.base, PREC))
        elif equal_valued(expr.exp, 0.5):
            return 'sqrt(%s)' % self._print(expr.base)
        else:
            return '%s^%s' % (self.parenthesize(expr.base, PREC),
                                 self.parenthesize(expr.exp, PREC))


    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d.0/%d.0' % (p, q)

    def _print_Indexed(self, expr):
        inds = [ self._print(i) for i in expr.indices ]
        return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds))

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_Exp1(self, expr):
        return "exp(1)"

    def _print_Pi(self, expr):
        return 'pi'

    def _print_Infinity(self, expr):
        return 'Inf'

    def _print_NegativeInfinity(self, expr):
        return '-Inf'

    def _print_Assignment(self, expr):
        from sympy.codegen.ast import Assignment

        from sympy.matrices.expressions.matexpr import MatrixSymbol
        from sympy.tensor.indexed import IndexedBase
        lhs = expr.lhs
        rhs = expr.rhs
        # We special case assignments that take multiple lines
        #if isinstance(expr.rhs, Piecewise):
        #    from sympy.functions.elementary.piecewise import Piecewise
        #    # Here we modify Piecewise so each expression is now
        #    # an Assignment, and then continue on the print.
        #    expressions = []
        #    conditions = []
        #    for (e, c) in rhs.args:
        #        expressions.append(Assignment(lhs, e))
        #        conditions.append(c)
        #    temp = Piecewise(*zip(expressions, conditions))
        #    return self._print(temp)
        #elif isinstance(lhs, MatrixSymbol):
        if isinstance(lhs, MatrixSymbol):
            # Here we form an Assignment for each element in the array,
            # printing each one.
            lines = []
            for (i, j) in self._traverse_matrix_indices(lhs):
                temp = Assignment(lhs[i, j], rhs[i, j])
                code0 = self._print(temp)
                lines.append(code0)
            return "\n".join(lines)
        elif self._settings["contract"] and (lhs.has(IndexedBase) or
                rhs.has(IndexedBase)):
            # Here we check if there is looping to be done, and if so
            # print the required loops.
            return self._doprint_loops(rhs, lhs)
        else:
            lhs_code = self._print(lhs)
            rhs_code = self._print(rhs)
            return self._get_statement("%s = %s" % (lhs_code, rhs_code))

    def _print_Piecewise(self, expr):
        # This method is called only for inline if constructs
        # Top level piecewise is handled in doprint()
        if expr.args[-1].cond == True:
            last_line = "%s" % self._print(expr.args[-1].expr)
        else:
            last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr))
        code=last_line
        for e, c in reversed(expr.args[:-1]):
            code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")"
        return(code)

    def _print_ITE(self, expr):
        from sympy.functions import Piecewise
        return self._print(expr.rewrite(Piecewise))

    def _print_MatrixElement(self, expr):
        return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"],
            strict=True), expr.j + expr.i*expr.parent.shape[1])

    def _print_Symbol(self, expr):
        name = super()._print_Symbol(expr)
        if expr in self._dereference:
            return '(*{})'.format(name)
        else:
            return name

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return "{} {} {}".format(lhs_code, op, rhs_code)

    def _print_AugmentedAssignment(self, expr):
        lhs_code = self._print(expr.lhs)
        op = expr.op
        rhs_code = self._print(expr.rhs)
        return "{} {} {};".format(lhs_code, op, rhs_code)

    def _print_For(self, expr):
        target = self._print(expr.target)
        if isinstance(expr.iterable, Range):
            start, stop, step = expr.iterable.args
        else:
            raise NotImplementedError("Only iterable currently supported is Range")
        body = self._print(expr.body)
        return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start,
                stop=stop-1, step=step, body=body)


    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, str):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "   "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [ line.lstrip(' \t') for line in code ]

        increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
        decrease = [ int(any(map(line.startswith, dec_token)))
                     for line in code ]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line in ('', '\n'):
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty


def rcode(expr, assign_to=None, **settings):
    """Converts an expr to a string of r code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where the keys are string representations of either
        ``FunctionClass`` or ``UndefinedFunction`` instances and the values
        are their desired R string representations. Alternatively, the
        dictionary value can be a list of tuples i.e. [(argument_test,
        rfunction_string)] or [(argument_test, rfunction_formater)]. See below
        for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function
    >>> x, tau = symbols("x, tau")
    >>> rcode((2*tau)**Rational(7, 2))
    '8*sqrt(2)*tau^(7.0/2.0)'
    >>> rcode(sin(x), assign_to="s")
    's = sin(x);'

    Simple custom printing can be defined for certain types by passing a
    dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
    Alternatively, the dictionary value can be a list of tuples i.e.
    [(argument_test, cfunction_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")],
    ...   "func": "f"
    ... }
    >>> func = Function('func')
    >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
    'f(fabs(x) + CEIL(x))'

    or if the R-function takes a subset of the original arguments:

    >>> rcode(2**x + 3**x, user_functions={'Pow': [
    ...   (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
    ...   (lambda b, e: b != 2, 'pow')]})
    'exp2(x) + pow(3, x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(rcode(expr, assign_to=tau))
    tau = ifelse(x > 0,x + 1,x);

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> rcode(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(rcode(mat, A))
    A[0] = x^2;
    A[1] = ifelse(x > 0,x + 1,x);
    A[2] = sin(x);

    """

    return RCodePrinter(settings).doprint(expr, assign_to)


def print_rcode(expr, **settings):
    """Prints R representation of the given expression."""
    print(rcode(expr, **settings))